Parallelizing The Data Cube *

Frank Dehne
* School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6, frank@dehne.net, www.dehne.net

Todd Eavis
Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5
eavis@cs.dal.ca

Susanne Hambrusch
Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA, seh@cs.purdue.edu, www.cs.purdue.edu/people/seh

Andrew Rau-Chaplin
Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5
ar@cs.dal.ca, www.cs.dal.ca/~arc

September 13, 2001

Abstract. This paper presents a general methodology for the efficient parallelization of existing data cube construction algorithms. We describe two different partitioning strategies, one for top-down and one for bottom-up cube algorithms. Both partitioning strategies assign subcubes to individual processors in such a way that the loads assigned to the processors are balanced. Our methods reduce interprocessor communication overhead by partitioning the load in advance instead of computing each individual group-by in parallel. Our partitioning strategies create a small number of coarse tasks. This allows for sharing of prefixes and sort orders between different group-by computations. Our methods enable code reuse by permitting the use of existing sequential (external memory) data cube algorithms for the subcube computations on each processor. This supports the transfer of optimized sequential data cube code to parallel settings.

The bottom-up partitioning strategy balances the number of single attribute external memory sorts made by each processor. The top-down strategy partitions a weighted tree in which weights reflect algorithm specific cost measures like estimated group-by sizes. Both partitioning approaches can be implemented on any shared disk type parallel machine composed of p processors connected via an interconnection fabric and with access to a shared parallel disk array.

We have implemented our parallel top-down data cube construction method in C++ with the MPI message passing library for communication and the LEDA library for the required graph algorithms. We tested our code on an eight processor cluster, using a variety of different data sets with a range of sizes, dimensions, density, and skew. Comparison tests were performed on a SunFire 6800. The tests show that our partitioning strategies generate a close to optimal load balance between processors. The actual run times observed show an optimal speedup of p.

Keywords: OLAP, data cube, parallel processing, partitioning, load balancing

* A preliminary version of this paper has been published in the proceedings of the 8th International Conference on Database Theory (ICDT 2001), London, UK, January 2001. Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

1. Introduction

Data cube queries represent an important class of On-Line Analytical Processing (OLAP) queries in decision support systems. The precomputation of the different group-bys of a data cube (i.e., the forming of aggregates for every combination of GROUP BY attributes) is critical to improving the response time of the queries (Gray et al., 1997). Numerous solutions for generating the data cube have been proposed. One of the main differences between the many solutions is whether they are aimed at sparse or dense relations (Beyer and Ramakrishnan, 1999; Harinarayan et al., 1996; Ross and Srivastava, 1997; Sarawagi et al., 1996; Zhao et al., 1997). Solutions within a category can also differ considerably. For example, top-down data cube computations for dense relations based on sorting have different characteristics from those based on hashing.

To meet the need for improved performance and to effectively handle the increase in data sizes, parallel solutions for generating the data cube are needed. In this paper we present a general framework for the efficient parallelization of existing data cube construction algorithms. We present load balanced and communication efficient partitioning strategies which generate a subcube computation for every processor. Subcube computations are then carried out using existing sequential, external memory data cube algorithms. Balancing the load assigned to different processors and minimizing the communication overhead are the core problems in achieving high performance on parallel systems. As discussed in (Lu et al., 1997) and (Ng et al., 2001), this is a challenging problem.

At the heart of this paper are two partitioning strategies, one for top-down and one for bottom-up data cube construction algorithms. Good load balancing approaches generally make use of application specific characteristics. Our partitioning strategies assign loads to processors by using metrics known to be crucial to the performance of data cube algorithms (Agarwal et al., 1996; Beyer and Ramakrishnan, 1999; Sarawagi et al., 1996). The bottom-up partitioning strategy balances the number of single attribute external sorts made by each processor (Beyer and Ramakrishnan, 1999). The top-down strategy partitions a weighted tree in which weights reflect algorithm specific cost measures such as estimated group-by sizes (Agarwal et al., 1996; Sarawagi et al., 1996).

The main advantages of our partitioning strategies for parallel data cube construction are:

Research Council of Canada and the National Science Foundation (Grant 9988339-CCR).
- Experimental data indicate that our top-down partitioning method produces very close to optimal load balancing.

- Our bottom-up partitioning method produces tasks which require the same number of single attribute sorts on each processor (the main cost for bottom-up data cube construction).

- Our methods reduce inter-processor communication overhead by partitioning the load in advance instead of computing each individual group-by in parallel (as proposed in (Goil and Choudhary, 1997; Goil and Choudhary, 1999)).

- Our methods create a small number of coarse tasks. Only a very small number of tasks is assigned to each processor. This allows for sharing of prefixes and sort orders between different group-by computations. A large number of tasks creates the problem that such sharing can not be exploited, resulting in loss of performance as reported in (Ng et al., 2001).

- Our methods maximize code reuse from existing sequential data cube implementations by using existing sequential data cube algorithms for the subcube computations on each processor. This supports the transfer of optimized sequential data cube code to the parallel setting.

Our partitioning approaches are designed for standard, shared disk type, parallel machines: \(p \) processors connected via an interconnection fabric where the processors have standard-size local memories and access to a shared disk array. We have implemented and tested our parallel top-down data cube construction method. We implemented sequential pipesort (Agarwal et al., 1996) in C++, and our parallel top-down data cube construction method (Section 4) in C++ with MPI (Argonne, 2001). We tested our code on an eight processor cluster, using a variety of different data sets with a range of sizes, dimensions, density, and skew. Comparison tests were performed on a SunFire 6800. The tests show that our partitioning strategies generate a close to optimal load balance between processors. The actual run times observed show an optimal speedup of \(p \).

The paper is organized as follows. Section 2 introduces the datacube problem and describes the parallel machine model underlying our partitioning approaches as well as the input and the output configuration for our algorithms. Section 3 presents our partitioning approach for parallel bottom-up data cube generation and Section 4 outlines our method for parallel top-down data cube generation. In Section 5 we indicate how our top-down cube parallelization can be easily modified
to obtain an efficient parallelization of the ArrayCube method (Zhao et al., 1997). Section 6 presents the performance analysis of our parallel top-down partitioning approach. Section 7 compares our methods to previously published results and Section 8 concludes the paper and discusses possible extensions of our methods.

2. Preliminaries

The group-by operator in SQL computes aggregates on a set of attributes. To make interactive analysis possible, OLAP databases often precompute aggregates. For a given relation \(R \), the datacube operator refers to computing the aggregates for every combination of attributes of \(R \). For example, given a relation \(R \) with attributes \(A, B, C \), the datacube operator will result in the computation of \(2^3 = 8 \) group-bys: \(ABC, AB, BC, AC, A, B, C, \text{all} \), where \text{all} denotes the empty group-by. Precomputing the aggregates improves the response time of aggregation queries and numerous solutions for the computation of all aggregates have been proposed (Beyer and Ramakrishnan, 1999; Gray et al., 1997; Agarwal et al., 1996; Deshpande et al., 1996; Ross and Srivastava, 1997; Sarawagi et al., 1996). Since the number of group-bys grows exponentially in the number of dimensions (for \(d \) dimensions, \(2^d \) group-bys are computed), algorithms make use of various problem- and data-dependent characteristics to improve efficiency.

Let \(R \) be the input data set representing \(d \)-dimensional data with \(|R| = N\). We use \(A_1, A_2, \ldots, A_d \) to denote the \(d \) attributes of relation \(R \). Underlying all cube algorithms is the lattice representing the \(2^d \) group-bys and their parent-child relationship. Figure 2 shows this lattice for \(d = 4 \), where \(A, B, C, \) and \(D \) represent the attributes of the four dimensions. The nodes of the lattice represent the group-bys and the edges indicate the parent-child relationship. Label \(AB \) of a node represents the group-by in which each entry is aggregated over all distinct combinations over \(AB \). A group-by is a child of some parent group-by if the child can be computed from the parent by aggregating some of its attributes. Parent-child relationships allow algorithms to share partitions, sorts, and partial sorts between different group-buys. For example, if the data has been sorted with respect to \(AB \), then cuboid group-by \(A \) can be generated from \(AB \) without sorting and generating \(ABC \) requires only a sorting of blocks of entries. Cube algorithms differ on how they make use of these commonalities. Bottom-up approaches reuse previously computed sort orders and generate more detailed group-buys from less detailed ones (a less detailed group-by contains a subset of the attributes). Top-down approaches use more detailed group-buys to
compute less detailed ones. Bottom-up approaches are better suited for sparse relations. Relation \(R \) is sparse if \(N \) is much smaller than the number of possible values in the given \(d \)-dimensional space. We present different partitioning and load balancing approaches depending on whether a top-down or bottom-up sequential cube algorithm is used.

We conclude this section with a brief discussion of the underlying parallel model, the standard \textit{shared disk} parallel machine model. That is, we assume \(p \) processors connected via an interconnection fabric where processors have typical workstation size local memories and concurrent access to a shared disk array. For the purpose of parallel algorithm design, we use the \textit{Coarse Grained Multicomputer} (CGM) model (Cheatam et al., 1995; Dehne et al., 1993; Goudreau et al., 1996; Hill et al., 1998; Sibeyn and Kaufmann, 1997). More precisely, we use the \textit{EM-CGM} model (Dehne et al., 1997; Dehne et al., 1999a; Dehne et al., 1999b) which is a multi-processor version of Vitter's \textit{Parallel Disk Model} (Vengroff and Vitter, 1996; Vitter, 1998; Vitter and Shriver, 1994). For our parallel data cube construction methods we assume that the \(d \)-dimensional input data set \(R \) of size \(N \) is stored on the shared disk.
array. The output, i.e. the group-bys comprising the data cube, will be written to the shared disk array. Subsequent applications may impose requirements on the output. For example, a visualization application may require storing group-by in striped format over the entire disk array to support fast access to individual group-bys.

3. Parallel Bottom-Up Data Cube Construction

Bottom-up data cube construction methods calculate the group-bys in an order which emphasizes the reuse of previously computed sorts and they generate more detailed group-bys from less detailed ones. Bottom-up methods are well suited for sparse relations and they support the selective computation of blocks in a group-by; e.g., generate only blocks which specify a user-defined aggregate condition (Beyer and Ramakrishnan, 1999).

Previous bottom-up methods include BUC (Beyer and Ramakrishnan, 1999) and PartitionCube [part of (Ross and Srivastava, 1997)]. The main idea underlying bottom-up methods can be captured as follows; if the data has previously been sorted by attribute A, then creating an AB sort order does not require a complete resorting. A local resorting of A-blocks (blocks of consecutive elements that have the same attribute A) can be used instead. The sorting of such A-blocks can often be performed in local memory. Hence, instead of another external memory sort, the AB order can be created in one single scan through the disk. Bottom-up methods (Beyer and Ramakrishnan, 1999; Ross and Srivastava, 1997) attempt to break the problem into a sequence of single attribute sorts which share prefixes of attributes and can be performed in local memory with a single disk scan. As outlined in (Beyer and Ramakrishnan, 1999; Ross and Srivastava, 1997), the total computation time of these methods is dominated by the number of such single attribute sorts.

In this section we describe a partitioning of the group-by computations into p independent subproblems. The partitioning generates subproblems which can be processed efficiently by bottom-up sequential cube methods. The goal of the partitioning is to balance the number of single attribute sorts required by each subproblem and to ensure that each subproblem has overlapping sort sequences in the same way as for the sequential methods (thereby avoiding additional work).

Let \(A_1, \ldots, A_d \) be the attributes of relation \(R \) and assume \(|A_1| \geq |A_2| \geq \ldots \geq |A_d| \) where \(|A_i| \) is the number of different possible values for attribute \(A_i \). As observed in (Ross and Srivastava, 1997), the set of all groups-bys of the data cube can be partitioned into those that
contain \(A_1 \) and those that do not contain \(A_1 \). In our partitioning approach, the groups-bys containing \(A_1 \) will be sorted by \(A_1 \). We indicate this by saying that they contain \(A_1 \) as a prefix. The group-bys not containing \(A_1 \) (i.e., \(A_1 \) is projected out) contain \(A_1 \) as a postfix. We then recurse with the same scheme on the remaining attributes. We shall utilize this property to partition the computation of all group-bys into independent subproblems. The load between subproblems will be balanced and they will have overlapping sort sequences in the same way as for the sequential methods. In the following we give the details of our partitioning method.

Let \(x, y, z \) be sequences of attributes representing sort orders and let \(A \) be an arbitrary single attribute. We introduce the following definition of sets of attribute sequences representing sort orders (and their respective group-bys):

\[
S_1(x, A, z) = \{x, xA\} \tag{1}
\]

\[
S_i(x, Ay, z) = S_{i-1}(xA, y, z) \cup S_{i-1}(x, y, A)z, 2 \leq i \leq \log p + 1 \tag{2}
\]

The entire data cube construction corresponds to the set \(S_d(\emptyset, A_1 \ldots A_d, \emptyset) \) of sort orders and respective group-bys, where \(d \) is the dimension of the data cube. We refer to \(i \) as the rank of \(S_i(\ldots) \). The set \(S_d(\emptyset, A_1 \ldots A_d, \emptyset) \) is the union of two subsets of rank \(d-1 \): \(S_{d-1}(A_1, A_2 \ldots A_d, \emptyset) \) and \(S_{d-1}(\emptyset, A_2 \ldots A_d, A_1) \). These, in turn, are the union of four subsets of rank \(d-2 \): \(S_{d-2}(A_1 A_2, A_3 \ldots A_d, \emptyset) \), \(S_{d-2}(A_1, A_3 \ldots A_d, A_2) \), \(S_{d-2}(A_2, A_3 \ldots A_d, A_1) \), and \(S_{d-2}(\emptyset, A_3 \ldots A_d, A_2 A_1) \). A complete example for a 4-dimensional data cube with attributes \(A, B, C, D \) is shown in Figure 3.

For the sake of simplifying the discussion, we assume that \(p \) is a power of 2, \(p = 2^k \). Consider the \(2p \) \(S \)-sets of rank \(d-k-1 \). Let \(\beta = (B_1, B_2, \ldots, B_{2^p}) \) be these \(2p \) sets in the order defined by Equation (2). Define

\[
\text{Shuffle}(\beta) = \langle B_1 \cup B_{2^p}, B_2 \cup B_{2^{p-1}}, B_3 \cup B_{2^{p-2}}, \ldots, B_p \cup B_{p+1} \rangle >
= \langle \Gamma_1, \ldots, \Gamma_p \rangle
\]

Our partitioning assigns set \(\Gamma_i = B_i \cup B_{2^p-i+1} \) to processor \(P_i \), \(1 \leq i \leq p \), as summarized in Algorithm 1.

ALGORITHM 1. Parallel Bottom-Up Cube Construction.

Each processor \(P_i \), \(1 \leq i \leq p \), performs the following steps, independently and in parallel:

1. Determine the two sets forming \(\Gamma_i \) as described below.
2. Compute all group-bys in \(\Gamma_i \) using a sequential (external-memory) bottom-up cube construction method.
<table>
<thead>
<tr>
<th>$S_1(\emptyset, ABCD, \emptyset)$</th>
<th>$S_1(\emptyset, BCD, A)$</th>
<th>$S_1(\emptyset, CD, BA)$</th>
<th>$S_1(\emptyset, D, CBA)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${0, B}$</td>
<td>${0, C}$</td>
<td>${0, D}$</td>
</tr>
<tr>
<td>${C, D, BA}$</td>
<td>${C, CD}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${B, BD}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${BC, BCD}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Partitioning For A 4-Dimensional Data Cube With Attributes A, B, C, D. The 8 S_1-sets correspond to the 16 group-bys determined for four attributes.

--- End of Algorithm ---

We illustrate the partitioning using an example with $d = 10$ and $p = 2^3 = 8$. For these values, we generate 16 S-sets of rank 6. Given only the indices of attributes $A_1, A_2, A_3,$ and A_4, we have

$$\beta = (1234, 123, 124, 12, 143, 13, 14, 1, 234, 23, 24, 2, 34, 3, 4, \emptyset)$$

Each processor is assigned the computation of 2^7 group-bys as shown in Figure 3. If every processor has access to its own copy of relation R, then a processor performs $k + 1$ single attribute sorts to generate the data in the ordering needed for its group-bys. If there is only one copy of R, read-conflicts can be avoided by sorting the sequences using a binomial heap broadcast pattern (Kumar et al., 1994). Doing so results in every processor P_i receiving its two sorted sequences forming Γ_i after the time needed for $k + 1$ single attribute sorts. Figure 4 shows the sequence of sorts for the 8-processor example. The index inside the circles indicates the processor assignment; i.e., processor 1 performs a total of four single attribute sorts on the original relation R, starting with the sort on attribute A_1. Using binomial heap properties, it follows that a processor does at most $k + 1$ single attribute sorts and the 2^p sorted sequences are available after the time needed for $k + 1$ sorts.
<table>
<thead>
<tr>
<th>processor</th>
<th>(\Gamma)-sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1234 * * * * * *</td>
</tr>
<tr>
<td>2</td>
<td>123 * * * * * * *</td>
</tr>
<tr>
<td>3</td>
<td>124 * * * * * * *</td>
</tr>
<tr>
<td>4</td>
<td>12 * * * * * * * *</td>
</tr>
<tr>
<td>5</td>
<td>134 * * * * * * *</td>
</tr>
<tr>
<td>6</td>
<td>13 * * * * * * * *</td>
</tr>
<tr>
<td>7</td>
<td>14 * * * * * * * *</td>
</tr>
<tr>
<td>8</td>
<td>1 * * * * * * * * *</td>
</tr>
</tbody>
</table>

Figure 3. \(\Gamma \)-sets assigned to 8 processors when \(d = 10 \); symbol \(* \) represents a projected-out attribute and \(\bullet \) represents an existing attribute.

\[
\begin{array}{c}
\text{(1)} \\
\text{(2)} \\
\text{(3)} \\
\text{(4)} \\
\text{(5)} \\
\text{(6)} \\
\text{(7)} \\
\text{(8)} \\
\text{(123)} \\
\text{(124)} \\
\text{(134)} \\
\text{(234)} \\
\mathrm{()}
\end{array}
\]

\text{Figure 4. Binomial heap structure for generating the 2p Gamma-sets without read conflicts.}

Algorithm 1 can easily be generalized to values of \(p \) which are not powers of 2. We also note that Algorithm 1 requires \(p \leq 2^{d-1} \). This is usually the case in practice. However, if a parallel algorithm is needed for larger values of \(p \), the partitioning strategy needs to be augmented. Such an augmentation could, for example, be a partitioning strategy based on the number of data items for a particular attribute. This would be applied after partitioning based on the number of attributes has been done. Since the range \(p \in \{2^0 \ldots 2^{d-1}\} \) covers current needs with respect to machine and dimension sizes, we do not further discuss such augmentations in this paper.
The following four properties summarize the main features of Algorithm 1 that make it load balanced and communication efficient:

- The computation of each group-by is assigned to a unique processor.
- The calculation of the group-bys in Γ_i, assigned to processor P_i, requires the same number of single attribute sorts for all $1 \leq i \leq p$.
- The sorts performed at processor P_i share prefixes of attributes in the same way as in (Beyer and Ramakrishnan, 1999; Ross and Srivastava, 1997) and can be performed with disk scans in the same manner as in (Beyer and Ramakrishnan, 1999; Ross and Srivastava, 1997).
- The algorithm requires no inter-processor communication.

4. Parallel Top-Down Data Cube Construction

Top-down approaches for computing the data cube, like the sequential PipeSort, PipeHash, and Overlap methods (Agarwal et al., 1996; Deshpande et al., 1996; Sarawagi et al., 1996), use more detailed group-bys to compute less detailed ones that contain a subset of the attributes of the former. They apply to data sets where the number of data items in a group-by can shrink considerably as the number of attributes decreases (data reduction). The PipeSort, PipeHash, and Overlap methods select a spanning tree T of the lattice, rooted at the group-by containing all attributes. PipeSort considers two cases of parent-child relationships. If the ordered attributes of the child are a prefix of the ordered attributes of the parent (e.g., ABCD \rightarrow ABC) then a simple scan is sufficient to create the child from the parent. Otherwise, a sort is required to create the child. PipeSort seeks to minimize the total computation cost by computing minimum cost matchings between successive layers of the lattice. PipeHash uses hash tables instead of sorting. Overlap attempts to reduce sort time by utilizing the fact that overlapping sort orders do not always require a complete new sort. For example, the ABC group-by has A partitions that can be sorted independently on C to produce the AC sort order. This may permit independent sorts in memory rather than always using external memory sort.

Next, we outline a partitioning approach which generates p independent subproblems, each of which can be solved by one processor using an existing external-memory top-down cube algorithm. The first step
of our algorithm determines a spanning tree T of the lattice by using one of the existing approaches like \textit{PipeSort}, \textit{PipeHash}, and \textit{Overlap}, respectively. To balance the load between the different processors we next perform a storage estimation to determine approximate sizes of the group-bys in T. This can be done, for example, by using methods described in (Flajolet and Martin, 1985) and (Shukla et al., 1996). We now work with a weighted tree. The most crucial part of our solution is the partitioning of the tree. The partitioning of T into subtrees induces a partitioning of the data cube problem into p subproblems (subsets of group-bys). Determining an optimal partitioning of the weighted tree is easily shown to be an NP-complete problem (by making, for example, a reduction to processor scheduling). Since the weights of the tree represent estimates, a heuristic approach which generates p subproblems with “some control” over the sizes of the subproblems holds the most promise. While we want the sizes of the p subproblems balanced, we also want to minimize the number of subtrees assigned to a processor. Every subtree may require a scanning of the entire data set R and thus too many subtrees can result in poor I/O performance. The solution we develop balances these two considerations.

Our heuristics make use of a related partitioning problem on trees for which efficient algorithms exist, the \textit{min-max tree k-partitioning problem} (Becker et al., 1982) defined as follows: Given a tree T with n vertices and a positive weight assigned to each vertex, delete k edges in the tree such that the largest total weight of a resulting subtree is minimized.

The min-max tree k-partitioning problem has been studied in (Becker et al., 1982; Frederickson, 1991; Perl and Vishkin, 1985). These methods assume that the weights are fixed. Note that, our partitioning problem on T is different in that, as we cut a subtree T' out of T, an additional cost is introduced because the group-by associated with the root of T' must now be computed from scratch through a separate sort. Hence, when cutting T' out of T, the weight of the root of T' has to be increased accordingly. We have adapted the algorithm in (Becker et al., 1982) to account for the changes of weights required. This algorithm is based on a \textit{pebble shifting} scheme where k pebbles are shifted down the tree, from the root towards the leaves, determining the cuts to be made. In our adapted version, as cuts are made, the cost for the parent of the new partition is adjusted to reflect the cost of the additional sort. Its original cost is saved in a hash table for possible future use since cuts can be moved many times before reaching their final position. In the remainder, we shall refer to this method as the modified min-max tree k-partitioning.
However, even a perfect min-max \(k \)-partitioning does not necessarily result in a partitioning of \(T \) into subtrees of equal size, and nor does it address tradeoffs arising from the number of subtrees assigned to a processor. We use tree-partitioning as an initial step for our partitioning. To achieve a better distribution of the load we apply an over partitioning strategy: instead of partitioning the tree \(T \) into \(p \) subtrees, we partition it into \(s \times p \) subtrees, where \(s \) is an integer, \(s \geq 1 \). Then, we use a "packing heuristic" to determine which subtrees belong to which processors, assigning \(s \) subtrees to every processor. Our packing heuristic considers the weights of the subtrees and pairs subtrees by weights to control the number of subtrees. It consists of \(s \) matching phases in which the \(p \) largest subtrees (or groups of subtrees) and the \(p \) smallest subtrees (or groups of subtrees) are matched up. Details are described in Step 2b of Algorithm 2.

ALGORITHM 2. Sequential Tree-partition(\(T, s, p \)).

Input: A spanning tree \(T \) of the lattice with positive weights assigned to the nodes (representing the cost to build each node from it's ancestor in \(T \)). Integer parameters \(s \) (oversampling ratio) and \(p \) (number of processors).

Output: A partitioning of \(T \) into \(p \) subsets \(\Sigma_1, \ldots, \Sigma_p \) of \(s \) subtrees each.

1. Compute a modified min-max tree \(s \times p \)-partitioning of \(T \) into \(s \times p \) subtrees \(T_1, \ldots, T_{s \times p} \).
2. Distribute subtrees \(T_1, \ldots, T_{s \times p} \) among the \(p \) subsets \(\Sigma_1, \ldots, \Sigma_p \), \(s \) subtrees per subset, as follows:
 1. Create \(s \times p \) sets of trees named \(\Upsilon_i, 1 \leq i \leq sp \), where initially \(\Upsilon_i = \{ T_i \} \). The weight of \(\Upsilon_i \) is defined as the total weight of the trees in \(\Upsilon_i \).
 2. For \(j = 1 \) to \(s - 1 \)
 - Sort the \(\Upsilon \)-sets by weight, in increasing order. W.L.O.G., let \(\Upsilon_1, \ldots, \Upsilon_{sp-(j-1)p} \) be the resulting sequence.
 - Set \(\Upsilon_i := \Upsilon_i \cup \Upsilon_{sp-(j-1)p-i+1}, 1 \leq i \leq p \).
 - Remove \(\Upsilon_{sp-(j-1)p-i+1}, 1 \leq i \leq p \).
3. Set \(\Sigma_i = \Upsilon_i, 1 \leq i \leq p \).

— End of Algorithm —

The above tree partition algorithm is embedded into our parallel top-down data cube construction algorithm. Our method provides a framework for parallelizing any sequential top-down data cube algorithm. An outline of our approach is given in the following Algorithm 3.
ALGORITHM 3. Parallel Top-Down Cube Construction.
Each processor P_i, $1 \leq i \leq p$, performs the following steps independently and in parallel:

1. Apply the storage estimation method in (Shukla et al., 1996) and (Flajolet and Martin, 1985) to determine the approximate sizes of all group-bys in T.

2. Select a sequential top-down cube construction method (e.g., PipeSort, PipeHash, or Overlap) and compute the spanning tree T of the lattice as used by this method. Compute the weight of each node of T: the estimated cost to build each node from its ancestor in T.

3. Execute Algorithm Tree-partition(T, s, p) as shown above, creating p sets Σ_1, ..., Σ_p. Each set Σ_i contains s subtrees of T.

4. Compute all group-bys in subset Σ_i using the sequential top-down cube construction method chosen in Step 1.

— End of Algorithm —

Our performance results described in Section 6 show that an over partitioning with $s = 2$ or 3 achieves very good results with respect to balancing the loads assigned to the processors. This is an important result since a small value of s is crucial for optimizing performance.

5. Parallel Array-Based Data Cube Construction

Our method in Section 4 can be easily modified to obtain an efficient parallelization of the ArrayCube method presented in (Zhao et al., 1997). The ArrayCube method is aimed at dense data cubes and structures the raw data set in a d-dimensional array stored on disk as a sequence of "chunks". Chunking is a way to divide the d-dimensional array into small size d-dimensional chunks where each chunk is a portion containing a data set that fits into a disk block. When a fixed sequence of such chunks is stored on disk, the calculation of each group-by requires a certain amount of buffer space (Zhao et al., 1997). The ArrayCube method calculates a minimum memory spanning tree of group-bys, MMST, which is a spanning tree of the lattice such that the total amount of buffer space required is minimized. The total number of disk scans required for the computation of all group-bys is the total amount of buffer space required divided by the memory space available. The ArrayCube method can therefore be parallelized by simply applying Algorithm 3 with T being the MMST.
6. Experimental Performance Analysis

We have implemented and tested our parallel *top-down* data cube construction method presented in Section 4. We implemented sequential pipelint (Agarwal et al., 1996) in C++, and our parallel top-down data cube construction method (Section 4) in C++ with MPI (Argonne, 2001). Most of the required graph algorithms, as well as data structures like hash tables and graph representations, were drawn from the LEDA library (Max Planck Institute, 2001). Still, the implementation took one person year of full time work. We chose to implement our parallel *top-down* data cube construction method rather than our parallel *bottom-up* data cube construction method because the former has more tunable parameters that we wish to explore. As our primary parallel hardware platform, we use a PC cluster consisting of a front-end machine and eight processors. The front-end machine is used to partition the lattice and distribute the work among the other 8 processors. The front-end machine is an IBM Netfinity server with two 9 GB SCS1 disks, 512 MB of RAM and a 550-MHz Pentium processor. The processors are 166 MHz Pentiums with 2G IDE hard drives and 32 MB of RAM, except for one processor which is a 133 MHz Pentium. The processors run LINUX and are connected via a 100 Mbit Fast Ethernet switch with full wire speed on all ports. Clearly, this is a very low end, older, hardware platform. The experiments reported in the remainder of this section represent several weeks of 24 hr/day testing and the PC cluster platform described above has the advantage of being available exclusively for our experiments without any other user disturbing our measurements. For our main goal of studying the speedup obtained by our parallel method rather than absolute times, this platform proved sufficient. To verify that our results also hold for newer machines with faster processors, more memory per processor, and higher bandwidth, we then ported our code to a SunFire 6800 and performed comparison tests on the same data sets. The SunFire 6800 used is a very recent SUn multiprocessor with Sun UltraSPARC III 750MHz processors running Solaris 8, 24 GB of RAM and a Sun T3 shared disk.

Figure 6 shows the PC cluster running time observed as a function of the number of processors used. For the same data set, we measured the sequential time (sequential pipelint (Agarwal et al., 1996)) and the parallel time obtained through our parallel top-down data cube construction method (Section 4), using an oversampling ratio of $s = 2$. The data set consisted of 1,000,000 records with dimension 7. Our test data values were uniformly distributed over 10 values in each dimension. Figure 6 shows the running times of the algorithm as we increase the number of processors. There are three curves shown. The runtime curve
shows the time taken by the slowest processor (i.e., the processor that received the largest workload). The second curve shows the average time taken by the processors. The time taken by the front-end machine, to partition the lattice and distribute the work among the compute nodes, was insignificant. The theoretical optimum curve shown in Figure 6 is the sequential pipesort time divided by the number of processors used.

We observe that the runtime obtained by our code and the theoretical optimum are essentially identical. That is, for an oversampling ratio of $s = 2$, an optimal speedup of p is observed. (The anomaly in the runtime curve at $p = 4$ is due to the slower 133 MHZ Pentium processor.)

Interestingly, the average time curve is always below the theoretical optimum curve, and even the runtime curve is sometimes below the theoretical optimum curve. One would have expected that the runtime curve would always be above the theoretical optimum curve. We believe that this superlinear speedup is caused by another effect which benefits our parallel method: improved I/O. When sequential pipesort is applied to a 10 dimensional data set, the lattice is partitioned into pipes of length up to 10. In order to process a pipe of length 10, pipesort needs to write to 10 open files at the same time. It appears that under LINUX, the number of open files can have a considerable impact on performance. For 100,000 records, writing them to 4 files each took 8
seconds on our system. Writing them to 6 files each took 23 seconds, not 12, and writing them to 8 files each took 48 seconds, not 16. This benefits our parallel method, since we partition the lattice first and then apply pipesort to each part. Therefore, the pipes generated in the parallel method are considerably shorter.

In order to verify that our results also hold for newer machines with faster processors, more memory per processor, and higher bandwidth, we ported our code to a SunFire 6800 and performed comparison tests on the same data sets. Figure 6 shows the running times observed for the SunFire 6800. The absolute running times observed are considerably faster, as expected. The SunFire is approximately 4 times faster than the PC cluster. Most importantly, the shapes of the curves are essentially the same as for the PC cluster. The runtime (slowest proc.) and average time curves are very similar and are both very close to the theoretical optimum curve. That is, for an oversampling ratio of $s = 2$, an optimal speedup of p is also observed for the SunFire 6800. The larger SunFire installation also allowed us to test our code for a larger number of processors. As shown in Figure 6, we still obtain optimal speedup p when using 16 processors on the same dataset.

Figure 6 shows the PC cluster running times of our top-down data cube parallelization as we increase the data size from 100,000 to 1,000,000 rows. The main observation is that the parallel runtime increases slightly more than linear with respect to the data size which is consistent with the fact that sorting requires time $O(n \log n)$. Figure 6
shows that our parallel top-down data cube construction method scales gracefully with respect to the data size.

Figure 6 shows the PC cluster running time as a function of the oversampling ratio s. We observe that, for our test case, the parallel runtime (i.e., the time taken by the slowest processor) is best for $s = 3$. This is due to the following tradeoff. Clearly, the workload balance improves as s increases. However, as the total number of subtrees, $s \times p$, generated in the tree partitioning algorithm increases, we need to perform more sorts for the root nodes of these subtrees. The optimal tradeoff point for our test case is $s = 3$. It is important to note that the oversampling ratio s is a tunable parameter. The best value for s depends on a number of factors. What our experiments show is that $s = 3$ is sufficient for the load balancing. However, as the data set grows in size, the time for the sorts of the root nodes of the subtrees increases more than linear whereas the effect on the imbalance is linear. For substantially larger data sets, e.g., 1G rows, we expect the optimal value for s to be $s = 2$.

Figure 6 shows the PC cluster running time of our top-down data cube parallelization as we increase the dimension of the data set from 2 to 10. Note that, the number of group-bys that must be computed grows exponentially with respect to the dimension of the data set. In Figure 6, we observe that the parallel running time grows essentially linear with respect to the output size. We also tried our code on very high
Figure 8. PC Cluster Running Time In Seconds As A Function Of The Oversampling Ratio s. (Fixed Parameters: Data Size = 1,000,000 Rows. Number Of Processors = 8. Dimensions = 7. Experiments Per Data Point = 5.)

Figure 9. PC Cluster Running Time In Seconds As A Function Of The Number Of Dimensions. (Fixed Parameters: Data Size = 200,000 Rows. Number Of Processors = 8. Experiments Per Data Point = 5.) Note: Work Grows Exponentially With Respect To The Number Of Dimensions.
dimensional data where the size of the output becomes extremely large. For example, we executed our parallel algorithm for a 15-dimensional data set of 10,000 rows, and the resulting data cube was of size more than 1G.

Figure 6 shows the PC cluster running time of our top-down data cube parallelization as we increase the cardinality in each dimension, that is the number of different possible data values in each dimension. Recall that, top-down pipesort (Agarwal et al., 1996) is aimed at dense data cubes. Our experiments were performed for 3 cardinality levels: 5, 10, and 100 possible values per dimension. The results shown in Figure 6 confirm our expectation that the method performs better for denser data.

Figure 6 shows the PC cluster running time of our top-down data cube parallelization for data sets with skewed distribution. We used the standard ZIPF distribution in each dimension with $\alpha = 0$ (no skew) to $\alpha = 3$. Since data reduction in top-down pipesort (Agarwal et al., 1996) increases with skew, the total time observed is expected to decrease with skew which is exactly what we observe in Figure 6. Our main concern regarding our parallelization method was how balanced the partitioning of the tree would be in the presence of skew. The main observation in Figure 6 is that the relative difference between runtime (slowest processor) and average time does not increase as we increase
the skew. This appears to indicate that our partitioning method is robust in the presence of skew.

7. Comparison with Previous Results

In this Section we summarize previous results on parallel data cube computation and compare them to the results presented in this paper.

In (Goil and Choudhary, 1997; Goil and Choudhary, 1999), the authors observe that a group-by-computation is essentially a parallel prefix operation and reduce the data cube problem to a sequence of parallel prefix computations. No implementation of this method is mentioned and no experimental performance evaluation is presented. This method creates large communication overhead and will most likely show unsatisfactory speedup. The methods in (Lu et al., 1997) and (Ng et al., 2001) as well as the methods presented in this paper reduce communication overhead by partitioning the load and assigning sets of group-by-computations to individual processors. As discussed in (Lu et al., 1997) and (Ng et al., 2001), balancing the load assigned to different processors is a hard problem. The approach in (Lu et al., 1997) uses a simple greedy heuristic to parallelize hash-based data cube computation. As observed in (Lu et al., 1997), this simple method is not scalable. Load

Figure 11. PC Cluster Running Time In Seconds As A Function Of The Skew Of The Data Values In Each Dimension, Based On ZIPF. (Fixed Parameters: Data Size = 200,000 Rows. Number Of Processors = 8. Dimensions = 7. Experiments Per Data Point = 5.)
balance and speedup are not satisfactory for more than 4 processors.
A subsequent paper by the same group (Yu and Lu, 2001) focuses on
the overlap between multiple data cube computations in the sequential
setting. The approach in (Ng et al., 2001) considers the parallelization
of sort-based data cube construction. It studies parallel bottom-up
Iceberg-cube computation. Four different methods are presented: RP,
RPP, ASL, and PT. Experimental results presented indicate that ASL,
and PT have the better performance among those four. The main
reason is that RP and RPP show weak load balancing. PT is somewhat
similar to our parallel bottom-up data cube construction method
presented in Section 3 since PT also partitions the bottom-up tree.
However, PT partitions the bottom-up tree simply into subtrees with
equal numbers of nodes, and it requires considerably more tasks than
processors to obtain good load balance. As observed in (Ng et al., 2001),
when a larger number of tasks is required, then performance problems
arise because such an approach reduces the possibility of sharing of
prefixes and sort orders between different group-by computations. In
contrast, our parallel bottom-up method in Section 3 assigns only two
tasks to each processor. These tasks are coarse grained which greatly
improves sharing of prefixes and sort orders between different group-by
computations. Therefore, we expect that our method will not have a
decrease in performance for a larger number of processors as observed
in (Ng et al., 2001). The ASL method uses a parallel top-down ap-
proach, using a skiplist to maintain the cells in each group-by. ASL is
parallelized by making the construction of each group-by a separate
task, hoping that a large number of tasks will create a good overall
load balancing. It uses a simple greedy approach for assigning tasks to
processors that is similar to (Lu et al., 1997). Again, as observed in
(Ng et al., 2001), the large number of tasks brings with it performance
problems because it reduces the possibility of sharing of prefixes and
sort orders between different group-by computations. In contrast, our
parallel top-down method in Section 4 creates only very few coarse
tasks. More precisely, our algorithm assigns s tasks (subtrees) to each
processor, where s is the oversampling ratio. As shown in Section 6, an
oversampling ratio $s \leq 3$ is sufficient to obtain good load balancing.
In that sense, our method answers the open question in (Ng et al.,
2001) on how to obtain good load balancing without creating so many
tasks. This is also clearly reflected in the experimental performance of
our methods in comparison to the experiments reported in (Ng et al.,
2001). As observed in (Ng et al., 2001), their experiments (Figure 10
in (Ng et al., 2001)) indicate that ASL obtains essentially zero speedup
when the number of processors is increased from 8 to 16. In contrast,
our experiments (Figure 6 of Section 6) show that our parallel top-
down method from Section 4 still doubles its speed when the number of processors is increased from 8 to 16 and obtains optimal speedup p when using 16 processors.

8. Conclusion and Future Work

We presented two different, partitioning based, data cube parallelizations for standard shared disk type parallel machines. Our partitioning strategies for bottom-up and top-down data cube parallelization balance the loads assigned to the individual processors, where the loads are measured as defined by the original proponents of the respective sequential methods. Subcube computations are carried out using existing sequential data cube algorithms. Our top-down partitioning strategy can also be easily extended to parallelize the ArrayCube method. Experimental results indicate that our partitioning methods are efficient in practice. Compared to existing parallel data cube methods, our parallelization approach brings a significant reduction in inter-processor communication and has the important practical benefit of enabling the re-use of existing sequential data cube code.

A possible extension of our data cube parallelization methods is to consider a shared nothing parallel machine model. If it is possible to store a duplicate of the input data set R on each processor's disk, then our method can be easily adapted for such an architecture. This is clearly not always possible. It does solve most of those cases where the total output size is considerably larger than the input data set; for example sparse data cube computations. The data cube can be several hundred times as large as R. Sufficient total disk space is necessary to store the output (as one single copy distributed over the different disks) and a p times duplication of R may be smaller than the output.

Our data cube parallelization method would then partition the problem in the same way as described in Sections 3 and 4, and subcube computations would be assigned to processors in the same way as well. When computing its subcube, each processor would read R from its local disk. For the output, there are two alternatives. Each processor could simply write the subcubes generated to its local disk. This could, however, create a bottleneck if there is, for example, a visualization application following the data cube construction which needs to read a single group-by. In such a case, each group-by should be distributed over all disks, for example in striped format. To obtain such a data distribution, all processors would not write their subcubes directly to their local disks but buffer their output. Whenever the buffers are full, they would be permuted over the network. In summary we observe
that, while our approach is aimed at shared disk parallel machines, its applicability to shared nothing parallel machines depends mainly on the distribution and availability of the input data set \(R \). An interesting open problem is to identify the “ideal” distribution of input \(R \) among the \(p \) processors when a fixed amount of replication of the input data is allowed (i.e., \(R \) can be copied \(r \) times, \(1 \leq r < p \)).

Another interesting question for future work is the relationship between top-down and bottom-up data cube computation in the parallel setting. These are two conceptually very different methods. The existing literature suggests that bottom-up methods are better suited for high dimensional data. So far, we have implemented our parallel top-down data cube method which took about one person year of full time work. We chose to implement the top-down method because it has more tunable parameters to be discovered through experimentation. A possible future project could be to implement our parallel bottom-up data cube method in a similar environment (same compiler, message passing library, data structure libraries, disk access methods, etc.) and measure the various trade-off points between the two methods. As indicated in (Ng et al., 2001), the critical parameters for parallel bottom-up data cube computation are similar: good load balance and a small number of coarse tasks. This leads us to believe that our parallel bottom-up method should perform well. Compared to our parallel top-down method, our parallel bottom-up method has fewer parameters available for fine-tuning the code. Therefore, the trade-off points in the parallel setting between top-down and bottom-up methods may be different from the sequential setting.

Relatively little work has been done on the more difficult problem of generating partial data cubes, that is, not the entire data cube but only a given subset of group-bys. Given a lattice and a set of selected group-bys that are to be generated, the challenge is in deciding which other group-bys should be computed in order to minimize the total cost of computing the partial data cube. In many cases computing intermediate group-bys that are not in the selected set, but from which several views in the selected set can be computed cheaply, will reduce the overall computation time. In (Sarawagi et al., 1996), Sarawagi et al. suggest an approach based on augmenting the lattice with additional vertices (to represent all possible orderings of each view’s attributes) and additional edges (to represent all relationships between views). Then a Minimum Steiner Tree approximation algorithm is run to identify some number of “intermediate” nodes (so-called Steiner points) that can be added to the selected subset to “best” reduce the overall cost. An approximation algorithm is used because the optimal Minimum Steiner Tree problem is NP-Complete. The intermediate nodes
introduced by this method are, of course, to be drawn from the non-selected nodes in the original lattice. By adding these additional nodes, the cost of computing the selected nodes is reduced. Although theoretically neat this approach is not effective in practice. The problem is that the augmented lattice has far too many vertices and edges to be processed efficiently. For example, in a 6 dimensional partial data cube the number of vertices and edges in the augmented lattice increase by factors of 30 and 8684 respectively. For a 8 dimensional partial data cube the number of vertices and edges increase by factors of 428 and 701,346 respectively. The augmented lattice for a 9 dimensional partial data cube has more than 2,000,000,000 edges. Another approach is clearly necessary. The authors are currently implementing new algorithms for generating partial data cubes. We consider this an important area of future research.

Acknowledgements

The authors would like to thank Steven Blimkie, Zimmin Chen, Khoi Manh Nguyen, Thomas Pehle, and Suganthan Sivagnanasundaram for their contributions towards the implementation described in Section 6. The first, second, and fourth author’s research was partially supported by the Natural Sciences and Engineering Research Council of Canada. The third author’s research was partially supported by the National Science Foundation under Grant 9988339-CCR.

References

