
On Peer-to-Peer Media Streaming
�

Dongyan Xu
�
, Mohamed Hefeeda, Susanne Hambrusch, Bharat Bhargava

Department of Computer Sciences
Purdue University, West Lafayette, IN 47907�

dxu, hefeeda, seh, bb � @cs.purdue.edu

Abstract

In this paper, we study a peer-to-peer media streaming
system with the following characteristics: (1) its streaming
capacity grows dynamically; (2) peers do not exhibit server-
like behavior; (3) peers are heterogeneous in their band-
width contribution; and (4) each streaming session may
involve multiple supplying peers. Based on these character-
istics, we investigate two problems: (1) how to assign media
data to multiple supplying peers in one streaming session
and (2) how to fast amplify the system’s total streaming
capacity. Our solution to the first problem is an optimal
media data assignment algorithm �����
	��	 , which results
in minimum buffering delay in the consequent streaming
session. Our solution to the second problem is a distributed
differentiated admission control protocol ������	��	 . By
differentiating between requesting peers with different out-
bound bandwidth, ������	��	 achieves fast system capacity
amplification; benefits all requesting peers in admission
rate, waiting time, and buffering delay; and creates an
incentive for peers to offer their truly available out-bound
bandwidth.

1. Introduction

Although there have been significant research efforts in
peer-to-peer systems during the past two years [10, 11, 12,
15, 14], one category of peer-to-peer systems has so far
received less attention: the peer-to-peer media streaming
system. The major difference between a general peer-to-
peer system and a peer-to-peer media streaming system lies
in the data sharing mode among peers: the former uses
the ‘open-after-downloading’ mode, while the latter uses
the ‘play-while-downloading’ mode. More specifically, in
a peer-to-peer media streaming system, a subset of peers
own a certain media file, and they stream the media file to�
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requesting peers. On the other hand, the requesting peers
playback and store the media data during the streaming
session, and they become supplying peers of the media
file after the streaming session. In this paper, we assume
the following four characteristics of a peer-to-peer media
streaming system: the first three are shared by all peer-
to-peer systems, while the last one is unique in peer-to-
peer media streaming systems:

(1) A peer-to-peer media streaming system is self-
growing. With requesting peers later becoming supplying
peers, the system’s total capacity will be amplified: the
more peers it serves, the larger the capacity it will have.

(2) A peer-to-peer media streaming system is server-
less. A peer is not supposed to exhibit server-like behavior,
such as opening a large number of simultaneous connec-
tions.

(3) Peers are heterogeneous in their out-bound band-
width contribution to the system. This heterogeneity may
be caused either by different access networks connecting the
peers, or by different willingness of the peers to contribute.

(4) The supplying-peer/requesting-peer relation is typi-
cally many-to-one, instead of one-to-one as in the general
peer-to-peer system. Since the out-bound bandwidth of-
fered by a supplying peer may be less than the original
playback rate of the media data, it is necessary to involve
multiple supplying peers in one real-time streaming session.

We identify two new problems arising in the above
systems. To the best of our knowledge, this is the first
in-depth study on these problems in the context of peer-to-
peer media streaming. The first problem is the media data
assignment for a multi-supplier peer-to-peer streaming ses-
sion. More specifically, given a requesting peer and a set of
supplying peers with heterogeneous out-bound bandwidth
offers, we show how to assign a subset of the media data to
each supplying peer. The second problem is the fast ampli-
fication of the peer-to-peer streaming capacity. Intuitively,
among multiple requesting peers, service priority should be
given to those who promise higher out-bound bandwidth
offers, because they will contribute more to the peer-to-
peer streaming capacity after becoming supplying peers.



We show how to realize such a differentiated admission
policy, and that fast capacity amplification will ultimately
benefit all peers.

In this paper, we propose an algorithm ����� 	 �	 that
computes the optimal media data assignment for each peer-
to-peer streaming session. The assignment will lead to
the minimum buffering delay experienced by the requesting
peer. We also propose a distributed differentiated admission
control protocol ����� 	��	 , to be executed by both sup-
plying and requesting peers. Compared with the current
non-differentiated admission control mechanism, Proto-
col ����� 	�� 	 achieves (1) faster amplification of peer-to-
peer system capacity; (2) higher admission rate and fewer
rejections (before a peer is admitted) among all requesting
peers; and (3) shorter average buffering delay among all
admitted requesting peers. Furthermore, for (2) and (3),
the protocol also differentiates between requesting peers
with different out-bound bandwidth promises, creating an
incentive for them to offer their truly available bandwidth.
The rest of the paper is organized as follows: we first
define our peer-to-peer media streaming model in Section 2.
Sections 3 and 4 present our solutions to the two problems,
respectively. Section 5 presents our simulation results.
Section 6 compares our work with related work. Finally,
Section 7 concludes this paper.

2 Peer-to-Peer Media Streaming Model

In this section, we define a peer-to-peer media streaming
model and state our assumptions:

(1) Roles of peers For a media data item, requesting
peers are the peers that request the data. Once the peer-to-
peer streaming session is over, a requesting peer becomes a
supplying peer. To avoid server-like behavior, each supply-
ing peer participates in at most one peer-to-peer streaming
session at any time. We also assume that there are some
‘seed’ supplying peers, which obtain the media data from
some external source1.

(2) Bandwidth of peers Let
���

denote the playback rate
of the media data. We assume that each requesting peer ���
is willing and able to set aside an in-bound bandwidth of���	��
 ������ � �

to receive the streaming service. However,
the out-bound bandwidth

��������
 ���� offered by a supplying
peer ��� has one of the following values: ������ ���� � ����� 	 ! ����#" 2.

(3) Classes of peers We classify the peers into $ classes,
according to the $ possible values of their out-bound
bandwidth offer. More specifically, a peer willing to offer
out-bound bandwidth ����&% ( '�(*)+(,$ ) is called a class- )

1We also assume that each peer has sufficient storage to store the entire
media file.

2This special set of values prevents media data assignment from
becoming the NP-hard binpacking-like problem.

peer. We also assume that the lower the ) , the higher the
class.

(4) Capacity of the peer-to-peer streaming system
We define the capacity as the total number of peer-to-
peer streaming sessions that can be simultaneously pro-
vided by the system. Since a peer-to-peer streaming session
involves multiple supplying peers whose

� �-��� 
 � �  add up
to
�.�

, the capacity of the system at time / can be computed

as � �102� 
 /-3�54
68729;:27�9&<>=@?1A ��BDC

= A!E 9-FGF
� �

H
( IKJ 
 /- is the set of

supplying peers in the system at / ).
(5) Segments of media data We assume that the media

data can be partitioned into small sequential segments of
equal sizes. We also assume that the media stream is
of Constant-Bit-Rate (CBR) and therefore, the playback
time LM/ of each segment is the same ( LM/ is typically in the
magnitude of seconds).

3 Optimal Media Data Assignment

In this section, we study the problem of media data
assignment. Based on the model in Section 2, the problem
can be stated as follows: For a requesting peer ��� and a
set of supplying peers �ON� � � �� �  	 ! ��P� , if

� � � ���!��
 �Q����6 P�	R N
�K�-����
 � ��  , determine (1) the media data segments to

be transmitted by � �� ( 'K(TSU(WV ) and (2) the playback start
time for � � . The goal is to ensure a continuous playback,
with minimum buffering delay at � � .

We define the buffering delay as the time interval be-
tween the start of media data segment transmission and the
start of playback at � � . As shown in Figure 1, different
media data assignments lead to different buffering delays.
The requesting peer is ��� ; and the supplying peers are�XN� � � �� � ��Y� � � �� with out-bound bandwidth of � �� , � �� , � �� ,
and � �� , respectively. In Assignment I, � N� is assigned media
data segments Z\[ , Z\[.]T' , Z^[.]`_ , Z^[.]ba ( [c�+d � ' � _ � a  ! 	 );� �� is assigned segments Z\[e]gf , Z\[e]ih ; �jY� is assigned
segments Z\[k]ml ; and � �� is assigned segments Z^[n]po .
The start time of playback at ��� is hqLM/ . Therefore, the
buffering delay achieved by Assignment I is hrLM/ . However,
if Assignment II is used, the buffering delay will be reduced
to f\LM/ .

We propose an algorithm ����� 	�� 	 , which computes the
optimal media data assignment that leads to the minimum
buffering delay. The algorithm is executed by the requesting
peer. After computing the media data assignment, it will
initiate the peer-to-peer streaming session by notifying each
participating supplying peer of the corresponding assign-
ment. The supplying peer will then start the transmission of
its assigned media data segments.

The pseudo-code of Algorithm ����� 	 �	 is shown in
Figure 2. Suppose that the V supplying peers have been
sorted in descending order according to their out-bound
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Figure 1. Different media data assignments
lead to different buffering delay

bandwidth offers; and that the lowest class among them
is class- ) . The algorithm computes the assignment of the
first _ � segments; and the assignment repeats itself every _ �
segments for the rest of the media file. In fact, Assignment
II in Figure 1 is computed by ����� 	�� 	 : after the first ‘while’
iteration, segments 7, 6, 5, 4 are assigned to � N� , � �� , ��Y� ,
and � �� , respectively; and �jY� and � �� are done with the
assignment. After the second ‘while’ iteration, segments 3,
2 are assigned to �ON� and � �� , respectively; and � �� is done.
During the last two ‘while’ iterations, segments 1 and 0 are
assigned to � N� - each in one iteration.

The optimality of Algorithm ����� 	�� 	 is stated in Theo-
rem 1, which gives a (somewhat surprisingly) simple form
of the minimum buffering delay. The proof of Theorem 1
can be found in [13].

Theorem 1 Given a set of V supplying peers� �XN� � � ��  	 ! ��P��� and a requesting peer � � , if we have
� � �� �	� 
 � � X� 6 P�!R N

� ����� 
 � ��  , then Algorithm ����� 	�� 	 will

����� 	�� 	 
 � � � � �XN� � � ��  	 	 ��P� �  �S�� _ ��� ' ;
while ( S�� d ) �

for � �i' to V
if the assignment to �
	� is not complete

�
Assign segment S to �
	� ;S�� S � ' ;���

Figure 2. Algorithm ����� 	��	

compute an optimal media data assignment, which achieves
the minimum buffering delay in the consequent peer-to-
peer streaming session. The minimum buffering delay is
�.P �!�� �� �+V � LM/ .
4 Fast System Capacity Amplification

In this section, we study the problem of fast capacity
amplification of the entire system. This will also answer
the question of how to select a set of supplying peers for
a peer-to-peer streaming session, which is not mentioned
in Section 3. Recall that one of the most exciting property
of a peer-to-peer streaming system is that its capacity dy-
namically grows. However, no previous work has addressed
this problem in the context of peer-to-peer media streaming
with peer bandwidth heterogeneity.

Consider the scenario shown in Figure 3. Suppose at
time / � , there are four supplying peers in the system: two
class-2 peers �ON� and � �� and two class-1 peers �jY� and � �� .
According to the system capacity definition, the capacity of
the peer-to-peer streaming system at / � is 4 
 ���� ] ���� ]���� ] ���� �� �.� H � ' . This means that the system can
admit one requesting peer at / � . Now, suppose there are
three requesting peers: two class-2 peers � N� and � �� and
one class-1 peer �jY� . If we admit �ON� at / � , the capacity
will still be 1 at / � ] � ( � is the duration of the peer-
to-peer streaming session), and � �� and ��Y� will have to
be admitted one after another at / � ] � and / � ] _ � ,
respectively. However, if � Y� is admitted at / � , the system
capacity will grow to 2 at / � ] � , and both �XN� and � ��
can be admitted at / � ] � . Furthermore, we define the
waiting time of a requesting peer as the interval between
its first streaming request and the earliest time it can be
admitted. The average waiting time incurred by the first
admission sequence is


 d ] �g]*_ � �� a � � ; while it is
 �W] �W]Wd\�� a�� ���Y in the second case.
The above example suggests that a differentiated admis-

sion policy which favors higher-class requesting peers will
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Figure 3. Different admission decisions lead
to different growth of streaming capacity

lead to a faster amplification of the peer-to-peer system
capacity, and will ultimately benefit requesting peers of
all classes. Other requirements for such a differentiated
admission policy include: (1) it should not starve the
lower-class requesting peers, even in the short term; (2)
it should be enforced in a purely distributed fashion; and
(3) it should be differentiating such that the higher the out-
bound bandwidth pledged by a requesting peer, the greater
the possibility that it will be admitted, and the shorter
the waiting time and buffering delay it will experience.
This differentiation will create an incentive to encourage
requesting peers to contribute its truly available out-bound
bandwidth to the peer-to-peer streaming system3.

Our solution is a distributed admission control protocol
� ��� 	�� 	 . Protocol ����� 	�� 	 has two key features. First,
each supplying peer individually decides whether or not to
participate in a streaming session requested by a requesting
peer. The decision is made in a probabilistic fashion,

3There is, however, an important assumption: since the bandwidth
commitment is made when a requesting peer requests streaming service,
there must be a mechanism to enforce the bandwidth commitment after the
requesting peer becomes a supplying peer. This mechanism is assumed to
exist in the peer-to-peer software installed in each peer.

with different probability values applied to different classes
of requesting peers, and the probabilities are dynamically
adjusted. Second, we propose a new technique called
reminder: under certain conditions (to be detailed shortly),
a requesting peer ��� may send a ‘reminder’ to a busy
supplying peer ��� , reminding ��� not to elevate its admis-
sion preferences to requesting peers of classes lower than
that of � � . Protocol ����� 	�� 	 involves operations of both
supplying peers and requesting peers.

4.1 ����� 	��	 - Supplying Peers

Each supplying peer � � maintains an admission proba-
bility vector � �����!'�� � ����� _��  ! 	 � ����� $���� . ����� S�� ( ' ( Sj($ ) will be applied to class- S requesting peers: if a class- S
requesting peer contacts ��� for streaming service and ��� is
not busy participating in another streaming session, � � will
grant the request with probability ����� S�� . Suppose ��� itself
is a class- [ peer, then the values in the probability vector of��� is determined as follows:

(a) Initially, when � � becomes a supplying peer, its
probability vector is initialized as follows: For 'e(*S�(i[ ,
we initialize ����� S���� '  d . For [�� Sc( $ , we initialize����� S�� � N�����! . The intuition behind this initialization is:
since � � is a class- [ peer itself, it will favor requesting peers
of class- [ and higher by always granting their streaming
requests. However, for requesting peers of lower classes,
it will exponentially decrease the admission probability.
We call class S a favored class of ��� , if ��� currently has����� S����,'  d . For example, for a class-2 supplying peer (and
suppose $ � f ), its initial admission probability vector is
� '  d � '  d � d  h � d  _\h"� , and its initial favored classes are
classes 1 and 2.

(b) If � � has been idle, then its probability vector will
be updated after a timeout period of � ����� . The update is
performed as follows: for each [#� S ( $ , ����� S�� ������ S�� � _ . This means that � � will ‘elevate’ the admission
probabilities of lower-class requesting peers, if it has not
been serving any requesting peer in the past period of � ����� .
If � � remains idle, the update will be performed after every
period of � ����� , until every probability in its probability
vector is 1.0, i.e. every class is ��� ’s favored class.

(c) If ��� has just finished serving in a peer-to-
peer streaming session, ��� will update its probability vector
as follows:

$ If during the streaming session, it did not receive any
request from a requesting peer of its favored class,��� will elevate the admission probability of the lower
classes, similar to the update in (b): for each [%� S ($ , ����� S�� �8����� S�� � _ .

$ If during the session, it received at least one request
from a requesting peer of its favored class, the request



was not granted because � � was busy. Under a
certain condition (to be described in Section 4.2), the
requesting peer left a ‘reminder’ to ��� . Suppose �[ is
the highest favored class of requesting peer(s) which
left a ‘reminder’, then for 'K( S (��[ , ����� S ���i'  d ; and
for �[ �WSU(T$ , ����� S�� � N� � � � .

In the first case, � � ‘relaxes’ the admission preference,
because it has not been requested by any peer of its current
favored classes. In the second case, � � ‘tightens’ the
admission preference, because there have been ‘reminders’
from requesting peers of its favored classes which should
have been served, had ��� not been busy.

4.2 ����� 	�� 	 - Requesting Peers

Each requesting peer ��� first obtains a list of
�

ran-
domly selected candidate supplying peers via some peer-
to-peer lookup mechanism4. We assume that the class of
each candidate is also obtained. ��� then directly contacts
the candidate supplying peers - from high to low classes:

$ � � will be admitted, if � � is able to obtain permissions
from enough supplying peers (among the

�
candi-

dates) such that: (1) they are neither down nor busy
with another streaming session; (2) they are willing to
provide the streaming service (i.e. having passed the
probabilistic admission test); and (3) their aggregated
out-bound bandwidth offer is

� � � P � �.�
. � � will

then execute Algorithm ����� 	�� 	 to compute the media
data assignment, triggers the participating supplying
peers, and the peer-to-peer streaming session will
begin.

$ � � will be rejected, if � � is not able to get permission
from enough supplying peers that satisfy all three
conditions above. However, � � will leave a ‘reminder’
to a subset � of the busy candidates. � is determined
as follows: from high-class to low-class busy candi-
dates, the first few that satisfy the following conditions
will belong to � : (1) the candidate currently favors
the class of ��� ; and (2) the aggregated out-bound
bandwidth offer of the candidates in � is equal to
 � � � � � � P  . Each (busy) candidate in � keeps the
‘reminder’; and when its current streaming session is
over, it will use this reminder to update its probability
vector, as described in Section 4.1. Note that a re-
minded supplying peer may not in the future serve ex-
actly the same requesting peer which left the reminder.
Instead, we propose reminder as a distributed mecha-
nism to realize differentiated and adaptive admission

4For example, by querying a centralized directory server as in Napster
[3], or by using a distributed lookup service such as Chord [12].

control, based on the current overall request/supply
situation in the peer-to-peer streaming system.

$ If � � is admitted, when the streaming session is over,
it will become a supplying peer. If � � is rejected, it
will backoff for at least a period of � ��� � before making
the request again. Furthermore, its backoff period will
become � ��� ���
	��� N��� � after the � th rejection.

5 Performance Study

5.1 Simulation Setup

In this section, we show the excellent performance of
Protocol � ��� 	��	 via extensive simulation results. We
simulate a peer-to-peer media streaming system with a
total of 50,100 peers. Initially, there are only 100 ‘seed’
supplying peers, while the other 50,000 peers are requesting
peers. Each ‘seed’ supplying peer is a class-1 peer, and it
possesses a copy of a popular video file. The show time
of the video is 60 minutes. The 50,000 requesting peers
belong to classes 1, 2, 3, and 4, and their distribution is
10%, 10%, 40%, and 40%, respectively. Parameters in
Protocol ����� 	�� 	 are set as follows:

� �8Z - each request-
ing peer probes 8 randomly selected candidate supplying
peers; � �-��� � _qdrV SD) - each idle supplying peer elevates
the admission probabilities of lower-class requesting peers
every 20 minutes; and � ��� � � '�dqV S ) � 	 ��� � �*_ - after theS th rejection, a requesting peer will backoff for '�d � _ �  N
minutes before retry. For comparison, we also simulate a
non-differentiated admission control protocol $ � ��� 	�� 	 ,
in which the admission probability vector of each supplying
peer is always �,'  d � '  d � '  d � '  d � . $ ������	�� 	 also have
the same values for parameters

� � � ��� � , and
	 ��� � . We

simulate a period of 144 hours. During the first 72 hours,
the 50,000 peers make their first streaming requests. We
simulate four different arrival patterns of first-time stream-
ing requests: Pattern 1 has constant arrivals; Pattern 2 has
gradually increasing, then gradually decreasing arrivals;
Pattern 3 has bursty arrivals followed by lower and constant
arrivals; and Pattern 4 has periodic bursty arrivals with low
and constant arrivals between bursts (detailed specifications
are given in [13]).

5.2 Simulation Results

(1) System capacity amplification We first compare
the system capacity amplification achieved by ����� 	��	
and $ ����� 	 �	 . Figure 4 shows the growth of the peer-
to-peer system capacity with the elapse of time, under
first-time streaming request arrival Patterns 2 and 4 5.

5Results for other arrival patterns are described in [13].



Protocol ����� 	�� 	 achieves significantly faster system ca-
pacity growth than $ ������	 �	 , especially during the first 72
hours when the requesting peers make their first streaming
requests. By the end of the 144-hour period, the system
capacity achieved by ����� 	 �	 has reached at least 95% of
the maximum capacity if all 50,100 peers become supplying
peers. We also observe that after the first 72 hours, the
system capacity growth slows down (under both protocols),
because all requests are now ‘retry’ requests, and no new
requesting peers are coming.
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Figure 4. System capacity amplification using
� ��� 	�� 	 and $ ����� 	��	

(2) Request admission rate Figure 5 shows the per-class
request admission rate (accumulative over time) achieved
by ����� 	��	 and $ ����� 	��	 , under arrival pattern 2. We
first observe that by using ������	 �	 , different classes of
requesting peers have different admission rates (Figure
5(a)): the higher the class, the higher the admission rate.
On the contrary, Protocol $ ����� 	��	 does not differentiate
(Figure 5(b)), resulting in similar admission rate among
all classes. Furthermore, we observe that for requesting
peers of classes 1, 2, and 3, their request admission rates
in Figure 5(a) are constantly higher than those in Figure

5(b). Even for the class-4 requesting peers, this is also true
except for the first few hours. This observation indicates
that ����� 	�� 	 benefits all classes of requesting peers with
respect to admission rate.
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Figure 5. Per-class accumulative request ad-
mission rate

(3) Average buffering delay Similar to (2), ����� 	��	
also achieves both differentiation and overall improvement,
in the aspect of buffering delay experienced by request-
ing peers of different classes. The results are shown in
Figure 6. Recall that the buffering delay of a peer-to-
peer streaming session is equal to LM/ multiplied by the
number of participating supplying peers (Theorem 1). On
the other hand, in � ����	�� 	 , if a requesting peer is admitted,
it is likely that the higher the class it belongs to, the higher
the classes the participating supplying peers belong to,
due to the rule each supplying peer determines its favored
classes. We can then infer that in ����� 	��	 , the higher the
class of an admitted requesting peer, the fewer the number
of participating supplying peers, and therefore, the lower
the buffering delay experienced by the requesting peer.
Furthermore, the average buffering delay of each class in
Figure 6(a) is constantly lower than that in Figure 6(b).
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(b) Arrival Pattern 2, using ����� ��� � �

Figure 6. Per-class accumulative average
buffering delay (the actual delay is � � LM/ )

(4) Average waiting time Similar to (2) and (3),
� ��� 	�� 	 also achieves both differentiation and overall im-
provement, in the aspect of waiting time experienced by
requesting peers of different classes. Table 1 shows the
average (over the entire period of 144 hours) number of
rejections before admission experienced by each class of
requesting peers, under arrival Patterns 2 and 4. Given an
average number of rejections � , the average waiting time
can be computed as � ��� � � 	��� N��� � . Again, we observe that
the higher the class of admitted requesting peers, the fewer
the average number of rejections each of them experiences.
Furthermore, for each class, the average number of rejec-
tions achieved by ������	 �	 is fewer than that achieved by$ ����� 	�� 	 .

(5) Adaptivity of differentiation We now take a closer
look at � ��� 	��	 ’s adaptivity of admission differentiation,
based on the dynamic request/supply situation in the peer-
to-peer system. Recall that ����� 	��	 uses the ‘elevate-after-
timeout’ technique to relax the differentiation; while it uses
the ‘reminder’ technique to tighten the differentiation. In
Figure 7, we show that supplying peers use these techniques

Avg. rejections Pattern 2 Pattern 4

Class 1 1.77/3.73 1.93/3.45
Class 2 1.93/3.75 2.19/3.46
Class 3 2.40/3.72 2.59/3.42
Class 4 3.15/3.74 3.16/3.46

Table 1. Per-class average number of rejec-
tions before admission (‘ ����� 	�� 	 / $ ����� 	��	 ’)

to dynamically adjust their favored classes of requesting
peers, in response to the request arrival rate changes (under
arrival Pattern 4). The � -axis represents the lowest class
of requesting peers, favored by each class of supplying
peers. We observe that for each class of supplying peers,
the degree of admission differentiation changes over time,
roughly following the changes in the (first-time) request ar-
rival rate (recall that Pattern 4 has periodic bursty arrivals).
More specifically, the higher the class of supplying peers,
the more sensitive they are to the changes in request arrival
rate. Finally, when there are not new request arrivals, and
the system capacity has grown significantly, all classes of
supplying peers relax their admission preferences to all
classes of requesting peers, i.e. the lowest favored class of
requesting peers is 4, for all classes of supplying peers.
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(a) Arrival pattern 4

Figure 7. Lowest class of requesting peers,
favored by each class of supplying peers
(non-accumulative, averaged every 3 hours

(6) Impact of protocol parameters on performance
Finally, we study the impact of parameters

� � � ����� , and	 ��� � on the performance of ����� 	��	 : Figure 8 shows the
impact of

�
and � �-��� on the system capacity amplification;

while Figure 9 shows the impact of the backoff exponential
factor

	 ��� � on the request admission rate, all under arrival
Pattern 2. In each study, the parameters except the one being
studied remain the same as before.



In Figure 8(a), the number of candidate supplying peers
probed by a requesting peer is set to 4, 8, 16, and 32, respec-
tively. The system capacity grows significantly slower when� � f , because four candidates are too few to identify
sufficient number of qualified supplying peers to serve the
requesting peer. If we increase

�
, the system capacity

will grow much faster. However, when
�

is greater than
8, the impact of

�
quickly decreases. Therefore, having

a large
�

does not improve the system capacity growth
significantly. On the other hand, it may increase the probing
overhead and traffic.

In Figure 8(b), different time-out periods to relax the
admission differentiation of an idle supplying peer is tried.
The results indicate that � ����� should not be too short. The
explanation is: having a short time-out period may make an
idle supplying peer relax its admission preferences too soon
to lower-class requesting peers. Therefore, it may miss the
chance to serve the ones of higher classes, when both lower-
class and higher-class requesting peers are present.
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Figure 8. Impact of
�

and � ����� on system
capacity amplification

In Figure 9, the backoff exponential factor
	 ��� � is set

to 1, 2, 3, and 4, respectively. It is interesting to observe

that exponential backoff of requesting peers does not help
to increase the request admission rate. On the contrary,
the higher the

	 ��� � , the lower the overall admission rate.
In fact, the constant backoff (

	 ��� � � ' ) scheme achieves
significantly higher admission rate. Although not yet fully
explored, one possible explanation is: The capacity of a
peer-to-peer system is self-growing instead of fixed. There-
fore, a more aggressive retry policy may actually help to
increase the system capacity faster, and hence improve the
overall admission rate. On the other hand, in a system with
fixed capacity (such as a traditional client-server system),
clients may have to perform conservative backoff, in order
to achieve a high overall admission rate.
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Figure 9. Impact of
	 ��� � on overall request

admission rate

In summary, Protocol ������	�� 	 achieves differentiation
toward different classes of requesting peers - not only in
their admission probabilities, but also in the waiting time
and buffering delay they experience. Moreover, the degree
of differentiation is adaptive: it changes according to the
current request/supply situation.

6 Related Work

Peer-to-peer file sharing systems have gained great pop-
ularity in recent years. Representative peer-to-peer systems
on the Internet include Napster [3], Gnutella [2], and
Freenet [4]. These systems share the same goal of
de-centralized data exchange and dynamic growth of
system capacity. However, they differ in their data
lookup/discovery schemes. For example, Napster em-
ploys centralized directory servers, while Gnutella [2]
uses controlled query flooding. The data sharing mode
of most current peer-to-peer systems is the ‘open-after-
downloading’ mode, not the ‘play-while-downloading’ (or
streaming) mode as studied in this paper (however, there are
exceptions, such as C-star [1] to be described later).

In the past two years, peer-to-peer systems have also at-
tracted tremendous attention from the research community.



First, there have been measurement based studies of the
existing peer-to-peer systems. In [11], a detailed measure-
ment study of Napster and Gnutella is presented. The study
reveals significant degree of heterogeneity in the peers’
bandwidth availability; and it suggests that future peer-to-
peer systems must have built-in incentive for peers to tell
the truth about their bandwidth information. These obser-
vations have partly motivated our peer-to-peer streaming
model and solutions in this paper. Besides measurement
studies of current peer-to-peer systems, new peer-to-peer
architectures have also been proposed. These architectures
focus on different aspects of a fully distributed and scal-
able peer-to-peer system. For example, CAN [8], Chord
[12], and Pastry [9] are distributed peer-to-peer lookup
services, while PAST [10] and OceanStore [6] are peer-
to-peer persistent storage services. Our work on peer-to-
peer media streaming complements these results: on one
hand, we do not study the problems of peer-to-peer data
lookup and storage management; on the other hand, the
existing results do not address the two new problems in this
paper.

Finally, several schemes of multi-source media stream-
ing have been proposed. In [7], a distributed video
streaming system is presented, where each session involves
multiple replicated video servers. However, it does not
consider the problem of system capacity amplification,
because it is still a client-server system instead of a peer-
to-peer system. C-star [1] is a commercial multi-source
streaming service. Similar to our work, the capacity of
the C-star distribution network grows over time. However,
C-star does not differentiate between suppliers of different
out-bound bandwidth capability. In [5], an architecture
called SpreadIt is proposed for streaming live media over a
peer-to-peer network. It focuses on the dynamic construc-
tion of a multicast tree among peers requesting a live media.
However, SpreadIt is not intended for the asynchronous
streaming of stored media data. Also it does not deal with
bandwidth heterogeneity and admission differentiation.

7 Conclusion

Peer-to-peer media streaming systems are expected to
become as popular as the peer-to-peer file sharing systems.
In this paper, we study two key problems arising from
peer-to-peer media streaming: the assignment of media
data to multiple supplying peers involved in a peer-to-
peer streaming session; and fast capacity amplification of
the entire peer-to-peer streaming system. Our solution to
the first problem is Algorithm ����� 	�� 	 , which computes
optimal media data assignments for peer-to-peer streaming
sessions. Our solution to the second problem is the
fully distributed � ����	 �	 protocol. By differentiating
between requesting peers according their classes, ����� 	�� 	

(1) achieves fast system capacity amplification, (2) benefits
all requesting peers in admission rate, waiting time, and
buffering delay, and (3) creates an incentive for peers to of-
fer their truly available out-bound bandwidth. Our extensive
simulation results demonstrate the excellent performance of
����� 	�� 	 .
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