CS 381, Fall 1999
Solution Sketches to Sample Midterm Problems

1.) (i) Order the following functions according to their asymptotic growth rate. Indicate
which functions belong to the same complexity class.
4nlogn, 2" logn, n? + 8nlogn, 2", (n +4)(n — 6), v/n, 2" 4, 27/2

Vn < 4nlogn < n? +8nlogn, (n+4)(n —6) < 2¥? <2, 2" 4 < 2" logn

(ii) 5n = O(nlogn): true; 5 < 5logn is true for all n < 2
12n? = O(nlogn): false; there exists no constant ¢ such that 12n < clogn for alln > N,
where N is fixed

Togn = O(n): false; —2— = O(n) holds, but there exists no constant ¢ such that ¢ < @

? logn n

for all n > N, where N is fixed.

2.) Assume A is an array of size n containing integers in arbitrary order and A, is an
array of size n containing integers in sorted order. Give the running times (in big-O
notation) for the specified operations. Give a brief explanation of each entry below the

table (not given in this solution sketch).

Given z, determine || Given z, determine || Given z, determine the
whether z is whether z occurs smallest element y
not in the array at least /2 times in the array with y > z
A O(n) O(n) O(n)
(not sorted)
As O(logn) O(logn) O(logn)
(sorted)

3.) (i) Use the master theorem to determine the tight asymptotic bounds of the following

recurrence relations:
T(n/2) +clogn ifn>2
T(n)g{l forn =2

We have E = 181 — 0, n =1 and f(n) = logn.
log 2

It is obvious that cases 1 and 2 of the master theorem do not apply. It can be easily

shown that there is no positive € for which logn= Q(n€) Thus the master theorem does
not apply.
We prove that T'(n) = ©(log?n).



We will assume that ¢ > 1. (For ¢ < 1, minor modification have to be done since
the base case may not hold.) Assume that T'(n) < dclog?n for some constant d. For
the basis case, we get T(1) = 1 < dc. If d > 1/c, the basis is satisfied. Assume the
induction hypothesis holds for n/2. Then,

T(n) <T(n/2) + clogn

< dclog?(n/2) + clogn = dc(logn — 1) + clogn

< dclog?n — 2dclogn + dc + clogn = dclog? n — clogn + dc.

Set d = % (Since ¢ > 1, we have d < 1.) Then, —clogn + dc = —clogn + 1 < 0 holds
since logn > 1. Hence, T'(n) < dclog? n and T'(n) = O(log? n) follows.

= { T

WehaveEz%%E—%zO, nf =1 and f(n) = V/n.
Choosing e equal to any fraction less than 1/2 and § equal to any fraction greater than
1/2 shows that case 3 of the master theorem applies. It follows that T'(n) = O(y/n).
(ii) Counsider the recurrence relation T'(n) = 3T (n — 1) + 2 with T'(1) = 1.
Show by induction that T'(n) = O(3").

Prove that T'(n) < ¢3™ — 1 for some constants c¢. For the basis case, we get T'(1) =
1 <3c—1. If ¢ > 2/3 the basis holds. Assume the induction hypothesis holds for n — 1.
Then,
T(n) =3T(n—1)+2<3(c3"! —1)+2 =¢3" — 1. Then T(n) < 3" + 2 and the claim
holds.

4.) Describe a data structure to implement the following version of a priority queue Q.
Each operation should take O(logn) time, where n is the current number of elements
in Q.

Insert(Q, z) - insert element z into @

DeleteMax(Q) - delete the largest element from @

DeleteMin(Q®) - delete the smallest element from Q.
Sketch how each operation is implemented and analyze the achieved time bounds.

We will use two heaps: a max-heap stored in array M AX having the maximum
element at the root and a min-heap stored in array M IN with the minimum element at
the root. Every element appears twice, once in M AX and once in MIN. In addition,
for any element z in the min-heap, we create a pointer to element z in the max-heap

and vice-versa.



In operation Insert(Q,z), element z is inserted into the max-heap as well as the
min-heap. The insertion follows the procedure described in class.

Consider now DeleteMax(Q). In the max-heap, we delete element M AX|[1]. This
is done by placing the element at M AX[n] at location M AX|[1] and then invoking the
procedure to restore the heap property in M AX. This procedure proceeds from the
root towards a leaf (it may terminate before a leaf is reached). The maximum element
needs to be deleted from the min-heap MIN. The maximum element is stored at a
leaf node in MIN and its location can be determined in constant time from MAX]/1]
(before it is deleted). Let M INT(l] be this location. Then, we place MIN|[n] at position
MINT|l] and invoke a procedure to fix up the heap property (the fix-up now proceeds
from a leaf towards the root). After this, both heaps contain n — 1 elements and the
next query can be processed.

DeleteMin(@R) operates analogous to DeleteMax(Q) (with the roles of array M AX
and MIN reversed). Each operation uses existing procedures to fix up necessary heap
properties. In all cases, a constant number of path of length at most log n are traversed.
Hence, each operation uses O(logn) time.

An interesting question is whether in a heap which supports fast min- and max
finding we need to make two copies of every element. This is not desirable in many
applications. There exist extensions (non-trivial) of the basic heap which have O(logn)
time for MIN and MAX and which do not duplicate elements. This might be something

for a future homework (in a future 381 class).

5.) Assume you are given two sets S; and Sy, which contain a total of n integers, and an
integer . Determine whether there exists an element in S7 and an element in S5 such
that the sum of the two elements is equal to z. The running time should be O(nlogn).

First, use an O(nlogn) time sorting algorithm to sort S; as well as Sy. Then, for
every element S1[7] less than z, search in Sy for element z — S1[4] using binary search.
The algorithm consists of two nested loops, one is executed at most n times (if all the
elements of S; are less than z) and the other takes O(logn) time. So, the running time

of the entire algorithm is O(nlogn).

6.) Let A be an array of even size, say n, containing integers. The problem is to partition
the elements in A into n/2 pairs with the following property: for every pair formed,
determine the sum. Let s1,9,...,5,/2 be these sums. Pairs should be formed so that
the maximum of the s;’s is a minimum. Describe an efficient algorithm to determine a
partitioning minimizing the maximum sum.

Sort the array and then pair up A[i] with A[n —i+ 1], 1 <7 < n/2. Correctness of



this pairing would show that any other pairing has larger or equal maximum. Running
time is O(nlogn).



