Purdue University S. Hambrusch-C. Guerra
CS 381 Fall 1999

Solution Sketches to Sample Final Exam Questions

1.) (i) Let II; and II; be two decision problems. Assume I1; <p II,. If there exists
a polynomial time algorithm for II;, does this imply that there exists a polynomial
time algorithm for Ily?

No. It is possible that II; is in class P and II, is NP-complete.

(ii) Let 4. be an NP-complete decision problem and let II,,; be its corresponding
optimization problem. Assume II,;; can be solved in polynomial time. What does
this imply for IT4..? What does this imply for the class of NP-complete problems
and the class NP, respectively?

It implies that the decision problem Ilz. can be solved in polynomial time.
Since 14 is NP-complete, this implies that every problem in NP can be solved in
polynomial time. Hence, P=NP would follow.

(iii) Does there exist a polynomial time algorithm to determine whether an undi-
rected graph contains a clique of size 37 Explain.

Yes. Assume the graph is represented by an adjacency matrix of size n x n.
There exist n choose 3 triples which could form a clique of size 3. Try each triple
and check whether the three edges needed are in the graph. This results in an O(n?)
time algorithm.

This algorithm is brute-force (but all that was asked for was a polynomial-time
solution.) Improving the time is trickier than it appears. For example, using DFS
and using backedges to detect triangles does not work in O(n + m) time.

(iv) If an NP-complete problem can be solved deterministically in O(n?) time, can
every problem in class NP be solved in O(n?) time?

It implies that every problem in NP can be solved in polynomial time. It does
not imply that the polynomial is O(n?).

(v) Let G be an connected, undirected, and weighted n-vertex graph. Each one of
its m edges has weight 2. Describe and analyze an algorithm that finds a minimum
spanning tree of G. Your algorithm should be faster than Kruskal’s algorithm.

Any spanning tree is a minimum spanning tree. Use DFS or BFS to generate a

spanning tree in O(n + m) time.

2.) For each of the problems listed below state the asymptotic running time of the

best algorithm you know. If you think the problem is NP-complete, state so (you



do not need to give a running time). You do not need to give details about the

algorithm. If you wish to make any comments, please limit them to two lines.

1.

Sorting n integers a1, as,...,a, with 0 < a; < n? log2 7.

Using radix sort, we can sort in O(n) time. Observe that a; can be represented

by the triple (z;,y;, 2;) with a; = z; +n*y; + n? x5, 0 < z;,9;, 2 < n.

Determining the %-th largest element in an unsorted set of size n.

Sorting costs O(nlogn) time. Using the linear time selection algorithm results

in O(n) time (this algorithm was not described in class, only mentioned).

In a directed, weighted graph G = (V, E) with positive weights and |V| = n
and |E| = m, determine the shortest path between a given pair of vertices.

There exists no algorithm to determine the shortest path between a given pair
of vertices 7 and j faster than determining the shortest path from i to all
vertices. Using Dijkstra’s algorithm gives O(mlogn) time (O(n?) time is also

possible and can be faster for dense graphs).

. In an n-node rooted tree T', determine the number of leaves whose parent has

more than one child.

O(n) time.

Given a boolean formula in conjunctive normal form (i.e., C1 ACy A ... A
Ck, where every C; contains an arbitrary number of literals V-ed together),
determine whether there exists a truth assignment to the variables satisfying

the formula.

This problem is NP-complete.

Given a boolean formula in disjunctive normal form (i.e., C; VCy V... V
Ck, where every C; contains an arbitrary number of literals A-ed together),
determine whether there exists a truth assignment to the variables satisfying

the formula.

Choose one clause C; which contains no contradiction (i.e., a variable and its
negation) and satisfy C; by setting all literals to true. This satisfies the entire

formula. Can be done in linear time.

3.) Assume G = (V,E) is an undirected, connected, weighted graph, |V| = n,

Bl =

m, represented by adjacency lists. Weights can be positive as well as negative.



For each problem listed below, give the asymptotic time bound of the best algorithm
you know. Give a 2-sentence explanation of your solution.
(1) Determine whether G contains at least 10 edges of cost > 100:

O(n + m) time (BFS or DFS traversal).
(ii) Determine whether G is a tree:

O(n) time; we only need to consider n — ledges (assumes we don not include the
time to create the adjacency list structure).
(iii) Find a spanning tree of G having minimum cost:

O(mlogn) using Kruskal’s algorithm
(iv ) Given two vertices u and v, does there exist a path from u to v:

it states that G is connected; hence it is O(1) time; if we would not know that
G is connected, it is O(n + m) time.
(v) Given vertices u and v, determine the length of the longest path from u to v:

NP-complete.

4.) Let G = (V,E) be a directed graph with integer weights on its edges, |V| =
n,|E| = m. Let s and ¢ be two vertices in G and k be an integer. Consider the
problem of determining whether the cost of the longest path from s to ¢ is at least
k. (In case there exists no path between s and ¢, return the answer “no”.)

What is the complexity of this problem for the three classes of graphs stated
below? Either describe an efficient polynomial time algorithm or show that the
problem is NP-complete.

(i) G is a rooted tree.

In a tree there exists a unique path between two vertices. Hence, any path-

finding algorithm can be used. O(n) time.
(ii) G is an acyclic graph.

For an acyclic graph, use topological search. This costs O(n + m) time.
(iii) G is an arbitrary graph.

NP-complete for arbitrary graphs. We know that Hamiltonian path is NP-
complete. One can show that deciding whether there exists a Hamiltonian path
between a given pair of vertices is also NP-complete. (If it were not, we can use
such an algorithm n? times and solve the original problem in polynomial time). We

then ask whether the graph contains a longest path of cost n — 1.

5.) A point p; = (z;,y;) dominates point p; = (z;,y;) if ; > z; and y; > y;.
Given n points in arbitrary order, describe and analyze an efficient algorithm which

determines the points not dominated by any other point.



O(nlogn) time algorithm: sort points by x-coordinates; scan list from largest
x-value to smallest and keep largest y-value seen so far; O(1) time to determine

whether a point is dominated or not.

6.) (i) Let A be a set of n numbers given in unsorted order. Consider the problem
of determining z € A, y € A such that [z —y| > |w — 2| for all w € A, z € A. State
an efficient algorithm and its running time.

O(n) time; the minimum and the maximum are z and y.
(ii) Let A be a set of n numbers given in unsorted order. Consider the problem of
determining a; € A, aj € A such that |a; — a;| < |ag — a,| for all ¢ # r. Describe an
efficient algorithm for determining a; and a;.

O(nlogn) time: sort the elements and then scan to determine the adjacent pair

with minimum difference.

7.) The partition problem is defined a follows: Given a set A, determine whether
the elements of A can be partitioned into two sets so that the sum of the elements
in one set is equal to that of the elements in the other set. This problem is known
to be NP-complete.

Consider the following 1-processor scheduling problem: Given are n jobs and
job 7 has length [;, penalty p;, and deadline d; associated with it. The n jobs are to
be scheduled on the processor. If job i is not completed by time d;, a penalty of p;
occurs.

In the Min Pen problem we are given I;, p;, d;, 1 < 4 < n, and a quantity P and
are to determine whether there exists a schedule such that the sum of the arising
penalties is at most P. Show that the Min_Pen problem is NP-complete.

First, show that problem Min _Pen is in NP: the certificate is a schedule; check
the schedule to see that it is a valid one and determine the penalty resulting from
the jobs not scheduled before their deadline. This can be done in polynomial time
(O(nlogn) is possible).

Next show that Partition <, Min Pen. Let A = {s1,... 55} be an instance of
the partition problem with Y 7' | = 2M. Create m = n jobs with [; = s;, p; = sy,
d; = M, and P = M. Clearly, this transformation takes polynomial time.

To complete the proof we need to show that Partition has a solution if and
only if Min Pen has a solution. Assume that Partition has a solution. Then there
exists a set S of indices such that ) ,.q sy = M. Schedule the jobs corresponding
to elements in S before time M on the processor. All of them finish before their

deadline and experience no penalty. The remaining jobs experience a total penalty



of M. Hence, Min_Pen has a solution.

Assume now that the Min_Pen problem has a solution. In order for the penalty to
be at most M, the schedule contains a job which terminates at time M (if this were
not the case, the penalty would be more than M). Hence, the jobs scheduled before
time M correspond to elements in the set whose sum is exactly M. This implies

that the partition problem has a solution.



