Purdue University S. Hambrusch - C. Guerra
CS 381 Fall 1999

Solution Sketches to Assignment 7

1) (Graded by Tian Luan) Consider the strongly connected component algorithm
presented in class. The DFS traversal on G considered the vertices by decreasing
finish times. (Recall that the finish time refers to the order of completion of the
recursive calls of the DFS on G.) Give an example of a directed graph consisting
of 12 vertices and three strongly connected components for which the processing
of vertices by decreasing finish times is crucial. In particular, show by example
that when the DFS on GT does not consider vertices by decreasing finish times, the

algorithm fails to detect the three strongly connected components.

Highest

= ool R

Qo>

STACK OF
Lowest FINISHING TIME

Consider the directed graph shown above. Assume that the first DFS starts a
A, then at H and finally I. The finishing times are shown in the corresponding
stack. In the second DFS on G7', vertices are poped from the stack according to

finishing times are we generate three strongly connected components in this order:
IJKL,HGEF,ACDB.



If we do not pop the vertices from the stack by the order of decreasing finish
time, these strongly connected components are not generated. For example, if DFS

starts at vertex H, we generate a strongly connected component consists of vertices
HQJKLEFG.

2) (Graded by Tian Luan) Consider the biconnected component algorithm presented
in class. Would the algorithm work properly if the test for a biconnected component
were changed to back > discoverTime[v]? If so, explain why; if not, give an example
in which it does not work.

The algorithm will not work properly if the test for a biconnected component
were changed to back > discoverTime[v]. With this statement, the algorithm can
output a wrong biconnected component or may be unable to detect a biconnected

component. Consider the following example.

A (/1)

B (2/2)

(3/1) (discoverTime/back)

Assume B = v, C = w. (B,C) is a tree edge and wback = 1. The statement
if(back > discoverTime|v]) returns return true since back[v] = 2 and discoverTime[v] =
2. Thus, vertex B is incorrectly identified as an articulation point and a wrong bicon-
nected component is detected. (The algorithm would output a component consisting

of vertices B and C, which is not correct.)

3) The 3-coloring problem is defined as follows: Given are 3 colors (say, R, G, and B)
and an undirected graph G = (V, E). You want to determine whether it is possible
to assign to every vertex one of the three colors so that every edge of G is incident
to vertices having different color.
(i) Give an example of a graph in which every vertex has degree at most 3 which is
not 3-colorable.

An example of such a graph is one with 4 vertices where each vertex is connected
to every other vertex. If we color any 3 vertices in 3 different colors, the fourth vertex

will not have a color, since it is connected to 3 differently colored vertices.



(ii) Develop an O(2"n) time algorithm to determines whether a graph is 3-colorable.
Hint: Once a vertex is colored, there are only two possible colors left for its adjacent
vertices.

The algorithm starts off numbering the nodes from 1 to n in the order that the
nodes are visited by a DFS. Let Color be an array of size n which will store colors
{R, G, B} assigned to nodes of the graph. Initially the color of node 1 is set to R
and other colors are undefined. Now, call procedure find-3-colorable (see below).
The procedure has a single parameter, x. When we call the procedure, it is the case
that nodes 1, ..., n-x are already colored and the partial coloring is valid (no 2 nodes
of the same color are connected by an edge). Procedure find-3-colorable(x) sets a
boolean variable 3-colorable to ”true” if this valid coloring can be extended to a
valid coloring of the whole graph (initially 3-colorable is set to false). Since node 1
is initially colored, the procedure is initially called with x=n-1. The entry parent(i)
refers to the parent of node ¢ in the DFS tree. Upon completion of find-3-colorable,
the value of the variable 3-colorable indicates whether the graph is 3-colorable or

now.

find-3-colorable(x)

if x=0 then set 3-colorable to true

else /* extend coloring to node n-x+1 */

{for each color ¢ that is not color(parent(n-x+1)) do

check if there is a node i < n — x + 1 of color ¢ with i adjacent to n-x+1

if there is no such conflicting node

then color(x)=c and find-3-colorable(x-1)

}

Running time: The time for the initial DFS is O(n+m). The procedure find-3-
colorable(x) makes at most two recursive calls to find-3-colorable(x-1). Other then
the recursive calls, the time taken by the rest of the procedure is at most linear time
in size of the graph. Thus the recurrence relation for the procedure is T(x)=2T(x-
1)4O(n). The solution to this recurrence is O(2"n).

4) (15 pts.) Let T be a Minimum-cost Spanning Tree of a weighted, undirected graph
G = (V,E). Let T' be a Minimum Spanning Tree of the new graph G obtained by

one of the following changes in the edge weights:

e all edge weights are increased by a constant number ¢

When the cost of every edge in G increases by c, the spanning tree T’ of G’ is



the same as the spanning tree T of G. The cost of the minimum cost spanning
tree increases by c(n — 1), but the relative costs with respect to each other

remained the same.

all edge weights are decreased by a constant number c
T=T", explanation is almost the same as above, except that the cost of every

edge now decreased by c.

the weight of a single edge known not to be in T is increased by ¢
Since the edge was not picked for the minimum spanning tree in the first place,

it will definetely not be picked if its cost increased. Thus, T=T".

the weight of a single edge known not to be in T' is decreased by ¢

In this case the edge with the decreased cost might be in the spanning tree of
G’. To find the spanning tree T’ of G’, we add the edge with decreased cost
into the tree T'. This will produce a cycle. Now we will go through the cycle,
pick the edge of the maximum cost in the cycle and remove it from the tree.
The spanning tree that is left is the spanning tree T’ for G’. Determining this
cycle and tree T' takes O(n) time. One possible implementation for finding
the cycle is to root tree T and to use parent-links for generating the edges on

the cycle.



