Purdue University S. Hambrusch - C. Guerra
CS 381 Fall 1999

Solution Sketches to Assignment 6
1) (Graded by Cenyu Zhang) (i) Consider the undirected graph shown in Figure

7.10 on page 326. Assume DFS starts at vertex 3. Show the graph partitioned into

tree and back edges and give for every vertex its depth-first number.

tree edge

,,,,, back edge

Figure 1: Resulting tree

(ii) Consider the directed graph shown in Figure 7.29 on page 377. Assume the
vertices are listed in alphabetical order in the adjacency lists and DFS starts at
vertex A. If necessary, it restarts on the alphabetically smallest vertex remaining.
Show the graph partitioning into tree, back, cross, and forward edges. Give the

depth-first number for each vertex.

, tree edge
ooy Cross edge
. back edge

— — , froward edge

Figure 2: Resulting tree



(iii) Give an example of a graph in which DFS backs up from a vertex before all the

vertices that can be reached from it via one or more edges are discovered. Explain

Xst art
: SG

Figure 3: Example

how this can happen.

In the above given example, we start at node A, then go to B, and then go to
C, and then go to D. At D, although we can reach E, we backtrack since A is grey.
This happens when there is cycle in the simple graph which introduces a back edge.
So when running DFS, we find a grey node and back up, although there are white

vertices that could be reached.

2) (Graded by Cenyu Zhang) Let G = (V, E) be a directed, acyclic graph (dag)
represented by adjacency lists.

(i) Can a dag have ©(n?) edges?

Yes, a dag can have ©(n?) edges. Consider, for example, a graph with n vertices,
V1,02, ...,Ny,. Assume for vy has n — 1 edges to vo,...,v,, v9 has n — 2 edges to
v3,...,Un, and so on. The generated graph is a dag and it has (n — 1) + (n — 2) +
...+ 2+ 1 edges, which is ©(n?).

(ii) A dag G is a lattice if G contains two vertices s and t such that every vertex
in G can be reached from s and every vertex in G can reach vertex t. Describe and
analyze an efficient algorithm to determine whether a given dag is a lattice. If it is,

s and t should be output.

The following describes an O(n + m) time algorithm to determine whether G is
a lattice. We first state a property of acyclic graphs: an acyclic graph contains at
least one vertex of in-degree 0 and at least one vertex of out-degree 0. (If this were

not the case, there would be a cycle.)



Now, for G to be a lattice, there must exists exactly one vertex of in-degree 0 and
exactly one vertex of out-degree 0. The algorithm checks whether this holds. Then,
knowing the potential source s and potential sink ¢, it checks whether s can reach
every vertex and every vertex can reach ¢. Below are the details of the algorithm.
(1) First we go through G’s adjacency list and determine all nodes whose in-degrees
are zero, and all nodes whose out-degrees are zero. If there is more than one node
whose in-degree is zero or whose out-degree is zero, then G is not a lattice. We call
the node with in-degree zero s, and the node with out-degree zero t.

(2) Do a DFS on G starting from s. If this traversal can reach all other nodes in G,
proceed with the third step. Otherwise G is not a lattice.

(3) Create the transpose of G, that is GT. Then, do a DFS on G” starting from t.
If this traversal can reach all other nodes in GT, then we know G is a lattice and s

and t¢ are the vertices we need, else G is not a lattice.

Analysis of algorithm: Since each of the steps needs at most O(n +m) time, the

total time complexity of this algorithm is O(n + m).

3) (Graded by Cenyu Zhang) Let G be a connected graph, and let s be a vertex
in G. Let Tp be the depth-first search tree formed by doing a depth-first search of G
starting at s. Let T’z be the breadth-first spanning tree formed by doing a breadth-
first search of G starting at s. Is it always true that height(Tp) > height(TB)?

Yes, this is always true. When doing the BFS, let vertex s be at level 0. Then,
if a vertex v is on level 4, there exists a path of length i — 1 from s to v. Also, there
does not exist a shorter path (otherwise v would be on a smaller numbered level).
For DFS, a vertex v is placed on a level equal to the shortest path from s to v or on
a higher level. Vertex v cannot be placed on a level smaller than the shortest path.
Hence, height(Tp) > height(Ts). It doesn’t matter whether the graph is directed

or undirected. (The same argument applies.)



