Purdue University S. Hambrusch - C. Guerra
CS 381 Fall 1999

Solution Sketches to Assignment 3

1) (Graded by Tian Luan) For each of the following recurrence equations determine
whether the Master Theorem can be applied. If it can, give the asymptotic bound
and show which one of the three cases holds and why. If it cannot, show why all
cases fail. Assume that 7°(1) = 1.

(i) T(n) =4T(n/4) + 6
In this equation, b = 4,¢c = 4, E = iggi =1, f(n) = 6 = O(n%). Hence, f(n) is
O(n'~€) where € = 1. Case (1) of the master theorem applies and T'(n) = O(nf) =

O(n).

(i) T'(n) = 4T (n/3) + n?
In this equation, b = 4, ¢ = 3, FE = }%g—g. We have f(n) = n? = Q(nf*¢) where
€ <2 —logz4 and f(n) =n? = O(nF*?) where § > 2 — log; 4.

Case (3) of the master theorem applies and T'(n) = ©(f(n)) = O(n?).

(i) T'(n) = 2T(n/2) + ogm

In this equation, b = 2,¢ =2, E = 1, and f(n) = ogn- None of the three cases
applies. For case (1) we cannot find an e that satisfies f(n) € O(n'~¢) because there
exists no € such that logn > n°. For case (2), f(n) is not ©(n). For case (3), we
can not find € and ¢ that satisfy f(n) € Q(n'*¢) and f(n) € O(n'*?) - the reason is
the same as for Case (1).

Hence, all three cases fail and the master theorem does not give a solution.

(iv) T(n) = 6T(n/6) + 3n —5

In this equation, b=6,c=6, F = %g—g =1, and f(n) = 3n — 5 = O(n). Therefore,
f(n) € ©(nP).

Case (2) applies and T'(n) = O(nlogn).

(v) T(n) = T(y/n) + logn.
This equation is not of the form T'(n) = bT'(%) + f(n), where b abd c are constants.

The master theorem cannot be used to generate a solution to the recurrence.

2) (Graded by Tian Luan) Consider the recurrence relation T'(n) = 2T'(n/2) +
5nlogn with T(2) = 1 and n = 2% k& > 0. Show by induction that T'(n) =
O(nlog?n).



Claim: T(n) < cnlog® n where ¢ > 6.
Proof (by induction):
Base case: for n = 2,

1="T(2) < 2

The base case will hold as long as ¢ > 1/2.
Induction Hypothesis: Assume for all m < n and m a power of 2, we have T'(m) <
emlog? m.

Consider n = 2F:

(by definition)

< 2((zg(log2 g)) + 5nlogn

(by induction hypothesis)

= en(logn — 1) + 5nlogn

= cnlog® n — 2cnlogn + cn + 5nlogn

Observe that log?n = (logn)?. If we want to prove T'(n) < cnlog? n, we must show
—2cnlogn + cn + dnlogn <0

Because ¢ > 6,

(2¢ — 5)nlogn > cn

for all n > 2. So we have —2cnlogn + cn + 5nlogn < 0 and T'(n) < cnlog?n. The

claim holds thus for n.

3) (Graded by Biana Babinsky)

i) Assume you are given an Array A of size n containing real numbers. Describe

and analyze an efficient algorithm to determine n/4 numbers not in the array A.
Find the maximum element in the array, call it max. This will take O(n) time.

Since max is the biggest number in the array, max-+1 is not in the array, and neither

are max+2 or max+3, etc. Thus n/4 numbers that are not in the array are max+1,

max+2, ..., max+n/4. Finding max takes O(n) time and finding n/4 numbers

greater then it will also take O(n) time. Thus overall the algorithm will take O(n)



time. Note: it’s also ok to find the minimum of the array and then find n/4 numbers

that are smaller then the minimum.

ii) You are given an array A of size n and array B of size m. The elements of
each array are in arbitrary order. Describe and analyze an efficient algorithm to
determine whether the elements in the two arrays are disjoint. State your running
time in terms of m and n. Make sure you consider the case when m is substantially
smaller then n.

Sort array B using your favorite O(m logm) time sorting algorithm. Now search
for each element of A in sorted array B (using binary search). If you can find an
element that is both in A and B, the arrays are not disjoint. Otherwise, they are.

Time Analysis: sorting of B takes O(m logm) time. Searching for one element
of A in B takes O(logm). Thus, to search for n elements in B will take O(nlogm).
Altogether, this will take O(mlogm + nlogm) = O((m + n)logm).

Note: sorting array A and then searching in it for elements of B will take O((m-+n)logn)
time, which is not as efficient when m is significantly smaller than n.



