Purdue University S. Hambrusch - C. Guerra
CS 381 Fall 1999

Solution Sketches to Assignment 1

1) (Graded by Tian Luan.)
Find a closed form for the expression 1x2+2x3+3%4+... +n*(n+1) and prove

it correct by induction.

(i) Let S, =1%24+2x3+3%x4+...+nx(n+1). Using the sums given on page
21 of the text we get S, = n(n+ 1)(n + 2)/3.

(ii) Prove by induction on n.

Base case: for n =1 we have S1 =1%2=2and 1 (14 1) *(1+ 2)/3 = 2. Hence,
the claim holds for the base case.

Induction hypothesis: Assume that S, = k(k+1)(k+2)/3 for k=2,3...,n— 1.

Consider now Sj,:

Sp = Sp—1 +n(n+ 1), by definition

=(n—1)n(n+1)/3 + 3n(n+ 1)/3, by induction hypothesis
=[n(n+1)(n—1+3)]/3

=n(n+1)(n+2)/30

2) (Graded by Tian Luan.) Partition the following functions representing running
times into equivalence classes so that f(n) and g(n) are in the same class if and only
if f(n) = ©(g(n)). Rank the classes from smallest to largest (in terms of growth

rate with respect to n).

The ordering of the functions is:
4logn,4log(n®) < v4n + 4logn < 398" < \/n + 4dnlogn < Z(logn)? < 38" <
3n? +4nlogn < nlo86 < nl0 — b 4 1513 < 3/3 < 27 < 373 3n < pn/2

Recall that to prove f(n) = ©(g(n)), we need to show the existence of constants
c1, c2, and ng such that cog(n) < f(n) < c19(n) for every n > ny. One method of
determining whether a function f(n) is ©(g(n)) is to use the formal definitions and
find the constants satisfying the inequalities. It helps to first simplify the functions.
Here are some examples:

41og(n®) = 121og(n)



It is clear that this function belongs to ©(log(n)).

3log3n —n

and we know that it belongs to ©(n).

3logn — nlog2 3

and we can conclude that the function is polynomial in n: ©(n!°823) = ©(n!5%).
Another method to compare two functions is to determine the limit of lim,,_, %
The rule of thumb is that, if this limit is

a) a constant, then f(n) = ©(g(n))

b) equal to zero, then f(n) = O(g(n))

c) approaches oo, then f(n) = Q(g(n))

h—

For example:

N R |
B L T =

Thus they two belong to same equivalence class ©(3").

n

. . 2n
lim — = lim 33 =
n—00 33 n—o0

Thus 3" grows faster than 33. They are not in the same complexity class.

2n 2
lim — = lim (==)" =

n—oo 33 n—00 \?’/g
Thus 2" grows faster than 33. They are not in the same complexity class.

3) (Graded by Biana Babinsky.)

The health department needs to test n water samples for pesticide X. For this
purpose water is collected and the samples are labeled. There exists an expensive
test to determine whether water contains pesticide X. One may mix portions of
water samples to conduct tests on several water samples simultaneously. (A positive

outcome implies that at least one original sample contains the pesticide.)

i) Describe an efficient method to determine p, the number of water samples which
contain pesticide X. The amount of water available for each sample is not a con-
straint. Your method should be efficient when p is considerably smaller than n.

State the number of tests necessary in terms of n and p.



Assume (without loss of generality) that n is a power of 2.

General idea of the algorithm: Take a drop of each sample, combine into a mixture
(call this mixture S1) and test it for the pesticide. If S1 does not contain the
pesticide, we are done. If S1 contains the pesticide, divide the samples into two
groups, each of size n/2. Solve the problem recursively for each group (a recursive
call returns an integer count and these counts are added up.) Recursion ends when
group corresponds to one sample or a group contains no pesticide.

Most solutions handed in gave an iterative description. The description for the
first test is then as above. The next step in the iterative description is to take a
drop of each sample in the first group, generating sample S2 and to take a drop
of each sample in the second group, generating sample S3. Test S2 and S3. If a
sample does not contain pesticide, discard it. If it does, divide its group into halves
and continue testing. The testing will continue until all the groups are discarded or
until a group corresponds to a single sample. When our testing brings us to a single
sample, we know that that this sample contains the pesticide.

This process can be represented by a binary tree having p leaves. The tree
has the following characteristics: a node is either a leaf or an interior node with 2
children. The tree has height at most logn.

Next, turn to the analysis of this method. We don’t know p and even when we
knew p, the exact number of tests depends on where the p contaminated samples
are when groups are formed. The worst case situation for a given p corresponds
to a binary tree with p leaves in which the p nodes on a level are generated “as
fast as possible”. Such a tree has height logp and we perform O(p) tests. Once a
level contains p nodes, testing continues along p paths leading to p leaves. To follow
a single path down, we need to do O(logn — logp)) = O(log(n/p)) tests (more
precisely, we need two tests at every level). In total, we need O(p + p x log(n/p)) =
O(p * log(n/p)) tests. (Note that for p = 0 we need one test and this is covered in
the big-O notation used.)

ii) Your solution for (i) only needs to determine the number of water samples con-
taining pesticide X. Can your algorithm also be used to identify the samples with
pesticide X7 If yes, state how. If no, describe a solution which can.

The algorithm described above will also show which samples are contaminated, since

it is going to trace a path down to each contaminated samples, and, thus, find them.



