Geometric Series

For real $x \neq 1$, the summation

$$\sum_{k=0}^{n} x^k = 1 + x + x^2 + \ldots + x^n$$

is a geometric series and has the value

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

Thus $\sum_{k=0}^{n} x^k = \Theta(x^n)$ if $x > 1$ (increasing series)

$\sum_{k=0}^{n} x^k = \Theta(1)$ if $x < 1$ (decreasing series)

If the series is infinite and $|x| < 1$, then

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1 - x}$$
A General Theorem for “Divide and Conquer” Recurrences

Consider recurrences of the form

\[T(n) = aT(n/b) + f(n) \]

where \(a \) and \(b > 1 \) are integer constants and \(f(n) \) is some function.

Theorem 1. [“Master” Theorem] The solution for the above recurrence \(T(n) \) is:

1) If \(af(n/b) = cf(n) \) for some constant \(c > 1 \) then \(T(n) = \Theta(n^{\log_b a}) \).

2) If \(af(n/b) = f(n) \) then \(T(n) = \Theta(f(n) \log_b n) \).

3) If \(af(n/b) = cf(n) \) for some constant \(c < 1 \) then \(T(n) = \Theta(f(n)) \).
Proof.

(We will assume that n is a power of b.)

Draw a “recursion tree” for $T(n)$: $f(n)$ is the root and it has a children each of which is a recursion tree for $T(n/b)$. That is, a recursion tree is a complete a-ary tree where each node at depth i has the value $a^i f(n/b^i)$. The leaves of the tree contains the “base cases” of the recursion. Since we are looking at asymptotic bounds, we can assume without loss of generality (w.l.o.g) that $T(1) = f(1)$. Assuming each level of the tree is full, we have,

$$T(n) = f(n) + af(n/b) + a^2 f(n/b^2) + \ldots + a^L f(n/b^L)$$

where L is the depth of the recursion tree.

$L = \log_b n$ and since $f(1) = \Theta(1)$,

$$a^L f(n/b^L) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$$

We have three cases:
1) If \(f(n) \) is a constant factor smaller than \(af(n/b) \) then \(T(n) \) is a geometric series with largest term \(a^L f(n/b^L) = \Theta(n^{\log_b a}) \).

2) If \(af(n/b) = f(n) \) then there are \(L + 1 \) levels each level summing to \(f(n) \) and hence \(\Theta(f(n) \log_b n) \).

3) If \(f(n) \) is a constant factor larger than \(af(n/b) \) then \(T(n) \) is a geometric series with largest term \(f(n) \). Hence \(T(n) = \Theta(f(n)) \).
Examples

1. $T(n) = T(3n/4) + 2n$

Here $af(n/b) = 2(3n/4) = (3/4)f(n)$

Hence $T(n) = \Theta(n)$.

2. $T(n) = 7T(n/2) + \Theta(n^2)$

That is, $T(n) = 7T(n/2) + c_1n^2$, for some positive constant c_1.

$$af(n/b) = 7c_1(n/2)^2 = (7/4)c_1n^2 = (7/4)f(n)$$

Hence, $T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$

3. $T(n) = 2T(n/2) + n$

Here $af(n/b) = f(n)$ and hence $T(n) = \Theta(n \log n)$.