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Overview



Motivation

➢ Empirical success of large Pretrained Language Models led to them being ubiquitously used in 

daily-life applications that interact with humans. Unsupervised training on huge, uncurated 

datasets results in harmful text and societal bias creeping in their outputs

➢ This motivates a two-pronged solution: 

1) To diagnose and de-noise the bias in the PLMs

2) To identify & regulate harmful text externally at the output

➢ This work focuses on the task of identifying stereotypical associations in text

➢ Stereotypes differ from other harmful text such as hate speech, misogyny, abuse, threat, insult 

etc., in two important ways:

1) They could also express a positive sentiment towards the target

2) We require knowledge of their existence in the society to identify them

Asians are good 

at math

My African-American 

friend loves watermelons



Contributions

➢We devise a focused annotation effort for “Stereotype Detection” to 

construct a fine-grained evaluation dataset

➢We leverage the existence of several correlated neighboring tasks to 

propose a reinforcement-learning guided multitask framework that 

identifies and leverages neighboring task data examples that are 

beneficial for the target task



Dataset



Existing Datasets

➢There are two existing datasets for mitigating Stereotypical bias. 

Both of them are diagnostic in nature:

1) Stereoset (Nadeem et al. 2020 [1])

2) CrowS-Pairs (Nangia et al. 2020 [2])

➢Blodgett et al. (2021) [3] demonstrate that both the datasets suffer 

from conceptual and operational issues

➢In addition, diagnostic datasets, by nature, also suffer from lack of 

coverage of subtle manifestations of stereotypes in text 



Annotation Approach

➢We address the coverage issue by collecting potential data samples for 

annotation from two subreddits: /r/Jokes (stereotype-rich) and /r/AskHistorians

(stereotype-poor)

➢To avoid operational and conceptual pitfalls, we use Cardwell 1996 [4]’s 

definition of Stereotype: “a fixed, over-generalized belief about a particular group 

or class of people”

➢We ask the annotators to answer three questions for each sample:
1) Is an over-simplified belief about a type of person “intentionally” expressed in the text?

2) Is there an “unintentional”, widely-known stereotypical association present in the text?

3) Does the sentence seem made up (unlikely to occur in regular discourse)?



Our Dataset

➢ This focused annotation approach allows us to categorize the 

examples into three classes: explicit stereotypes, implicit stereotypes 

and non-stereotypes. We use anti-stereotypes from existing datasets. 

1) Ethiopians like stew (explicit stereotype)

2) The lawyer misrepresented the situation and tricked the person (implicit stereotype)

3) Jews spend money lavishly (anti-stereotype)

4) There is an Asian family that lives down the street (non-stereotype)

Data Type Size

Explicit Stereotypes 742

Implicit Stereotypes 282

Non-Stereotypes 1197



Model



Neighbor Tasks

➢Several datasets for harmful language identification such as hate 

speech detection, offensive language detection, misogyny detection 

and toxicity detection are widely available. They often contain 

overlapping objectives. For example:
1) She may or may not be a jew but, she’s certainly cheap! (insult, stereotype)

2) Burn in hell, you Asian bastard! (abuse, stereotype)

➢We hypothesize that solving these tasks require understanding 

largely similar linguistic characteristics of the text. We call these tasks 

“neighbor tasks”.



Multi-Task Learning Model

➢Motivation: Leverage the transfer learning gains from the neighbor 

tasks to improve the target task.

➢As the tasks have “overlapping objectives” and largely require

“understanding similar linguistic characteristics” of text, leveraging 

the intermediate representations from the neighbor tasks should 

benefit the target task. 



Multi-Task Learning Architecture
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RL-Guided Multi-Task Learning Model

➢Intuition: Not all examples from the neighbor task are equally useful 

in learning the target task

➢We train an RL-agent on top of the MTL model to identify examples 

from neighbor tasks, which are beneficial for the target task

• Step 1: For each example in the neighbor task, RL-actor makes a select/reject decision

• Step 2: MTL model is trained on the selected examples from the neighbor task

• Step 3: The RL-actor is rewarded based on the change in performance on the target task

• Step 4: The loss between RL-actor’s actual reward and RL-critic’s expected reward is used to 

train the RL-agent



Experiments



Experimental Setup

➢ We perform experiments using six datasets in three phases:

• Phase 1: Fine-tune PLM-based classifier

• Phase 2: Train a multi-task learning (MTL) model for all the datasets

• Phase 3: Train RL-guided MTL model for each task as target task

➢ We experiment with four PLMs as base-classifiers: BERT-base, BERT-large (Devlin et al., 2019 

[5]), BART-large (Lewis et al., 2020 [6]) and XLNet-large (Yang et al., 2019 [7])

➢We use the following six datasets for our experiments:

1) Hate Speech Detection (de Gilbert et al., 2018 [8])

2) Offensive Language Detection (Davidson et al., 2017 [9])

3) Misogyny Detection (Fersini et al., 2018 [10])

4) Coarse-Grained Stereotype Detection: combination of StereoSet and CrowS-Pairs datasets

5) Fine-Grained Stereotype Detection (our dataset)

6) Jigsaw Toxicity Dataset [11] (used only for training)



Results

Model Hate Speech 

Detection

Offense 

Detection

Misogyny 

Detection

Coarse-grained 

Stereotypes

Fine-grained 

Stereotypes

BERT-base 66.47 66.13 74.16 65.71 61.36

BERT-large 67.05 63.90 72.13 59.63 55.42

BART-large 68.91 65.86 73.12 63.40 54.64

XLNet-large 59.14 48.33 63.16 63.71 53.80

Multi-Task Learning

BERT-base + MTL 69.21 68.57 73.48 68.29 65.00

BERT-large + MTL 69.78 65.14 73.94 61.96 61.65

BART-large + MTL 67.79 68.03 74.40 65.77 64.90

XLNet-large + MTL 61.68 46.35 64.42 65.21 57.00

RL-guided Multi-Task Learning

BERT-base + RL-MTL 72.06 68.97 74.48 74.18 65.72

BERT-large  + RL-MTL 69.82 65.97 75.21 70.88 64.74

BART-large + RL-MTL 69.60 66.76 75.14 74.11 67.94

XLNet-large + RL-MTL 61.97 47.60 63.21 67.98 56.37



Analysis



Impact of MTL Prior on RL-MTL

➢In our experiments, we initialize the parameters of RL-MTL model 

with trained parameters from the MTL model.

➢In this ablation, we initialize the RL-MTL model randomly and 

observe the difference in performance

Task MTL Initialization Random Initialization

Hate Speech Detection 72.06 70.23

Offense Detection 68.97 67.23

Misogyny Detection 74.78 71.10

Coarse-grained Stereotypes 74.18 60.42

Fine-grained Stereotypes 65.72 57.32



Neighbor Task Impact

➢In this ablation, we study the impact of each neighbor task with each task as a 

target task

➢It is interesting to note that coarse-grained stereotype data doesn’t contribute as 

significantly to the performance improvement on fine-grained stereotype 

detection task. This might be due to the presence of anti-stereotypes and several 

other issues pointed out in Blodgett et al. (2021) [3].

Neighbor

Target

Hate Speech 

Detection

Offense 

Detection

Misogyny 

Detection

Coarse-grained 

Stereotype

Hate Speech - 69.69 70.07 71.10

Offensive Language 66.71 - 66.56 67.39

Misogyny 70.98 75.87 - 73.89

Coarse Stereotype 66.15 67.40 63.82 -

Fine Stereotype 63.80 63.65 59.94 56.12



Conclusion ➢We tackle the problem of Stereotype Detection from 

data annotation and low-resource computational 

framework perspectives

➢We devise a focused annotation task in conjunction 

with selective data candidate collection to create a 

fine-grained evaluation set for the task

➢We utilize neighbor tasks with abundance of high-

quality gold data in our multi-task learning model. 

We further propose an RL-guided multi-task 

learning model that learns to select examples from 

the neighbor tasks which benefit the target task.



Thank you
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