Computer-aided Concurrent Programming

Roopsha Samanta

UNIVERSITY

Concurrent programs are everywhere!

Cloud platforms Multi-core platforms

Data centers Servers Mobiles Device drivers

Concurrency bugs are subtle and hard to debug

ISAT GeoStar 45 VAt
23815 EST 14 Aug. 2003 P

Therac-25 radiotherapy machine overdose North American power blackout
6 deaths. Race conditions, overflow error. 11 deaths. S6 billion loss. Race condition.

Many concurrency bugs are due to synchronization errors

Atomicity violation Race condition

Ordering violation

Deadlock Livelock

Starvation

Computer-aided Concurrent Programming

Unsynchronized program P
Correct program P’

Specification

Synchronization Synthesizer

A seminal paper
A cool paper

A modern approach

A cool paper

A modern approach

A seminal paper

Clarke Emerson

Design and Synthesis of Synchronization
Skeletons using Branching-Time Temporal Logic.
Workshop on Logics of Programs 1981.

DESIGN AND SYNTHESIS OF SYNCHRONiZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M., Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

1. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
zation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution ta the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model (of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f is satisfiable, a finite model of f 1is constructed. In our application, un-
satisfiability of f means that the specification is inconsistent (and must be re-~
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite mode! property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RK80]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

Algorithmic framework to check and
synthesize synchronization for temporal
properties of finite-state transition systems

DESIGN AND SYNTHESIS OF SYNCHRONiZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M., Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
sation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model {of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f 1is satisfiable, a finite model of f is constructed. In our application, un-
satisfiability of f means that the specification is inconsistent {and must be re-
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite mode! property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RK80]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

Process:
Finite-state synchronization skeleton

Communication Model:
Shared-memory, interleaving-based

Specification:
Temporal logic, complete

Synchronization:
Guarded commands

Procedure:
Tableau-based decision procedure

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M. Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

1. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
aation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant., Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model {of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f is satisfiable, a finite model of f s constructed. In our application, un-
satisfiability of f means that the specification is inconsistent (and must be re-~
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite model property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RKB0]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

NCS2 v (TRY2 A TURN=1)

cs,

Mutual exclusion:

NCS, v (TRY, ATURN=2)
- cs,

Absence of starvation: |
AG TRY; — AF CS; Synchronization Synthesizer NCS, v TRY,

Process specification:
AG NCS; V TRY; V CS;
AG NCS; = =(TRY; V CS;)

Process:
Finite-state synchronization skeleton

Communication Model:
Shared-memory, interleaving-based

Specification:
Temporal logic, complete

Synchronization:
Guarded commands

Procedure:
Tableau-based decision procedure

» Computation Tree Logic (CTL)
» Model Checking for CTL
» CTL Synthesis

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M. Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

1. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
zation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model {of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f is satisfiable, a finite model of f s constructed. In our application, un-
satisfiability of f means that the specification is inconsistent (and must be re-~
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite model property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RKB0]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

Temporal logic primer

/
& \ Unwind / < \ \
he.
Kripke structure / \ \ \

Computation tree

Temporal logics describe properties of infinite computation trees

Syntax of CTL

CTL /State formula

g:=p|-glg Ve |lgiNg | Af|ET

Path formula:

f:=Xg|Fg|Gg|g Vg

Path quantifiers

Always Exists

Temporal operators

Nexttime Eventually

Globally Until

Computation tree

CTL synthesis decision procedure

Input: CTL formula f
Output: SAT + a finite model of f, or, UNSAT

» Build a tableau encoding potential models of f
» Delete inconsistent portions
» If root node is deleted, return UNSAT

» Extract model of f from tableau. Return SAT + model|

OR node

AND node

: | EFpAEF~p

: | EFpAEF~p

: {EFpAEF~p

/713.

Tableau for EFp A EF —p

node E f for all f € label(node)

Figure from [CE81]

: | EFpAEF~p

: {EFpAEF~p

/713.

Delete inconsistent portions

: | EFpAEF~p

: {EFpAEF~p

NCS2 v (TRY2 A TURN=1)

cs,

Mutual exclusion:

NCS, v (TRY, ATURN=2)
- cs,

Absence of starvation: |
AG TRY; — AF CS; Synchronization Synthesizer NCS, v TRY,

Process specification:
AG NCS; V TRY; V CS;
AG NCS; = =(TRY; V CS;)

Process:
Finite-state synchronization skeleton

Communication Model:
Shared-memory, interleaving-based

Specification:
Temporal logic, complete

Synchronization:
Guarded commands

Procedure:
Tableau-based decision procedure

» Computation Tree Logic (CTL)
» Model Checking for CTL
» CTL Synthesis

DESIGN AND SYNTHESIS OF SYNCHRONIZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M. Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

1. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
zation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic which asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model {of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f is satisfiable, a finite model of f s constructed. In our application, un-
satisfiability of f means that the specification is inconsistent (and must be re-~
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite model property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RKB0]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

4
4
4

Needs complete specification
Finite-state processes
Interleaving explosion

DESIGN AND SYNTHESIS OF SYNCHRONiZATION SKELETONS
USING BRANCHING TIME TEMPORAL LOGIC

Edmund M., Clarke
E. Allen Emerson
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138, USA

. INTRODUCTION

We propose a method of constructing concurrent programs in which the synchroni-
zation skeleton of the program is automatically synthesized from a high-level
(branching time) Temporal Logic specification. The synchronization skeleton is an
abstraction of the actual program where detail irrelevant to synchronization is
suppressed. For example, in the synchronization skeleton for a solution to the
critical section problem each process's critical section may be viewed as a single
node since the internal structure of the critical section is unimportant. Most
solutions to synchronization problems in the literature are in fact given as synchro-
nization skeletons. Because synchronization skeletons are in general finite state,
the propositional version of Temporal Logic can be used to specify their properties.

Our synthesis method exploits the (bounded) finite model property for an appro-
priate propositional Temporal Logic whith asserts that if a formula of the logic is
satisfiable, it is satisfiable in a finite model {of size bounded by a function of
the length of the formula). Decision procedures have been devised which, given a
formula of Temporal Logic, f, will decide whether f s satisfiable or unsatisfiable.
If f 1is satisfiable, a finite model of f is constructed. In our application, un-
satisfiability of f means that the specification is inconsistent {and must be re-
formulated). If the formula f is satisfiable, then the specification it expresses
is consistent. A model for f with a finite number of states is constructed by the
decision procedure. The synchronization skeleton of a program meeting the specifica-
tion can be read from this model. The finite mode! property ensures that any program
whose synchronization properties can be expressed in propositional Temporal Logic can
be realized by a system of concurrently running processes, each of which is a finite
state machine.

Initially, the synchronization skeletonswe synthesize will be for concurrent
programs running in a shared-memory environment and for monitors. However, we
believe that it is also possible to extend these techniques to synthesize distributed
programs. One such application would be the automatic synthesis of network communi-
cation protocols from propositional Temporal Logic specifications.

Previous efforts toward parallel program synthesis can be found in the work of

[LA78] and [RK80]. [LA78] uses a specification language that is essentially predicate

This work was partially supported by NSF Grant MCS-7908365.

A seminal paper

A modern approach

A cool paper

Yahav

Vechev

Abstraction-Guided Synthesis of Synchronization.
POPL 2010.

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav
IBM Research

IBM Research

Abstract

‘We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

‘We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright © 2009 ACM 978-1-60558-479-9/10/01. ..$10.00

Greta Yorsh
IBM Research

Given a program P, a specification S, and an abstraction func-
tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P |=,, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

Abstraction-based approach to infer
synchronization to ensure safety properties
of infinite-state concurrent programs

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav Greta Yorsh
IBM Research IBM Research IBM Research

Abstract

‘We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

‘We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright © 2009 ACM 978-1-60558-479-9/10/01. .. $10.00

Given a program P, a specification S, and an abstraction func-
tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P |=,, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

Process:
Infinite-state program

Communication Model:
Shared-memory, interleaving-based

Specification:
Safety property

Synchronization:
Atomic section

Procedure:
Abstraction-refinement & counterexample-based

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav Greta Yorsh
IBM Research IBM Research IBM Research
Abstract Given a program P, a specification S, and an abstraction func-

‘We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

‘We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright © 2009 ACM 978-1-60558-479-9/10/01. ..$10.00

tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P |=,, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

X X

+

+

N N

T2 T3

Z++ yl = f(x)

Z++ Y2 = X
assert yl+y2

Abstract domain(s)

Synchronization Synthesizer

T1
X
X

+= Z
+= Z

T2
Z++
Z++

T3
yl = f(x)
Y2 = X

assert yl#y2

Process:
Infinite-state program

Communication Model:
Shared-memory, interleaving-based

Specification:
Safety property

Synchronization:
Atomic section

Procedure:
Abstraction-refinement & counterexample-based

» Abstraction-guided synthesis
» Synthesis as repair
» Quantitative synthesis

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav Greta Yorsh
IBM Research IBM Research IBM Research
Abstract Given a program P, a specification S, and an abstraction func-

We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright (© 2009 ACM 978-1-60558-479-9/10/01. ..$10.00

tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P =, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

Counterexample-guided

. . P
abstraction refinement
Correctness
Specification
Verify?
Initial 0
Abstraction
od Abstract Counterexample

Abstraction Refinement

yes

Counterexample-guided
repair/synthesis

Correctness
Specification

no

Counterexample

Abstract counterexample-guided
synthesis

Correctness
Specification

Initial
Abstraction

no

Abstract Counterexample

Abstract counterexample-guided
synchronization synthesis

Correctness
Specification

Initial
Abstraction

no

Atomicity
constraints

Abstract Counterexample

Abstract
counterexample

A{ VA,V Az
Aq] AL

Atomicity constraint

Atomicity
predicate

Abstract counterexample-guided

synchronization synthesis Obtain P from P and ¢ by

adding minimal atomic

sections satisfying ¢

Correctness
Specification

Initial
Abstraction

no

Atomicity
constraints

Abstract Counterexample

X X

+

+

N N

T2 T3

Z++ yl = f(x)

Z++ Y2 = X
assert yl+y2

Abstract domain(s)

Synchronization Synthesizer

T1
X
X

+= Z
+= Z

T2
Z++
Z++

T3
yl = f(x)
Y2 = X

assert yl#y2

Process:
Infinite-state program

Communication Model:
Shared-memory, interleaving-based

Specification:
Safety property

Synchronization:
Atomic section

Procedure:
Abstraction-refinement & counterexample-based

» Abstraction-guided synthesis
» Synthesis as repair
» Quantitative synthesis

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav Greta Yorsh
IBM Research IBM Research IBM Research
Abstract Given a program P, a specification S, and an abstraction func-

We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright (© 2009 ACM 978-1-60558-479-9/10/01. ..$10.00

tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P =, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

4
4
4

Interleaving explosion

Someone needs to write a specification
Atomic sections are not very permissive

Abstraction-Guided Synthesis of Synchronization

Martin Vechev Eran Yahav Greta Yorsh
IBM Research IBM Research IBM Research

Abstract

‘We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

‘We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrency, synthesis, abstract interpretation

1. Introduction

‘We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:

e Concurrent programming: by automatically inferring minimal
atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

e Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17-23, 2009, Madrid, Spain.

Copyright © 2009 ACM 978-1-60558-479-9/10/01. .. $10.00

Given a program P, a specification S, and an abstraction func-
tion a, verification determines whether P |=, S, that is, whether
P satisfies the specification S under the abstraction c.. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction « is not pre-
cise enough to show that the program satisfies it.

When P £, S, abstraction refinement approaches (e.g., [3, 8])
share the common goal of trying to find a finer abstraction o’ such
that P |=,, S. In this paper, we investigate a complementary
approach, of finding a program P’ such that P’ =, S under the
original abstraction « and P’ admits a subset of the behaviors of
P. Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P’ from the initial program P. In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[3, 8]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

A seminal paper

A cool paper

From Non-preemptive to Preemptive Scheduling

A mo d ern a p p roac h using Synchronization Synthesis *

Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

Cerny Clarke Henzinger Radhakrishna " University of Colorado Boulder

2 Carnegie Mellon University
e Aust

3 IST Austria
4 University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-
currency. The approach allows programmers to program assuming a
friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-
emptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the
program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be in-
cluded in the set of such sequences produced under a non-preemptive
scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and
Sa ma nta Ta rraCh rules for inserting synchronization. We apply the approach to device-
driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-
iments demonstrate that our synthesis method is precise and efficient,
and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

1 Introduction

Concurrent shared-memory programming is notoriously difficult and error-prone.
Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such
as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that
a core difficulty in concurrent programming originates from the fact that the
scheduler can preempt the execution of a thread at any time. We therefore give

* This research was supported in part by the European Research Council (ERC) un-

From Non-preemptive to Preemptive Scheduling
. . . . der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
USIn g Syn Ch ron IZG tlon Syn th eS/S. CA\/ 2 O 1 6 . $11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF

1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

Succinct Representation of Concurrent Trace Sets *

Ashutosh Gupta Thomas A. Henzinger Arjun Radhakrishna
IST Austria IST Austria IST Austria, University of Pennsylvania
aguptaQ@ist.ac.at tahQ@ist.ac.at arjunrad@seas.upenn.edu

Roopsha Samanta

IST Austria
rsamanta@ist.ac.at

Abstract

We present a method and a tool for generating succinct representa-
tions of sets of concurrent traces. We focus on trace sets that contain
all correct or all incorrect permutations of events from a given trace.
We represent trace sets as HB-formulas that are Boolean combina-
tions of happens-before constraints between events. To generate a
representation of incorrect interleavings, our method iteratively ex-
plores interleavings that violate the specification and gathers gen-
eralizations of the discovered interleavings into an HB-formula; its
complement yields a representation of correct interleavings.

We claim that our trace set representations can drive diverse ver-
ification, fault localization, repair, and synthesis techniques for con-
current programs. We demonstrate this by using our tool in three
case studies involving synchronization synthesis, bug summariza-
tion, and abstraction refinement based verification. In each case
study, our initial experimental results have been promising.

In the first case study, we present an algorithm for inferring
missing synchronization from an HB-formula representing cor-
rect interleavings of a given trace. The algorithm applies rules to
rewrite specific patterns in the HB-formula into locks, barriers,
and wait-notify constructs. In the second case study, we use an
HB-formula representing incorrect interleavings for bug summa-
rization. While the HB-formula itself is a concise counterexample
summary, we present additional inference rules to help identify spe-
cific concurrency bugs such as data races, define-use order viola-
tions, and two-stage access bugs. In the final case study, we present
a novel predicate learning procedure that uses HB-formulas rep-
resenting abstract counterexamples to accelerate counterexample-
guided abstraction refinement (CEGAR). In each iteration of the
CEGAR loop, the procedure refines the abstraction to eliminate
multiple spurious abstract counterexamples drawn from the HB-
formula.

Categories and Subject Descriptors D [2]: 4—Formal methods

Keywords Trace Generalization; Concurrent Programs; Synchro-
nization Synthesis; Bug Summarization; CEGAR

Copyright © ACM, 2015. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in POPL ’15 Proceedings of the 42st
ACM SIGPLAN-SIGACT, Symposium on Principles of Programming Languages,
http://dx.doi.org/10.1145/2676726.2677008.

POPL ’15, January 15-17, 2015, Mumbai, India.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3300-9/15/01. ... $15.00.
http://dx.doi.org/10.1145/2676726.2677008

Thorsten Tarrach

IST Austria
ttarrach@ist.ac.at

1. Introduction

Sets of concurrent traces containing permutations of events from a
given concurrent trace are useful for predictive analysis (e.g., [24,
34, 35, 41]) and synchronization synthesis (e.g., [8, 9]) of shared-
memory concurrent programs. Most approaches using such trace
sets are restricted to specific aspects of reasoning about concurrent
programs such as data race detection [24, 34], detection of safety
violations [35, 41] and fixing assertion failures [8, 9]. Moreover,
the representations of trace sets and exploration strategies used in
some of these approaches [8, 9, 35]) underapproximate the target
trace sets. In this paper, we present a succinct, complete represen-
tation of such concurrent trace sets, which can drive diverse verifi-
cation, fault localization, repair, and synthesis techniques for con-
current programs. The representation is complete in the sense that
it encodes every trace in the trace set of interest.

Concurrent trace sets. First, we fix some terminology. An exe-
cution T of a concurrent program P is an alternating sequence of
variable valuations and events corresponding to a feasible interleav-
ing of instructions from the threads of P. An execution is good if
it satisfies a given specification, and bad otherwise. A trace is a
sequence of events corresponding to an interleaving of instructions
from the threads of P. The trace of an execution 7 is the sequence
of events within 7. The language £(7) of a trace 7 is the set of all
executions with trace 7. A trace 7 is feasible if £(7) is non-empty,
and infeasible otherwise. A feasible trace 7 is good if all executions
in £(7) are good, and bad otherwise.

We group traces into neighbourhoods. The neighbourhood N
of a trace 7 contains all permutations of 7 that preserve 7’s intra-
thread event order. The good neighbourhood N'? of a trace T is the
set containing all the good traces in N... The bad neighbourhood
N? of a trace 7 is a set containing all the bad traces in N.
The languages £(N-), L(N¥) and L(N?) are the unions of the
languages of all traces in A, N'¢ and N2, respectively.
Representation of concurrent trace sets. There are multiple ways
to represent trace sets. Some representations may be more expres-
sive or useful for reasoning about concurrent programs than oth-
ers. A candidate representation that has been used for certain trace
sets is a partial order over events [8, 9, 41]. The neighbourhood of
a trace, as defined above, can also be represented as a partial or-
der. However, the good neighbourhood or the bad neighbourhood
of a trace is, in general, not a partial order. For instance, for the

*This research was supported in part by the European Research Council
(ERC) under grant agreement 267989 (QUAREM), by the Austrian Science
Fund (FWF) NFN project S11402-N23 (RiSE), and the NSF Expeditions
award CCF 1138996.

POPL 2016

FMSD 2017

Form Methods Syst Des (2017) 50:97-139 ® CrossMark
DOI 10.1007/s10703-016-0256-5

From non-preemptive to preemptive scheduling using
synchronization synthesis

Pavol Cerny! - Edmund M. Clarke? - Thomas A. Henzinger> -
Arjun Radhakrishna* - Leonid Ryzhyk® - Roopsha Samanta® -
Thorsten Tarrach3

Published online: 27 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a computer-aided programming approach to concurrency. The
approach allows programmers to program assuming a friendly, non-preemptive scheduler,
and our synthesis procedure inserts synchronization to ensure that the final program works
even with a preemptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the program makes
to an external interface. The specification requires that any such sequence produced under

This work was published, in part, in Computer Aided Verification (CAV) 2015 [4].

B Thorsten Tarrach
ttarrach @ist.ac.at

Pavol Cerny
pavol.cerny @colorado.edu

Edmund M. Clarke
emc@cs.cmu.edu

Thomas A. Henzinger
tah@ist.ac.at

Arjun Radhakrishna
arjunrad @cis.upenn.edu

Leonid Ryzhyk
Lryzhyk @samsung.com

Roopsha Samanta
roopsha@cs.purdue.edu

University of Colorado Boulder, 425 UCB, Boulder, CO 80309, USA

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA
Samsung Research America, 665 Clyde Avenue, Mountain View, CA 94043, USA
University of Purdue, 610 Purdue Mall, West Lafayette, IN 47907, USA

[Y R N R)

@ Springer

From Non-preemptive to Preemptive Scheduling
using Synchronization Synthesis *

Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

! University of Colorado Boulder
2 Carnegie Mellon University
3 IST Austria
4 University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-

currency. The approach allows programmers to program assuming a

friendly, non-preemptive scheduler, and our synthesis procedure inserts

synchronization to ensure that the final program works even with a pre-

emptive scheduler. The correctness specification is implicit, inferred from

T | \ t' b d f k t : f the non-preemptive behavior. Let us consider sequences of calls that the
ra C e ge n e ra I Za I O n - a S e ra m eWO r O | n e r program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be in-

h g q f 7 | =t 'f q q f cluded in the set of such sequences produced under a non-preemptive

Sy n C rO n I Zat I O n O r a n I m p I C It S p e C I I Cat I O n O scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and

A f A A rules for inserting synchronization. We apply the approach to device-
| n | n | te _Sta te C O n C U r re nt p ro g ra m S driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-

iments demonstrate that our synthesis method is precise and efficient,

and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

1 Introduction

Concurrent shared-memory programming is notoriously difficult and error-prone.
Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such
as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that
a core difficulty in concurrent programming originates from the fact that the
scheduler can preempt the execution of a thread at any time. We therefore give

* This research was supported in part by the European Research Council (ERC) un-
der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
$11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF
1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

From Non-preemptive to Preemptive Scheduling
using Synchronization Synthesis *

Process:
Infinite-state program

Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

1 1 . ! University of Colorado Boulder
Communication Model: e o olorado Boud
3 IST Austria

Shared-memory, interleaving-based “ University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-

Specifi Cation . currency. The approach allows programmers to program assuming a
* friendly, non-preemptive scheduler, and our synthesis procedure inserts

synchronization to ensure that the final program works even with a pre-

| m p | | C |t (b e h aVl O r u n d e r n O n - p re e m pt | Ve S C h e d u | e r), emptive scheduler. The correctness specification is implicit, inferred from

the non-preemptive behavior. Let us consider sequences of calls that the

S afety p ro p e rty program makes to an external interface. The specification requires that

any such sequence produced under a preemptive scheduler should be in-
cluded in the set of such sequences produced under a non-preemptive
scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and

Syn Ch ro n izati O n . rules for inserting synchronization. We apply the approach to device-

driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-

I_OCkS) Wa It' A Otlfy etc . iments demonstrate that our synthesis method is precise and efficient,

and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

Proced ure: 1 Introduction
C oun t erexam p I e ge nera | | VA at | on Concurrent shared-memory programming is notoriously difficult and error-prone.

Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such
as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that
a core difficulty in concurrent programming originates from the fact that the
scheduler can preempt the execution of a thread at any time. We therefore give

* This research was supported in part by the European Research Council (ERC) un-
der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
$11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF
1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

P:

void open_dev()
if (open==0)

open := open+l;
yield;

void close dev()
if (open>0)

open := open-1;
if (open==0)
yield;

Synchronization Synthesizer

[[P’]] preempt [[P]] nonpreempt

P
void open_dev()

lock (1)

if (open==0)
open := open+l,;
unlock(1l)

yield;

void close dev()
lock(1)
if (open>0)

open := open-1;
if (open==0)
unlock(1)
yield;

Preemption-safety

P . From Non-preemptive to Preemptive Scheduling
rocess. using Synchronization Synthesis *

Infinite-state program v
Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

1 1 . ! University of Colorado Boulder
Communication Model: A

3 IST Austria

Shared-memory, , interleaving-based * University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-

S p e Cifi C at i O n . currency. The approach allows programmers to program assuming a
L]

friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-

| m p | | C |t (b e h aVl O r u n d e r n O n - p re e m pt | Ve S C h e d u | e r), emptive scheduler. The correctness specification is implicit, inferred from

the non-preemptive behavior. Let us consider sequences of calls that the
S afety p r-o p e rty program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be in-
cluded in the set of such sequences produced under a non-preemptive

scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and

S nCh ronization . rules for inserting synchronization. We apply the approach to device-
y . driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-

I_OCkS) Wa It' A Otlfy etc . iments demonstrate that our synthesis method is precise and efficient,

and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

Proced ure: 1 Introduction
C oun t erexam p I e ge nera | | VA at | on Concurrent shared-memory programming is notoriously difficult and error-prone.

Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such

» Counterexam p|e genera |ization as assertions, suffer from the drawback that it is difficult to ensure that the

specification is complete and fully captures the programmer’s intent.
1Fi H _ H We propose a solution where the specification is implicit. We observe that
} SpeCIflcatlon free SyntheSIS a core difficulty in concurrent programming originates from the fact that the

. . .- . scheduler can preempt the execution of a thread at any time. We therefore give
» Language inclusion verification procedure preempt the exceution ofa thread at sny time, o therelore &

* This research was supported in part by the European Research Council (ERC) un-
der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
$11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF
1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

Counterexample-guided
repair/synthesis
The “lazy” approach

Correctness
Specification

Verify?

NO

Counterexample

yes

Program Restriction

Counterexample-guided
repair/synthesis

P
P’ P The “eager” approach
Correctness
Specification ves
Verify? P’
no

Counterexample

P” « Program Restriction(P’)

Counterexample-guided
repair/synthesis

P’ P The “eager” approach
Correctness
Specification ves
Verify? P’
no

Eliminating one counterexample

Counterexample _
at a time may not be tractable

P” « Program Restriction(P’)

Correctness

Specification yes

Counterexample

Q——
Ee—
e

Correctness

Specification yes

Counterexample

trace Happens Before-formula

Al: bl = bal Cl: bal = init Bl: b2 = bal

A2: bl bl + 10 B2: b2 b2 + 20

A3: bal = bl B3: bal = b2

bal new = init + 30

Trace generalization

Bl: b2 = bal
Cl: bal = init(iii
B2: b2 = b2 + d2

— B3: bal = b2

Al: bl = bal <

A2: bl bl + dl

A3: bal = bl
hb(B1,C1) A hb(C1,B2) A hb(B3,A1)

Trace generalization

K///,Blz b2 = bal
Cl: bal = init B2: b2 b2 + d2

B3: bal = b2
Al: bl = bal

A2: bl bl + dl

A3: bal = bl

hb(B1,C1)

. o

Al: bl = bal Bl: b2 = bal

A2: bl

bl + 10 B2: b2

b2 + 20

A3: bal

bl B3: bal = b2

bal new = init + 30

hb(B1,C1)
All incorrect related traces, v
hb(Al,C1)
no correct related traces y

hb(21,B3) A hb(B1,A3)

Correctness

Specification yes

Counterexample

HB-formula pattern Synchronization primitive

The Lock rewrite rule

lock(1) lock(1)

><Bl

Bk

unlock(1l) unlock (1)
hb(A1,Bk) A hb() Lock (,)

The Lock rewrite rule

ji::::;::ii 31 lock(1) lock(1)
Bk v v

unlock(1l) unlock (1)
hb(Bk,A1) v hb(Ak, Lock (,)

The Lock rewrite rule

v

Bk

hb(Bk,A1) v hb(Ak,B1)

lock(1)
Al
Ak
unlock(1l)

lock(1)
Bl
Bk
unlock(1l)

Lock(Al:Ak,B1l:Bk)

The Lock rewrite rule

Bl

v

Al

v

Ak

hb(Bk,A1) vV hb(Ak,B1)

lock(1)
Al
Ak
unlock(1l)

lock(1)
Bl
Bk
unlock(1l)

Lock(Al:Ak,B1l:Bk)

hb(A1,C1) WaitNotify(A1l,C1)

\Y N\
hb(B1,C1) WaitNotify(B1,C1)
\Y N\

hb(A1,B3) Ahb(B1,A3) Lock(A1:A3,B1:B3)

Al:

A2:

A3:

wait(c)
lock(1)

bl = bal

bl bl + 10

bal = bl

unlock(1l)

notify(c)

bal new

init + 30

Bl:

B2:

B3:

wait(c)
lock(1)

b2 = bal

b2 b2 + 20

bal = b2

unlock(1)

wait(c) wait(c)

lock(1) notify(c) lock(1)
Al: bl = bal Bl: b2 = bal
A2: bl = bl + 10 B2: b2 = b2 + 20
A3: bal = bl B3: bal = b2
unlock(1) unlock(1)

bal new = init + 30

Guaranteed to eliminate all incorrect related traces

Correctness

Specification yes

Counterexample

P . From Non-preemptive to Preemptive Scheduling
rocess. using Synchronization Synthesis *

Infinite-state program v
Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

1 1 . ! University of Colorado Boulder
Communication Model: A

3 IST Austria

Shared-memory, , interleaving-based * University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-

S p e Cifi C at i O n . currency. The approach allows programmers to program assuming a
L]

friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-

| m p | | C |t (b e h aVl O r u n d e r n O n - p re e m pt | Ve S C h e d u | e r), emptive scheduler. The correctness specification is implicit, inferred from

the non-preemptive behavior. Let us consider sequences of calls that the
S afety p r-o p e rty program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be in-
cluded in the set of such sequences produced under a non-preemptive

scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and

S nCh ronization . rules for inserting synchronization. We apply the approach to device-
y . driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-

I_OCkS) Wa It' A Otlfy etc . iments demonstrate that our synthesis method is precise and efficient,

and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

Proced ure: 1 Introduction
C oun t erexam p I e ge nera | | VA at | on Concurrent shared-memory programming is notoriously difficult and error-prone.

Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such

» Counterexam p|e genera |ization as assertions, suffer from the drawback that it is difficult to ensure that the

specification is complete and fully captures the programmer’s intent.
1Fi H _ H We propose a solution where the specification is implicit. We observe that
} SpeCIflcatlon free SyntheSIS a core difficulty in concurrent programming originates from the fact that the

. . .- . scheduler can preempt the execution of a thread at any time. We therefore give
» Language inclusion verification procedure preempt the exceution ofa thread at sny time, o therelore &

* This research was supported in part by the European Research Council (ERC) un-
der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
$11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF
1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

From Non-preemptive to Preemptive Scheduling
using Synchronization Synthesis *

Pavol Cerny', Edmund M. Clarke?, Thomas A. Henzinger®, Arjun
Radhakrishna?, Leonid Ryzhyk?, Roopsha Samanta®, and Thorsten Tarrach®

! University of Colorado Boulder
2 Carnegie Mellon University
3 IST Austria
4 University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-
currency. The approach allows programmers to program assuming a
friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-
emptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the

} | m p | iC it S peCifi Catio n iS n Ot u n ive rsa | program makes to an external interface. The specification requires that

any such sequence produced under a preemptive scheduler should be in-

} V ‘f : t' H t t‘ ” : cluded in the set of such sequences produced under a non-preemptive
e rl Ica IO n IS CO m p u a IO n a y expe n S IVe scheduler. The solution is based on a finitary abstraction, an algorithm

for bounded language inclusion modulo an independence relation, and

rules for inserting synchronization. We apply the approach to device-

driver programming, where the driver threads call the software interface

of the device and the API provided by the operating system. Our exper-

iments demonstrate that our synthesis method is precise and efficient,

and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

1 Introduction

Concurrent shared-memory programming is notoriously difficult and error-prone.
Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4, 5,8, 11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such
as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that
a core difficulty in concurrent programming originates from the fact that the
scheduler can preempt the execution of a thread at any time. We therefore give

* This research was supported in part by the European Research Council (ERC) un-
der grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under grants
$11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award CCF
1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and
by a gift from the Intel Corporation.

A seminal paper
A modern approach

A trace-based approach

v Vv Vv VvV Vv Vv

We have come a long way ...

A seminal paper

Diverse specifications
Infinite-state programs

Diverse synchronization primitives
Pushed scalability
Performance-aware synthesis

A modern approach

A trace-based approach

v VvV VvV VvV VvV VvV Vv

... but we have miles to go.

Assume sequential consistency
Simple program models

Simple performance models

No optimistic concurrency control
Scalability remains a challenge
Fixed number of threads

A seminal paper
A modern approach

A trace-based approach

Ongoing work —

Finite-state synchronization skeleton
Jaber Jacobs

» Communication Model:
Message-passing, partially asynchronous

» Specification:
Temporal logic

» Synchronization:
Guarded commands

» Procedure:
Counterexample-based

1N
M

R e

Bl

R o » Parameterized verification
Parameterized Synthesis for > Parameterized synthesis

Distributed Applications with Consensus. » Abstract primitive for consensus protocols

