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Problem Overview
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Programs rarely execute in isolation
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Synchronous Networked System

Directed graph (P, C)

P = {P1, . . . ,Pn}
C = I ∪ N ∪O

Synchronous

Computation alphabet: Σ

P3

P2

P1

N :

C3,2

Cout

C2,1

C1,3

Cin C2,3
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Process

Process Pi : (Ini ,Out i ,Mi )

Mealy Machine Mi :
(Σ|Ini |,Σ|Out i |,Qi ,q0i ,Ri )

P1

C2,1

C1,3

Cin
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Network Semantics

N : (Σ|I|,Σ|O|,Q,q0,R)

Network state:
(q1, . . . ,qn, c1, . . . , c|N|)

Network transition:
(q1, . . . ,qn, c1, . . . , c|I|)

(q′
1, . . . ,q

′
n, c

′
1, . . . , c′

|O|)

(a1, . . . , a|I|), (a′1, . . . , a′|w′|)

Network execution: ρ(s)

Network output: JN K(s)

P3

P2

P1

N :

C3,2

Cout

C2,1

C1,3

Cin C2,3
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Internal Channel Perturbations

Instantaneous deletion or substitution of current symbol

τ -transition:

(q1, . . . ,qn, c1, . . . , c|I|)

(q1, . . . ,qn, c′
1, . . . , c′

|I|),

ε, ε

Perturbed network execution: ρτ (s)

Perturbed network output: Jρτ K(s)

Channel-wise perturbation count in ρτ (s): ‖ρτ (s)‖
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Robust Networked System

Given:

a networked system N ,

max. pertb. count of internal
channels, δ = (δ1, . . . , δ|N|),

max. permissible error in output
channel, ε,

distance metric d over Σ?

P3

P2

P1

N :

C3,2,
δ2

Cout , ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

N is defined to be (δ, ε)-robust if:

∀s ∈ (Σ|I|)
?
,∀ρτ (s) : ‖ρτ (s)‖≤ δ =⇒ d( JN K(s), Jρτ K(s) )≤ ε
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Problem Definition

Given:

a networked system N ,

max. pertb. count of internal
channels, δ = (δ1, . . . , δ|N|),

max. permissible error in output
channel, ε,

distance metric d over Σ?

P3

P2

P1

N :

C3,2,
δ2

Cout , ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

Check if N is (δ, ε)-robust.
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Solution Strategy

Given:

a networked system N ,

max. pertb. count of internal
channels, δ = (δ1, . . . , δ|N|),

max. permissible error in output
channel, ε,

distance metric d over Σ?

P3

P2

P1

N :

C3,2,
δ2

Cout , ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

Construct machine A: N is (δ, ε)-robust iff L(A) is empty.
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Solution Strategy

Construct machine A: N is (δ, ε)-robust iff L(A) is empty.

In a run of A on s, A simultaneously:

simulates unperturbed, perturbed executions: ρ(s), ρτ (s)
tracks channel perturbations along ρτ (s),
tracks distance between outputs of N along ρ(s), ρτ (s).

A accepts s iff ∃ρτ (s): ‖ρτ (s)‖ ≤ δ and d(JN K(s), Jρτ K(s)) > ε.
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Review: Levenshtein Distance, dLev(s, t)

Minimum number of symbol insertions, deletions and substitutions
required to transform s into t .

dLev (abc,bcd) = 2 t b c d
a b c t

dLev (acbcd , ccff ) = 4

t c t c f f or,
a c b c d t

t c c f f
a c b c d
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Review: Levenshtein Distance Computation

s

t

a

c

b

c

d

0

1

2

3

4

5

c c f f

0 1 2 3 4

0

1

2

3

4

5

1 2 3 4
dLev (s[0], t [0]) = 0

dLev (s[0, i], t [0]) = i

dLev (s[0], t [0, j]) = j
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Review: Levenshtein Distance Computation

s

t

a

c

b

c

d

0

1

2

3

4

5

c c f f

0 1 2 3 4

0

1

2

3

4

5

1 2 3 4

?

subs del

ins

dLev (s[0, i], t [0, j]) =

min(dLev (s[0, i-1], t [0, j-1]) + ∆(s[i], t [j]),

dLev (s[0, i-1], t [0, j]) + 1,

dLev (s[0, i], t [0, j-1]) + 1

)

∆(a, b) equals 0 if a = b, else 1.
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Review: Levenshtein Distance Computation

s

t

ε = 2

a

c

b

c

d

0
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To check if dLev (s, t) > ε, focus on
ε-diagonal.

Construct DFA Dε
Lev : runs on a string pair

(s, t), and accepts iff dLev (s, t) > ε.
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Distance-Tracking Automaton, Dε
Lev

a

c

b

c

d

#

0

1

2

3

4

5

6

c c f f # #

0 1 2 3 4 5 6

0

1 1

1 2

2

112

>

2

222

>

>

>>2

>

>

>>>

>

>

>>>

(λ, λ, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 1, 1,⊥〉)

(ac, cc, 〈2, 1, 1, 2, 2〉)

(cb, cf , 〈2, 2, 2, 2,>〉)

(bc, ff , 〈2,>,>,>,>〉)

(cd, f#, 〈>,>,>,>,>〉)

accept

(a, c)

(c, c)

(b, f )

(c, f )

(d, #)

(#, #)

ε = 2
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Distance-Tracking Automaton, Dε
Lev

Dε
Lev accepts a pair of strings (s, t) iff dLev (s, t) > ε.
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Review: Counter Machines
(One-way, Nondeterministic)

h-counter machine A: finite automaton with h integer counters

In each step, A may

read an input symbol,
test counter values
change state
update each counter by some constant

Transition: (x , σ, test , x ′, c1, . . . , ch)

s is accepted by A iff (x0, s0,0, . . .0)→?
A (acc, sj , z1, . . . , zh)

Most interesting questions are undecidable.
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Review: Reversal-bounded Counter Machines
(One-way, Nondeterministic)

r -reversal bounded, h-counter machine: each counter alternates
between an increasing mode and a decreasing mode at most r times.

[GurariIbarra1981]
Nonemptiness for a r -reversal bounded, h-counter machine A is
solvable in time polynomial in the size of A.
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Robustness Analysis for Levenshtein distance

Construct machine�
��Aδ,ε

Lev A: N is (δ, ε)-robust iff L(A) is empty.

In a run of A on s, A simultaneously:

simulates unperturbed, perturbed executions: ρ(s), ρτ (s)
tracks channel perturbations along ρτ (s),
tracks distance between outputs of N along ρ(s), ρτ (s).

A accepts s iff ∃ρτ (s): ‖ρτ (s)‖ ≤ δ and d(JN K(s), Jρτ K(s)) > ε.
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A: 1-reversal-bounded |N|-counter machine

A state x: (q, r,qLev ), q, r ∈ Q, qLev ∈ QLev

Initial state: (q0,q0,q0 Lev )

Set of counters Z = {z1, . . . , z|N|}, initially 0

Final state: {acc}
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A: Initialization transition

Initialize counters with perturbation bounds:

(
(q0,q0,q0 Lev ), ε,

∧
k

zk = 0, (q0,q0,q0 Lev ), (+δ1, . . . ,+δ|N|)

)
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A: Unperturbed network transitions

Simulate pair of unperturbed N -transitions, track output distance:

(
(q, r,qLev ), a,

∧
k

zk ≥ 0, (q′, r′,q′
Lev ), 0

)
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A: Perturbed network transitions

Simulate τ -transition, decrement counters of perturbed channels by 1:

(
(q, r,qLev ), ε,

∧
k

zk ≥ 0, (q, rτ ,qLev ), c

)
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A: Rejecting transitions

Reject if any internal channel perturbation exceeds bound:

(
(q, r,qLev ), ε,

∨
k

zk < 0, rej, 0

)

(rej,a, true, rej,0)
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A: Accepting transitions

Accept witness to non-robustness:

(
(q, r,accLev ), ε,

∧
k

zk ≥ 0, acc, 0

)
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Main Result(s)

Checking if N is (δ, ε)-robust w.r.t the Levenshtein distance is
polynomial in the size of N and exponential in ε.

Checking if N is (δ, ε)-robust w.r.t the L1-norm is polynomial in the
size of N .
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Related Work

Sequential programs with perturbed inputs [MS09, CGLN11]

Input-output stability of finite-state transducers [TBCSM12]

Sequential circuits, common suffix distance metric [DHLN10]

Robust control, wireless control networks [ADJPW11, Pappas11]

Reactive systems with ω-regular spec. in uncertain environment [MRT11,
CHR10, BGHJ09]
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Future Work

Consider more distance-metrics

Generalize error model - input noise, process failures etc.

Synthesis of robust networked systems
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Thank you.
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