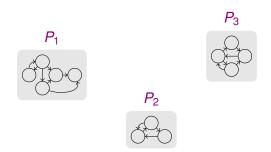
Robustness Analysis of Networked Systems

Roopsha Samanta

The University of Texas at Austin

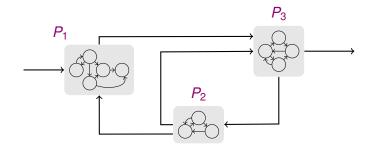
Joint work with Jyotirmoy V. Deshmukh and Swarat Chaudhuri

January 21, 2013



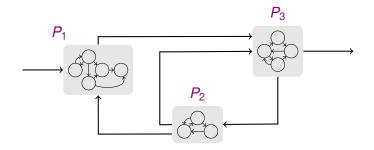
Programs rarely execute in isolation

・ロト ・ 四ト ・ ヨト ・ ヨト

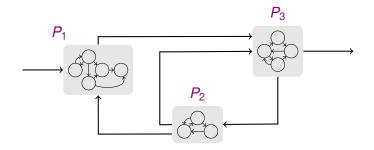


Programs interact with other programs and the physical world

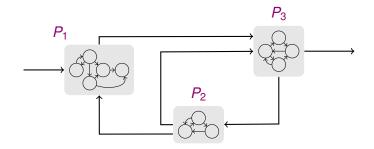
イロト イヨト イヨト イヨト



Predictability in the presence of uncertainty



Small perturbation in input \rightarrow Small perturbation in output



Robustness!

Roo	psha	San	nanta
-----	------	-----	-------

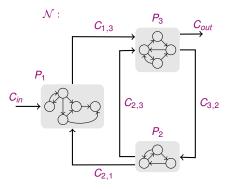
Robustness Analysis of Networked Systems

2

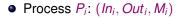
イロト イヨト イヨト イヨト

Synchronous Networked System

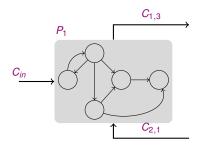
- Directed graph (P,C)
 - $\mathcal{P} = \{P_1, \dots, P_n\}$ • $\mathcal{C} = I \cup N \cup O$
- Synchronous
- Computation alphabet: Σ



Process



• Mealy Machine M_i : $(\Sigma^{|In_i|}, \Sigma^{|Out_i|}, Q_i, q_{0_i}, R_i)$



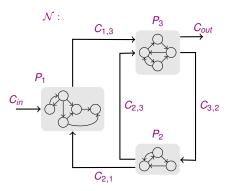
・ロト ・ 四ト ・ ヨト ・ ヨト

э

Network Semantics

- \mathcal{N} : $(\Sigma^{|I|}, \Sigma^{|O|}, Q, \mathbf{q}_0, R)$
- Network state: (*q*₁,...,*q*_n, *c*₁,...,*c*_{|*N*|})
- Network transition: $(q_1, \dots, q_n, c_1, \dots, c_{|I|})$ $(a_1, \dots, a_{|I|}), \downarrow (a'_1, \dots, a'_{|w'|})$ $(q'_1, \dots, q'_n, c'_1, \dots, c'_{|O|})$
- Network execution: ρ(s)

Network output: [[N]](s)



• • • • • • • • • • • • •

Internal Channel Perturbations

- Instantaneous deletion or substitution of current symbol
- τ -transition:

$$(q_1,\ldots,q_n,c_1,\ldots,c_{|I|})$$

$$\downarrow \varepsilon,\varepsilon$$

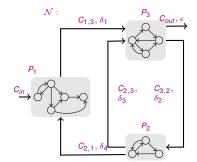
$$(q_1,\ldots,q_n,c'_1,\ldots,c'_{|I|}),$$

- Perturbed network execution: $\rho_{\tau}(\mathbf{s})$
- Perturbed network output: $[\![\rho_{\tau}]\!](\mathbf{s})$
- Channel-wise perturbation count in $\rho_{\tau}(\mathbf{s})$: $\|\rho_{\tau}(\mathbf{s})\|$

Robust Networked System

Given:

- a networked system \mathcal{N} ,
- max. pertb. count of internal channels, $\delta = (\delta_1, \dots, \delta_{|N|})$,
- max. permissible error in output channel, *ε*,
- distance metric d over Σ*



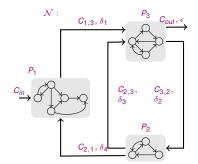
N is defined to be (δ, ϵ) -robust if:

 $\forall \mathbf{s} \in (\Sigma^{|l|})^*, \forall \rho_{\tau}(\mathbf{s}) : \|\rho_{\tau}(\mathbf{s})\| \leq \delta \implies d(\llbracket \mathcal{N} \rrbracket (\mathbf{s}), \llbracket \rho_{\tau} \rrbracket (\mathbf{s})) \leq \epsilon$

Robust Networked System

Given:

- a networked system N,
- max. pertb. count of internal channels, $\delta = (\delta_1, \dots, \delta_{|N|})$,
- max. permissible error in output channel, *ε*,
- distance metric d over Σ*



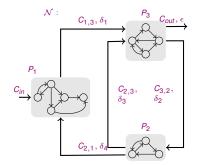
 \mathcal{N} is defined to be (δ, ϵ) -robust if:

 $\forall \mathbf{s} \in (\boldsymbol{\Sigma}^{|l|})^{\star}, \forall \rho_{\tau}(\mathbf{s}) : \|\rho_{\tau}(\mathbf{s})\| \leq \delta \implies d(\llbracket \mathcal{N} \rrbracket(\mathbf{s}), \llbracket \rho_{\tau} \rrbracket(\mathbf{s})) \leq \epsilon$

Problem Definition

Given:

- a networked system N,
- max. pertb. count of internal channels, $\delta = (\delta_1, \dots, \delta_{|N|})$,
- max. permissible error in output channel, ε,
- distance metric *d* over Σ^{*}

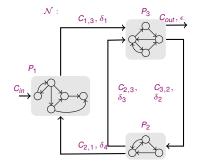


Check if \mathcal{N} is (δ, ϵ) -robust.

Solution Strategy

Given:

- a networked system N,
- max. pertb. count of internal channels, $\delta = (\delta_1, \dots, \delta_{|N|})$,
- max. permissible error in output channel, ε,
- distance metric *d* over Σ^{*}



• • • • • • • • • • • • •

Construct machine \mathcal{A} : \mathcal{N} is (δ, ϵ) -robust iff $\mathcal{L}(\mathcal{A})$ is empty.

Solution Strategy

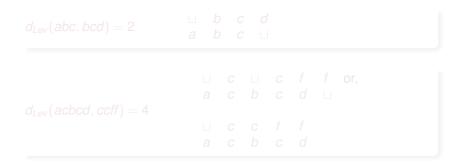
Construct machine \mathcal{A} : \mathcal{N} is (δ, ϵ) -robust iff $\mathcal{L}(\mathcal{A})$ is empty.

• In a run of A on s, A simultaneously:

- simulates unperturbed, perturbed executions: $\rho(\mathbf{s}), \rho_{\tau}(\mathbf{s})$
- tracks channel perturbations along $\rho_{\tau}(\mathbf{s})$,
- tracks distance between outputs of \mathcal{N} along $\rho(\mathbf{s})$, $\rho_{\tau}(\mathbf{s})$.
- \mathcal{A} accepts s iff $\exists \rho_{\tau}(\mathbf{s}) \colon \| \rho_{\tau}(\mathbf{s}) \| \leq \delta$ and $d(\llbracket \mathcal{N} \rrbracket(\mathbf{s}), \llbracket \rho_{\tau} \rrbracket(\mathbf{s})) > \epsilon$.

Review: Levenshtein Distance, $d_{Lev}(s, t)$

Minimum number of symbol *insertions*, *deletions* and *substitutions* required to transform s into t.



Review: Levenshtein Distance, $d_{Lev}(s, t)$

Minimum number of symbol *insertions*, *deletions* and *substitutions* required to transform s into t.

$d_{Lev}(abc, bcd) = 2$	⊔ k a k				J

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

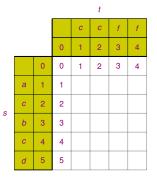
Review: Levenshtein Distance, $d_{Lev}(s, t)$

Minimum number of symbol *insertions*, *deletions* and *substitutions* required to transform s into t.

$d_{Lev}(abc, bcd) = 2$	$= 2 \qquad \begin{array}{cccc} \Box & b & c & d \\ a & b & c & \Box \end{array}$							」	
d (actual coff) 1			⊔ b				or,		
$d_{Lev}(acbcd, ccff) = 4$			c b						

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Review: Levenshtein Distance Computation



 $d_{Lev}(s[0], t[0]) = 0$ $d_{Lev}(s[0, i], t[0]) = i$ $d_{Lev}(s[0], t[0, j]) = j$

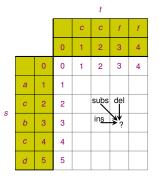
Roopsha Samanta

Robustness Analysis of Networked Systems

11/25

э

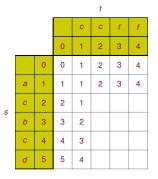
Review: Levenshtein Distance Computation



 $\begin{aligned} &d_{Lev}(s[0,i], t[0,j]) = \\ &\min(d_{Lev}(s[0,i-1],t[0,j-1]) + \Delta(s[i],t[j]), \\ &d_{Lev}(s[0,i-1],t[0,j]) + 1, \\ &d_{Lev}(s[0,i],t[0,j-1]) + 1 \\ &) \\ &\Delta(a,b) \text{ equals 0 if } a = b, \text{ else 1.} \end{aligned}$

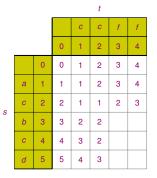
(a) < (a) < (b) < (b)

Review: Levenshtein Distance Computation



 $\begin{aligned} &d_{Lev}(s[0,i], t[0,j]) = \\ &\min(d_{Lev}(s[0,i-1],t[0,j-1]) + \Delta(s[i],t[j]), \\ &d_{Lev}(s[0,i-1],t[0,j]) + 1, \\ &d_{Lev}(s[0,i],t[0,j-1]) + 1 \\ &) \\ &\Delta(a,b) \text{ equals 0 if } a = b, \text{ else 1.} \end{aligned}$

Review: Levenshtein Distance Computation

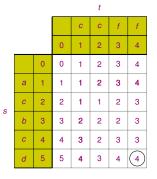


 $\begin{aligned} &d_{Lev}(s[0,i], t[0,j]) = \\ &\min(d_{Lev}(s[0,i-1],t[0,j-1]) + \Delta(s[i],t[j]), \\ &d_{Lev}(s[0,i-1],t[0,j]) + 1, \\ &d_{Lev}(s[0,i],t[0,j-1]) + 1 \\ &) \\ &\Delta(a,b) \text{ equals 0 if } a = b, \text{ else 1.} \end{aligned}$

く 同 ト く ヨ ト く ヨ ト

э

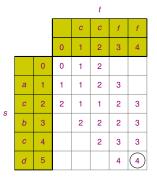
Review: Levenshtein Distance Computation



 $\begin{aligned} &d_{Lev}(s[0,i], t[0,j]) = \\ &\min(d_{Lev}(s[0,i-1],t[0,j-1]) + \Delta(s[i],t[j]), \\ &d_{Lev}(s[0,i-1],t[0,j]) + 1, \\ &d_{Lev}(s[0,i],t[0,j-1]) + 1 \\ &) \\ &\Delta(a,b) \text{ equals 0 if } a = b, \text{ else 1.} \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Review: Levenshtein Distance Computation



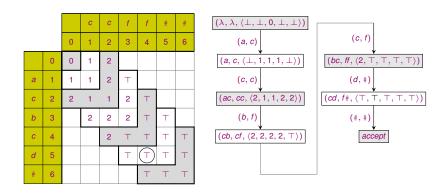
 $\epsilon = 2$

To check if $d_{Lev}(s, t) > \epsilon$, focus on ϵ -diagonal.

Construct DFA $\mathcal{D}_{Lev}^{\epsilon}$: runs on a string pair (s, t), and accepts iff $d_{Lev}(s, t) > \epsilon$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Distance-Tracking Automaton, $\mathcal{D}_{Lev}^{\epsilon}$



 $\epsilon = \mathbf{2}$

æ

(日)

Distance-Tracking Automaton, $\mathcal{D}_{Lev}^{\epsilon}$

 $\mathcal{D}_{Lev}^{\epsilon}$ accepts a pair of strings (s, t) iff $d_{Lev}(s, t) > \epsilon$.

h-counter machine \mathcal{A} : finite automaton with *h* integer counters

In each step, *A* may

- read an input symbol,
- test counter values
- change state
- update each counter by some constant
- Transition: $(x, \sigma, test, x', c_1, \ldots, c_h)$
- s is accepted by \mathcal{A} iff $(x_0, s_0, 0, \dots 0) \rightarrow^{\star}_{\mathcal{A}} (acc, s_j, z_1, \dots, z_h)$

Most interesting questions are undecidable

h-counter machine \mathcal{A} : finite automaton with *h* integer counters

- In each step, *A* may
 - read an input symbol,
 - test counter values
 - change state
 - update each counter by some constant

• Transition: $(x, \sigma, test, x', c_1, \ldots, c_h)$

• s is accepted by \mathscr{A} iff $(x_0, s_0, 0, \dots 0) \rightarrow^{\star}_{\mathscr{A}} (acc, s_j, z_1, \dots, z_h)$

Most interesting questions are undecidable.

h-counter machine \mathcal{A} : finite automaton with *h* integer counters

- In each step, *A* may
 - read an input symbol,
 - test counter values
 - change state
 - update each counter by some constant
- Transition: $(x, \sigma, test, x', c_1, \ldots, c_h)$
- *s* is accepted by \mathcal{A} iff $(x_0, s_0, 0, \dots, 0) \rightarrow^{\star}_{\mathcal{A}} (acc, s_j, z_1, \dots, z_h)$

Most interesting questions are undecidable

h-counter machine \mathcal{A} : finite automaton with *h* integer counters

- In each step, *A* may
 - read an input symbol,
 - test counter values
 - change state
 - update each counter by some constant
- Transition: $(x, \sigma, test, x', c_1, \ldots, c_h)$
- *s* is accepted by \mathcal{A} iff $(x_0, s_0, 0, \dots, 0) \rightarrow^{\star}_{\mathcal{A}} (acc, s_j, z_1, \dots, z_h)$

Most interesting questions are undecidable.

Review: Reversal-bounded Counter Machines (One-way, Nondeterministic)

r-reversal bounded, *h*-counter machine: each counter alternates between an increasing mode and a decreasing mode at most r times.

[Gurarilbarra1981] Nonemptiness for a *r*-reversal bounded, *h*-counter machine \mathcal{A} is solvable in time polynomial in the size of \mathcal{A} .

Review: Reversal-bounded Counter Machines (One-way, Nondeterministic)

r-reversal bounded, *h*-counter machine: each counter alternates between an increasing mode and a decreasing mode at most r times.

[Gurarilbarra1981] Nonemptiness for a *r*-reversal bounded, *h*-counter machine \mathcal{A} is solvable in time polynomial in the size of \mathcal{A} .

< ロ > < 同 > < 回 > < 回 > < 回 >

Robustness Analysis for Levenshtein distance

Construct machine
$$\mathcal{A}_{Lev}^{\delta \epsilon} \mathcal{A}$$
: \mathcal{N} is (δ, ϵ) -robust iff $\mathcal{L}(\mathcal{A})$ is empty.

- In a run of \mathcal{A} on **s**, \mathcal{A} simultaneously:
 - simulates unperturbed, perturbed executions: $\rho(\mathbf{s})$, $\rho_{\tau}(\mathbf{s})$
 - tracks channel perturbations along $\rho_{\tau}(\mathbf{s})$,
 - tracks distance between outputs of \mathcal{N} along $\rho(\mathbf{s})$, $\rho_{\tau}(\mathbf{s})$.
- \mathcal{A} accepts s iff $\exists \rho_{\tau}(s) \colon \|\rho_{\tau}(s)\| \leq \delta$ and $d(\llbracket \mathcal{N} \rrbracket(s), \llbracket \rho_{\tau} \rrbracket(s)) > \epsilon$.

A (10) + A (10) +

A: 1-reversal-bounded |N|-counter machine

- A state x: $(q, r, q_{Lev}), q, r \in Q, q_{Lev} \in Q_{Lev}$
- Initial state: (q₀, q₀, q₀, q₀ Lev)
- Set of counters $Z = \{z_1, \ldots, z_{|N|}\}$, initially 0
- Final state: {acc}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A: Initialization transition

Initialize counters with perturbation bounds:

$$\left((\mathbf{q}_0,\mathbf{q}_0,\mathbf{q}_{0\,Lev}), \ \varepsilon, \ \bigwedge_k z_k = 0, \ (\mathbf{q}_0,\mathbf{q}_0,\mathbf{q}_{0\,Lev}), \ (+\delta_1,\ldots,+\delta_{|\mathbf{N}|})\right)$$

æ

Я: Unperturbed network transitions

Simulate pair of unperturbed N-transitions, track output distance:

$$\left((\mathbf{q},\mathbf{r},\mathbf{q}_{\textit{Lev}}), \ \mathbf{a}, \ \bigwedge_k z_k \geq 0, \ (\mathbf{q}',\mathbf{r}',\mathbf{q}'_{\textit{Lev}}), \ \mathbf{0}
ight)$$

A: Perturbed network transitions

Simulate τ -transition, decrement counters of perturbed channels by 1:

$$\left((\mathbf{q}, \mathbf{r}, \mathbf{q}_{Lev}), \ \ arepsilon, \ \ \bigwedge_k Z_k \geq 0, \ \ (\mathbf{q}, \mathbf{r}_{ au}, \mathbf{q}_{Lev}), \ \ \mathbf{c}
ight)$$

A: Rejecting transitions

Reject if any internal channel perturbation exceeds bound:

$$\left((\mathbf{q},\mathbf{r},\mathbf{q}_{Lev}), \ \varepsilon, \ \bigvee_{k} z_{k} < 0, \ \mathbf{rej}, \ \mathbf{0}\right)$$

(rej, a, true, rej, 0)

A: Accepting transitions

Accept witness to non-robustness:

$$\left((\mathbf{q},\mathbf{r},\textit{acc}_{\textit{Lev}}), \hspace{0.1 cm} arepsilon, \hspace{0.1 cm} \bigwedge_{k} z_{k} \geq 0, \hspace{0.1 cm} \mathbf{acc}, \hspace{0.1 cm} \mathbf{0}
ight)$$

æ

Main Result(s)

Checking if \mathcal{N} is (δ, ϵ) -robust w.r.t the Levenshtein distance is polynomial in the size of \mathcal{N} and exponential in ϵ .

Checking if N is (δ, ϵ) -robust w.r.t the L_1 -norm is polynomial in the size of N.

Main Result(s)

Checking if \mathcal{N} is (δ, ϵ) -robust w.r.t the Levenshtein distance is polynomial in the size of \mathcal{N} and exponential in ϵ .

Checking if \mathcal{N} is (δ, ϵ) -robust w.r.t the L_1 -norm is polynomial in the size of \mathcal{N} .

Related Work

- Sequential programs with perturbed inputs [MS09, CGLN11]
- Input-output stability of finite-state transducers [TBCSM12]
- Sequential circuits, common suffix distance metric [DHLN10]
- Robust control, wireless control networks [ADJPW11, Pappas11]
- Reactive systems with ω -regular spec. in uncertain environment [MRT11, CHR10, BGHJ09]

Future Work

- Consider more distance-metrics
- Generalize error model input noise, process failures etc.
- Synthesis of robust networked systems

Thank you.

Roopsha Samanta

Robustness Analysis of Networked Systems

æ

ヘロン 人間 とくほどう ほどう