Abstract
We present a method and a tool for generating succinct representations of sets of concurrent traces. We focus on trace sets that contain all correct or all incorrect permutations of events from a given trace. We represent trace sets as HB-formulas that are Boolean combinations of happens-before constraints between events. To generate a representation of incorrect interleavings, our method iteratively explores interleavings that violate the specification and gathers generalizations of the discovered interleavings into an HB-formula; its complement yields a representation of correct interleavings.

We claim that our trace set representations can drive diverse verification, fault localization, repair, and synthesis techniques for concurrent programs. We demonstrate this by using our tool in three case studies involving synchronization synthesis, bug summarization, and abstraction refinement based verification. In each case study, our initial experimental results have been promising.

In the first case study, we present an algorithm for inferring missing synchronization from an HB-formula representing correct interleavings of a given trace. The algorithm applies rules to rewrite specific patterns in the HB-formula into locks, barriers, and wait-notify constructs. In the second case study, we use an HB-formula representing incorrect interleavings for bug summarization. While the HB-formula itself is a concise counterexample summary, we present additional inference rules to help identify specific concurrency bugs such as data races, define-use order violations, and two-stage access bugs. In the final case study, we present a novel predicate learning procedure that uses HB-formulas representing abstract counterexamples to accelerate counterexample-guided abstraction refinement (CEGAR). In each iteration of the CEGAR loop, the procedure refines the abstraction to eliminate multiple spurious abstract counterexamples drawn from the HB-formula.

Categories and Subject Descriptors D [2]: 4—Formal methods

Keywords Trace Generalization; Concurrent Programs; Synchronization Synthesis; Bug Summarization; CEGAR

1. Introduction
Sets of concurrent traces containing permutations of events from a given concurrent program are useful for predictive analysis (e.g., [24, 34, 35, 41]) and synchronization synthesis (e.g., [8, 9]) of shared-memory concurrent programs. Most approaches using such trace sets are restricted to specific aspects of reasoning about concurrent programs such as data race detection [24, 34], detection of safety violations [35, 41] and fixing assertion failures [8, 9]. Moreover, the representations of trace sets and exploration strategies used in some of these approaches [8, 9, 35] underapproximate the target trace sets. In this paper, we present a succinct, complete representation of such concurrent trace sets, which can drive diverse verification, fault localization, repair, and synthesis techniques for concurrent programs. The representation is complete in the sense that it encodes every trace in the trace set of interest.

Concurrent trace sets. First, we fix some terminology. An execution π of a concurrent program P is an alternating sequence of variable valuations and events corresponding to a feasible interleaving of instructions from the threads of P. An execution is good if it satisfies a given specification, and bad otherwise. A trace is a sequence of events corresponding to an interleaving of instructions from the threads of P. The trace of an execution π is the sequence of events within π. The language L(τ) of a trace τ is the set of all executions with trace τ. A trace τ is feasible if L(τ) is non-empty, and infeasible otherwise. A feasible trace τ is good if all executions in L(τ) are good, and bad otherwise.

We group traces into neighbourhoods. The neighbourhood Nτ of a trace τ contains all permutations of τ that preserve τ’s intra-thread event order. The good neighbourhood Nτ of a trace τ is the set containing all the good traces in Nτ. The bad neighbourhood Nbτ of a trace τ is a set containing all the bad traces in Nτ. The languages L(Nτ), L(Nbτ) and L(Nbτ) are the unions of the languages of all traces in Nτ, Nbτ and Nbτ, respectively.

Representation of concurrent trace sets. There are multiple ways to represent trace sets. Some representations may be more expressive or useful for reasoning about concurrent programs than others. A candidate representation that has been used for certain trace sets is a partial order over events [8, 9, 41]. The neighbourhood of a trace, as defined above, can also be represented as a partial order. However, the good neighbourhood or the bad neighbourhood of a trace is, in general, not a partial order. For instance, for the...
Figure 1 Online banking: This trace is drawn from a program consisting of three threads, one for withdrawing money, one for depositing money, and one for checking consistency of the bank account after completion of a withdrawal and a deposit.\footnote{In all the examples in this paper, we represent traces using typed global variable declarations initializations, followed by each thread's typed local variable declarations and instructions. Note that this representation depicts a trace and not a program.}

| globalvars: int x, withdrawal, deposit, balance, deposited, withdrawn; |
| init: x = balance; deposited = 0; withdrawn = 0; withdrawal > 0; deposit > 0; |
| thread_withdraw: |
| localvars: int temp; |
| T_0[1]: temp := balance; |
| T_0[2]: balance := temp - withdrawal; |
| T_0[3]: withdrawn := 1; |
| thread_deposit: |
| localvars: int temp; |
| T_0[1]: temp := balance; |
| T_0[2]: balance := temp + deposit; |
| T_0[3]: deposited := 1; |
| thread_checkresult: |
| T_0[1]: assume (deposited = 1 and withdrawn = 1); |
| T_0[2]: assert (balance = x + deposit - withdrawal); |

Exact representation of \(N^g\):

\[
\text{hb}(T_0[1], T_0[2]) \land \text{hb}(T_0[1] \lor T_0[2]) \land \text{hb}(T_0[1]) \land \text{hb}(T_0[3], T_0[1])
\]

Exact representation of \(N^g\):

\[
(bh(T_0[2], T_0[1]) \lor bh(T_0[2], T_0[1])) \land bh(T_0[3], T_0[1]) \land bh(T_0[2], T_0[1])
\]

Representation of sound overapproximation of \(N^p\):

\[
bh(T_0[2], T_0[1]) \lor bh(T_0[2], T_0[1])
\]

Representation of sound overapproximation of \(N^p\):

\[
bh(T_0[2], T_0[1]) \lor bh(T_0[2], T_0[1])
\]

In the examples in this paper, we represent traces using typed global variable declarations initializations, followed by each thread’s typed local variable declarations and instructions. Note that this representation depicts a trace and not a program.

trace \(\tau\) in Fig. 1, \(N^g\) is not a partial order, but is a disjunction (i.e., union) of partial orders. In our work, we represent trace sets as HB-formulas. An HB-formula is a Boolean combination of happens-before causality constraints between events. HB-formulas can represent arbitrary finite sets of finite traces, and in particular, good and bad neighbourhoods (see Fig. 1). As we will see later, HB-formulas are not only expressive, but also versatile enough to be usable for diverse objectives.

Given a trace \(\tau\) and a correctness specification, we present a method to generate an HB-formula \(\phi_{\text{HB}}\) representing the bad neighbourhood of \(\tau\). To generate \(\phi_{\text{HB}}\), we first encode all the bad executions in \(\mathcal{L}(N^g)\) in a quantifier-free first-order formula \(\Phi\) such that an execution \(\tau\) is a model of \(\Phi\) if \(\tau\) is a bad execution in \(\mathcal{L}(N^g)\). We then incrementally construct \(\phi_{\text{HB}}\). Initially, \(\phi_{\text{HB}}\) is set to false. In each step: (1) we invoke an SMT solver to obtain a model for \(\Phi\) that does not belong to the language of the subset of \(N^g\) represented by the current \(\phi_{\text{HB}}\), (2) generalize the trace of the model into an HB-formula \(\phi\), and (3) update \(\phi_{\text{HB}}\) by adding \(\phi\) as a disjunct. We iterate until there is no new model of \(\Phi\). The trace generalization used in each iteration has the following properties: (a) the model obtained in the iteration satisfies \(\phi\), and (b) any trace in \(N^g\) that satisfies \(\phi\) is bad. The final HB-formula obtained is an exact representation of \(N^g\).

While an exact representation is a worthy goal, the corresponding \(\phi_{\text{HB}}\) may not be succinct. To gain succinctness and utility, we trade in exactness. In particular, we permit the inclusion of infeasible traces to obtain a succinct HB-formula representing a sound overapproximation of \(N^g\). The overapproximation of \(N^g\) is sound in the sense that it is guaranteed to not include any good traces. To generate such a succinct HB-formula, we enhance the above procedure. We use data-flow analysis and minimal unsatisfiability core (unsat core) computation for generalizing the trace of the model into an HB-formula \(\phi\) in step (2) of each iteration. This new trace generalization step has the following properties: (a) the model obtained in the iteration satisfies \(\phi\), and (b) any trace in \(N^g\) satisfying \(\phi\) is either bad or infeasible.

Complementing \(\phi_{\text{HB}}\), the succinct representation of a sound overapproximation of \(N^g\) yields \(\phi^{\text{HG}}\), a succinct representation of a sound overapproximation of \(N^g\). Note that complementing the exact representation of \(N^g\) does not yield an exact representation of \(N^g\). In fact, our existing methodology cannot produce an exact representation of \(N^g\). Fig. 1 shows the exact representation of \(N^g\) and the representations for sound overapproximations of \(N^p\) and \(N^g\) obtained by our method for the example trace shown.

We implemented the above procedure as a tool TARA and used it to generate (succinct) representations of trace sets of programs drawn from the software verification competition (SV-Comp) [3] and the regression suites of ESBMC [31] and CONREPAIR [9].

We demonstrate the applicability of our representations of good and bad neighbourhoods to a trace to three case studies involving synchronization synthesis, bug summarization and verification based on counterexample-guided abstraction refinement (CEGAR).

Case Study: Synchronization synthesis. Shared-memory concurrent programs are excellent targets for automated program completion, in particular, for synthesis of missing synchronization [8, 9, 13, 30, 39]. We present a novel algorithm that uses \(\phi_{\text{HG}}\) to synthesize synchronization for eliminating the bad neighbourhood of \(\tau\). The algorithm proceeds by applying rewrite rules to derive synchronization primitives such as mutex locks, barriers, shared exclusive locks and wait-notify statements from easily-identifiable patterns in \(\phi_{\text{HG}}\). For example, a missing mutex lock in the example in Fig. 1 that ensures the instructions at \(T_0[1]\) and \(T_0[2]\) in thread_withdraw do not interfere with the instructions \(T_0[1]\) and \(T_0[2]\) in thread_deposit is identified by the pattern \(bh(T_0[1], T_0[2]) \lor bh(T_0[1], T_0[2])\) in \(\phi_{\text{HG}}\). We emphasize that most other synchronization synthesis techniques generate atomic sections rather than locks, wait-notify statements etc. Atomic sections are not directly implementable. Moreover, our synchronization primitives can potentially permit more correct concurrent behaviours than atomic sections. We have implemented this algorithm as an extension of our tool TARA and used it to successfully synthesize synchronization for our benchmarks.

Case Study: Bug summarization. Error detection tools based on model checking and static analyses typically provide counterexample traces to help with program debugging. However, these traces can be long and encumbered with unnecessary data, providing little insight about the actual bug. In our second case study, we use \(\phi_{\text{HB}}\), the representation for a sound overapproximation of a trace’s bad neighbourhood, for counterexample and bug summarization. The HB-formula \(\phi_{\text{HB}}\) encodes relevant ordering information about all counterexamples in the neighbourhood of \(\tau\) and can be viewed as a stand-alone counterexample summary. While this can already be useful feedback for a human debugger, we present a set of rules to infer specific bugs such as data races, atomicity violations, two-stage access bugs and define-use order violations. These rules work by identifying particular patterns in \(\phi_{\text{HB}}\) and combining them with some lightweight data-flow information. We have extended TARA for bug summarization and evaluated it on our benchmarks.

Case Study: Accelerating CEGAR. We also recognize an application of our representation of bad neighbourhoods of abstract counterexamples in accelerating CEGAR for concurrent programs. CEGAR often takes many iterations to find the right predicates for
proving correctness of a program. The choice of refinement procedure usually determines the number of iterations necessary. Many heuristics have been proposed to find relevant predicates quickly, e.g., [4]. This problem is compounded in concurrent program verification, where the existence of a large number of interleavings can delay the discovery of interesting spurious counterexamples that lead to relevant predicates. We present a new predicate learning procedure that uses the HB-formula \(\varphi_B \) representing the bad neighbourhood of a spurious counterexample of an abstract concurrent program. In each iteration of the CEGAR loop, our procedure refines the abstraction to eliminate multiple spurious abstract counterexamples drawn from \(\varphi_B \), using a method similar to beautiful interpolants [1]. We have integrated our TARA-based refinement procedure within SATABs [12] and have been able to reduce the number of iterations needed to verify various example programs.

Highlights. We introduce a novel representation for concurrent trace sets based on HB-formulas (Sec. 2). HB-formulas have several useful properties. They can express arbitrary finite trace sets. They enable efficient computation and concise expression of unions over trace sets. This is exploited by our tool TARA to compute succinct representations of sound overapproximations of good and bad neighbourhoods of a trace. HB-formulas are an intuitively appealing representation for trace sets. They can reveal specific patterns of causality relations between events that can drive diverse verifications, fault localization, repair, and synthesis techniques for concurrent programs. We demonstrate the use of our tool in three applications — synchronization synthesis (Sec. 3), bug summarization (Sec. 4), and CEGAR acceleration (Sec. 5).

2. Trace Neighbourhoods and Representations

In this section, we formalize concurrent executions, traces and trace neighbourhoods. We also present algorithms and experimental results for computing good and bad neighbourhoods. The case studies in Sections 3, 4, and 5 are based on the techniques presented here.

2.1 Concurrent Programs and Traces

We consider shared-memory concurrent programs composed of a fixed number of sequential threads. In further discussion, we fix a concurrent program \(P = (V, \{ T_1, \ldots, T_k \}, SV, \{ LV_1, \ldots, LV_n \}) \) where \(\{ T_1, \ldots, T_k \} \) is a set of threads, \(SV \) is a set of shared variables, each \(LV_i \) is the set of local variables of thread \(T_i \), and \(V = SV \cup \bigcup_i LV_i \) is the set of all variables. Let \(LV_i \) denote the set of variables that can be read from and written by thread \(T_i \). As the main objects of study in this paper are traces, we keep the exposition simple by not specifying syntactic and control flow details of threads at this stage. In this paper, we assume that variables range over integers and program instructions perform standard linear arithmetic operations. However, our techniques apply to a much wider variety of variable domains and operations.

Concurrent executions. A concurrent execution \(\pi = \Gamma_0 e_1 \Gamma_1 \cdots \Gamma_{n-1} e_n \Gamma_n \) is an alternating sequence of valuations \(\Gamma_i \) of variables \(V \) and events \(e_i \) corresponding to some interleaving of instructions from the threads in \(P \) — for each \(i \), execution of \(e_i \) from valuation \(\Gamma_{i-1} \) leads to valuation \(\Gamma_i \). Each event \(e \) is a labelled statement of the form \(T[\ell] : \text{stmt} \), where \(T \) is a thread identifier, \(\ell \) is a location identifier\(^\star\), and \(\text{stmt} \) is an atomic instruction. We write \(pid(e) \) for the thread identifier \(T \). Without loss of generality, we assume that the location identifiers of events from each thread are sequential natural numbers, i.e., the first event from a thread gets location identifier 1, the next gets 2, and so on. Further, we abuse notation by often writing \(T[\ell] \) instead of the event with label \(T[\ell] \). We represent the sequence of events from thread \(T \) with location identifiers between \(\ell \) and \(\ell' \) (inclusive) by \(T[\ell : \ell'] \). We also use the symbol \(L \) to denote location identifier ranges such as \(\ell : \ell' \).

We use two different formalisms to express atomic instructions.

- **Guarded actions.** Here, an instruction from thread \(T_i \) is either a guarded action \(\text{assume}(G) \rightarrow \text{assert}(G) \) or an assertion \(\text{assert}(G) \), where \(G \) is a Boolean expression over \(V_i \) and \(\text{assign} \) is a parallel assignment \(\text{assign}(v_1, \ldots, v_k) \) of expressions over \(V \) to variables in \(V_i \).

- **Transition predicates.** Here, an instruction from thread \(T_i \) is a predicate over variables from \(V_i \) where \(V' \) contains primed versions of variables in \(V \). Intuitively, variables from \(V_i \) and \(V' \) represent the values of program variables before and after the execution of the instruction, respectively. For example, the assignment \(x := x + y \) is represented as \(x' = x + y \). The advantage of this formalism is that it can express non-deterministic statements which we need to model abstract programs in Sec. 5.

Assertions are represented as before, i.e., as \(\text{assert}(G) \), where \(G \) is a Boolean expression over \(V_i \).

An execution \(\pi = \Gamma_0 e_1 \Gamma_1 \cdots e_n \Gamma_n \) is good if for each assertion \(e_i = T[\ell] : \text{assert}(G) \), the Boolean expression \(G \) evaluates to true under valuation \(\Gamma_{i-1} \); the execution is bad otherwise.

Concurrent traces. A concurrent trace \(\tau = e_1 \cdots e_n \) is a sequence of events that corresponds to some interleaving of instructions from threads in \(P \). The language \(L(\tau) \) of a trace \(\tau = e_1 \cdots e_n \) is the set of all executions \(\Gamma_0 e_1 \Gamma_1 \cdots e_n \Gamma_n+1 \) where \(e_i = e'_i \) for \(i \in [1, n] \). For a set of traces \(N \), we abuse notation and write \(L(N) \) instead of \(\bigcup_{\tau \in N} L(\tau) \). We denote by \(\text{events}(\tau) \) the set \(\{ e_1, \ldots, e_n \} \) of events in \(\tau \). For any two events \(e_i, e_j \) in \(\text{events}(\tau) \), we say \(e_i < e_j \) if \(e_i \) occurs before \(e_j \) in \(\tau \).

A trace \(\tau \) is feasible if its language has at least one execution (i.e., \(L(\tau) \neq \emptyset \)), and is infeasible otherwise. A feasible trace \(\tau \) is good if all executions in \(L(\tau) \) are good, and is bad otherwise.

2.2 Representing Trace Neighbourhoods

We reason about traces that differ only in the scheduling choices using trace neighbourhoods. The neighbourhood \(N_\pi \) of a trace \(\pi \) is a set of traces \(N_\pi = \{ \sigma | \text{events}(\sigma) = \text{events}(\pi) \land e_i, e_j \in \text{events}(\sigma) \Rightarrow e_i < e_j \} \). Intuitively, \(N_\pi \) contains all traces having the same events as \(\pi \) and having the same order of events within each thread. A trace in \(N_\pi \) may be infeasible, good, or bad. We denote the subsets of good and bad traces in \(N_\pi \) by \(N_\pi^g \) and \(N_\pi^b \), respectively. We call \(N_\pi^g \) and \(N_\pi^b \) the bad and good neighbourhoods of \(\tau \).

Note that \(N_\pi \) corresponds to a partial order \((\text{events}(\tau), \subseteq) \), with \(e_i \subseteq e_j \) if \(e_i < e_j \) and \(\text{pid}(e_i) = \text{pid}(e_j) \). However, \(N_\pi^g \) and \(N_\pi^b \) do not, in general, correspond to a partial order (cf. the exact representation of \(N_\pi^b \) in Fig. 1).

Representing subsets of trace neighbourhoods. We represent subsets of trace neighbourhoods using happens-before formulas, or, HB-formulas. An HB-formula \(\varphi \) for a trace \(\tau \) is either a: (a) basic constraint of the form \(\text{hb}(e_i, e_j) \) where \(e_i, e_j \in \text{events}(\tau) \); or (b) a Boolean combination of HB-formulas, i.e., one of \(\varphi_1 \land \varphi_2 \), \(\varphi_1 \lor \varphi_2 \), or \(\neg \varphi_1 \) where \(\varphi_1 \) and \(\varphi_2 \) are HB-formulas.

The semantics \([\varphi] \) of an HB-formula \(\varphi \) for a trace \(\tau \) is subset of \(N_\tau \), defined as follows: (a) for a basic constraint \(\text{hb}(e_i, e_j) \), we have that \([\text{hb}(e_i, e_j)] = \{ \sigma \in N_\tau | e_i < e_j \} \); and (b) for Boolean combinations, we have that \([\varphi_1 \land \varphi_2] = [\varphi_1] \cap [\varphi_2] \), \([\varphi_1 \lor \varphi_2] = [\varphi_1] \cap [\varphi_2] \), and \([\neg \varphi_1] = N_\tau \setminus [\varphi_1] \), respectively.

Remark 2.1. Our HB-formulas only represent constraints on scheduling. One could define more expressive constraints which include constraints not just on scheduling, but also on variable valuations in individual executions. However, our hypothesis is that happens-before constraints on scheduling are sufficient to express many interesting properties of traces and executions. This is also

\(^\star\)We assume that all location identifiers from one thread are unique. Thus, multiple occurrences of the same instruction (for example, in the body of a loop) are relabelled with unique identifiers.
supported by empirical data that shows that most concurrency bugs are due to bad ordering of instructions in a trace rather than the interaction between schedules and variable valuations [29].

2.3 Computing Good and Bad Neighbourhoods

In this section, we present an algorithm for computing an exact representation for the bad neighbourhood of a trace. However, as this representation may be unwieldy and complex, we further provide an algorithm to produce sound overapproximations of N^φ_hb and N^φ_gbd, i.e., to find succinct HB-formulas φ_B and φ_B such that $N^\varphi_\text{hb} \subseteq [\varphi_B]$, $N^\varphi_\text{gbd} \subseteq [\varphi_B]$, and $[\varphi_B] \cap N^\varphi_\text{gbd} = \emptyset$.

Encoding bad executions. Given a trace τ, our algorithm is based on constructing a quantifier free first-order formula that represents all bad executions in $L(N_\tau)$. We use the concurrent trace program encoding [41] which is based on a concurrent single static assignment (CSSA) form of traces. We recall the encoding below to make the presentation self-contained. We present the encoding for the case where instructions are expressed as guarded actions; the case where instructions are expressed as transition predicates is similar.

Given a trace τ, we first rewrite it into the CSSA form.

- For each variable v, we introduce a unique name $v_{w,e}$ for each event e that may change the value of v (here, w stands for “write”). Further, for each variable v, we introduce a unique name \overline{v}_i, to represent the value of v_i at the start of an execution.

- For each event e that reads a variable v, we replace e as follows:
 - If v is a local variable, we replace e by $v_{w,e'}$ where e' is the most recent event from the thread that writes to v; and
 - If v is a shared variable, we replace e by $v_{r,e'}$, where e' stands for “read”) and we store an additional constraint, where $v_{r,e} = \pi(u_1, v_{w,e_1}, \ldots, v_{w,e_j})$ where $v_{w,e}$ ranges over all events from other threads that write to v and the most recent event from the same thread that writes to v.

The π-functions above are analogous to the φ-functions used to express joins in sequential single static assignment encodings, i.e., $v_{r,e} = \pi(e_1, v_{w,e_1}, \ldots, v_{w,e_j})$ expresses that e reads either the initial value of v_i or the value written by one of e_1, \ldots, e_j.

- Further, for each event e, we define the condition that e is feasibly reached. If e is the first event in the thread, we set $\text{cond}(e) = \text{true}$. Otherwise, $\text{cond}(e)$ depends on the previous event from the same thread in τ (say e'). If e' is an assertion, we let $\text{cond}(e) = \text{cond}(e')$. Otherwise, e' is a guarded action

\text{assume}(G) \rightarrow \text{assign}$, and we let $\text{cond}(e) = \text{cond}(e') \land G$.

Example 2.2. In the running example from Fig. 1, the statement

\begin{align*}
\tau_1[1]: & \text{ temp := balance; would be encoded as } \text{temp}_{w,e_1[t]} = \text{balance}_{r,e_1[t]} \land \text{balance}_{r,e_1[t]} = \pi(\text{balance}, \text{balance}_{r,t_1[2]}).
\end{align*}

Given a trace τ rewritten in the CSSA form, the following constraints encode executions in the neighbourhood N_τ^φ of τ.

- **Thread orders.** In any execution in the neighbourhood of τ, the order of events in each thread is the same as in the trace τ. We define $\Phi_{PO} = \bigwedge (hb(e_1, e_2) \land \text{pid}(e_1) = \text{pid}(e_2)) \land e_1 < e_2$.

- **Variable assignments.** This part of the encoding is a direct translation of the assignments in each event into constraints. We have $\Phi_{AVD} = \bigwedge \sum_{e \in E} \text{expr}_e$, where expr_e ranges over all events of the form $T^\ell : \text{stnt}$ with stnt being

\begin{align*}
\text{assume}(G) \rightarrow v_1^\ell, \ldots, v_n^\ell = \text{expr}_1, \ldots, \text{expr}_m.
\end{align*}

- **π-conditions.** Each π-constraint chooses a value for a read of a shared variable from possible writes. Formally, each condition $v_{r,e} = \pi(v_1, v_{w,e_1}, \ldots, v_{w,e_j})$ is rewritten as $v_{r,e} = v_i \land \bigvee_{\varphi'_{\text{hb}}} (hb(e_1, e_2) \land \text{cond}(e) \land \varphi'_{\text{hb}} \land \bigwedge_{\varphi'_{\text{gbd}}} (hb(e_1, e_2) \lor \text{cond}(e) \land \text{cond}(e)))$. Intuitively, the above formula states that:
 - The value of v read by e is either the initial value of v_i or written by one of e_1, \ldots, e_j;
 - If the value is the initial value, all e_i happen after e; and
 - If the value is written by e_i, then e_i is feasibly reached and all con-

Overapproximating bad neighbourhoods. While Algo. 1 computes an exact representation of N^φ_hb, it is inefficient in practice. Hence, we forgo the goal of an exact representation. Instead, we compute a sound overapproximation of N^φ_hb, which may include infeasible traces, but not good traces. Given trace τ, Algo. 2 computes sound overapproximations of N^φ_hb and N^φ_gbd. Algo. 2 performs several optimizations with respect to Algo. 1 to accumulate weaker constraints from each model of Φ_{CTP}, i.e., Algo. 2 attempts to accumulate larger subsets of N_τ^φ into $\forall \varphi_B$ in each iteration.

- **Data-flow analysis.** From the model $\forall \varphi_{CTP}(\tau)$, the data-flow analysis retains those happens-before constraints (φ'_{hb}) that are necessary to preserve the data-flow into the failing assertion in the corresponding execution. We use the function $DF_{\forall \varphi_B}(e)$ (line 5) to compute constraints that ensure e can be feasibly reached and can read the same variable values as in $\forall \varphi_B$. Given the execution corresponding to $\forall \varphi_B$, let $\text{reads}(e), \text{reads}\overline{G}(e)$, and $\text{srcEvent}(e, v)$ represent the variables read by e, the variables read by e in the guard (if e is not a guarded assignment, $\text{reads}\overline{G}(e) = \emptyset$), and the event that writes the value of v read by e. We have $DF_{\forall \varphi_B}(e) = DF_{\forall \varphi_B}(e) \cup DF_{\forall \varphi_B}^\ell(e)$ where:
we let $DF_1^V(e) = \bigcup_{e \in \text{reads}(e)} \{ ((v, srcEvent(v, e)), e) \} \\
\bigcup_{e' \in \text{event}(srcEvent(v, e)), e') \{ ((v, srcEvent(v, e'), e')) \}$; and
• $DF_2^V(e) = \bigcup_{e' \in E, e \in \text{reads}(e')} \{ ((v, srcEvent(v, e'), e')) \} \\
\bigcup_{e' \in \text{event}(srcEvent(v, e'), e')) \{ ((v, srcEvent(v, e'), e')) \}$ where event e' ranges over $E = \{ e' \mid \text{pid}(e') = \text{pid}(e') \wedge V \models hb(e', e') \}$. Intuitively, DF_1^V ensures that e can read the same values as in V and DF_2^V ensures that e is feasibly reached. We then get additional constraints ADF necessary to ensure conflicting writes do not affect the data-flow into the assertion (line 6).

• Unsatisfiable core computation. Next, we perform two rounds of generalization on $\varphi_{B'}$ through unsatisfiable core computation. In the first round, we construct a formula $\varphi_{B'} \land \text{Choices}(\mathcal{V}) \land \Phi_{\text{CTT}(\tau)}$ where $\text{Choices}(\mathcal{V})$ fixes the initial variable values to the ones from V (line 9). A satisfying assignment to this formula models executions where no failing assertion is feasibly reached. Therefore, if the formula is unsatisfiable, the happens-before constraints from the unsatisfiable core (line 11) ensure that all executions satisfying $\text{Choices}(\mathcal{V})$ are bad. Note that if all instructions are deterministic, the above formula is always unsatisfiable. In the second round (line 13), we follow a similar procedure, but with the formula $\varphi_{B'} \land \Phi_{\text{FEA}} \land \Phi_{\text{CTT}(\tau)}$. Here, a model is a good execution and hence, the constraints from the unsatisfiable core (line 13) ensure that any feasible execution is necessarily bad. Roughly, the first round allows us to generalize the HB-formula in the case of data-dependent bugs. The second round lets us generalize further in the case of data-independent bugs.

The sound overapproximation, φ_B, of N_B^p is obtained by complementing $\varphi_{B'}$ (line 15). Note that φ_B returned is in disjunctive normal form (DNF), while $\varphi_{B'}$ is in conjunctive normal form (CNF).

```
Algorithm 2 Computing sound overapproximations of the bad and good neighbourhoods of a trace

Require: Trace $\tau$
Ensure: HB-formulas $(\varphi_B, \varphi_C)$ such that $N_B^p \subseteq \llbracket \varphi_B \rrbracket, N_B^q \subseteq \llbracket \varphi_B \rrbracket \land \llbracket \varphi_C \rrbracket \land \llbracket \varphi_B \rrbracket = \emptyset$
1: $\Phi \leftarrow \Phi_{\text{CTT}(\tau)}; \varphi_{B'} \leftarrow \text{false}$
2: while $\Phi \land \neg \varphi_{B'}$ is satisfiable do
3: $\mathcal{V} \leftarrow$ satisfying assignment for $\Phi \land \neg \varphi_{B'}$
4: {Data-flow analysis}
5: $DF \leftarrow DF_{\mathcal{V}}(e^*)$ where $e^*$ is the failing assertion in $\mathcal{V}$
6: $ADF \leftarrow \bigcup_{(v, e, e_i) \in DF} \bigcup_{v_i \in \mathcal{V}} \{ (v, e, e_i) \mid \mathcal{V} \models hb(e_i, e_i) \}
\bigcup \{ (v, e, e_i) \mid \mathcal{V} \models hb(e_i, e_i) \}$
7: $\varphi_{B'} \leftarrow \bigcup_{(v, e, e_i) \in DF \cup ADF} \{ (v, e, e_i) \}$
8: {Unsat-core computation}
9: $\text{Choices}(\mathcal{V}) \leftarrow \bigcup_{v \in \mathcal{V}} = \llbracket \varphi_B \rrbracket$
10: if $\varphi_B \land \text{Choices}(\mathcal{V}) \land \Phi_{\text{CTT}(\tau)}$ is unsatisfiable then
11: $\varphi_B \leftarrow \text{MinUNSATCore}(\text{Soft} \leftarrow \varphi_{B'},$ $\text{Hard} \leftarrow \text{Choices}(\mathcal{V}) \land \Phi_{\text{CTT}(\tau)} )$
12: if $\varphi_B \land \Phi_{\text{FEA}} \land \Phi_{\text{CTT}(\tau)}$ is unsatisfiable then
13: $\varphi_B \leftarrow \text{MinUNSATCore}(\text{Soft} \leftarrow \varphi_{B'},$ $\text{Hard} \leftarrow \Phi_{\text{FEA}} \land \Phi_{\text{CTT}(\tau)} )$
14: $\varphi_B \leftarrow \neg \varphi_B \land \varphi_{B'}$
15: $\varphi_C \leftarrow \neg \varphi_{B'}; \text{return } (\varphi_B, \varphi_C)$
```

Theorem 2.4. For a trace τ, if Alg. 2 returns (φ_B, φ_C), then $N_B^p \subseteq \llbracket \varphi_B \rrbracket, N_B^q \subseteq \llbracket \varphi_C \rrbracket$, and $\llbracket \varphi_B \rrbracket \cap \llbracket \varphi_C \rrbracket = \llbracket \varphi_B \rrbracket \cap \llbracket \varphi_B \rrbracket = \emptyset$.

2.4 Implementation and Evaluation

We have implemented Algorithms 1 and 2 in a tool TARA (accessible at https://github.com/thorstent/TARA). TARA consists of 4000 lines of C++ code and uses Z3 [15] to discharge SMT queries. We use a new input format, CTRC, for specifying traces. The CTRC format consists of global and thread-local variables along with types and any initial valuations, and the instructions (in SMT-LIB format) in each thread. This makes TARA independent and easy to use with any front-end that can translate instructions to the SMT-LIB syntax. We use a modified version of CONREPAIR [9] to generate CTRC files for bad traces. CONREPAIR, in turn, uses CBMC [11] to find bad traces in programs and CPAchecker [5] to translate C statements into the SMT-LIB format.

TARA has a number of different output options. Alg. 1 generates an HB-formula in DNF, which is often large. Alg. 2 generates a succinct HB-formula in DNF, the sizes of whose disjuncts are locally minimized. In our experience, the unsat core provided by Z3 is often far from minimal. Hence, we first use Z3 to compute an unsat core and then use a custom minimization technique—we use Z3 incrementally with triggers to activate and deactivate expressions for unsat core minimization. TARA can also generate an HB-formula in CNF representing bad neighbourhoods. However, this is computationally more expensive.

Experiments. Our benchmarks are from a diverse set of sources, namely, the concurrency track of the 2014 software verification competition SV-COMP [3] (suite sv) and the regression-test suites of CONREPAIR [9] (suite cr) and ESBMC [31] (suite es). We also use a set of small hand-made examples with common bug patterns (suite hm). The cr suite contains simplified versions of real buggy code from the linux kernel. To test the limits of TARA, we use the loop-\pi examples that have two threads each executing a loop of \pi iterations. For correct behaviour, each iteration should execute atomically with respect to iterations of the other thread. However, the locks required to ensure this are missing.

We ran our experiments on a laptop with a 4-core Intel i5 CPU and 8GB of RAM running Linux. Our results are presented in Table 1. The time reported only includes the time taken by TARA, and not the time needed to find a bad trace in the benchmark program. The #Threads/#Instrs column in Table 1 indicates the complexity of the benchmarks in terms of the number of threads and instructions. The performance of SMT queries involving Φ_{CTT} is mostly influenced by the number and size of π-functions. The $\#\pi$-functions/#Disjuncts column indicates the number of π-functions and average number of arguments per π-function.

The performance of TARA using Algo. 1 and Algo. 2 are in columns marked Algo.1 and Algo.2, respectively. For each algorithm, we report the number of iterations, the total time taken and the size of the generated φ_B (as the number of disjuncts and the average number of terms in each disjunct). Algo. 1 times out after 10 minutes in many cases—in such cases, we report the number of loop iterations completed before the timeout. With Algo. 2, TARA terminates within 5 seconds for each benchmark. This time is negligible compared to the time taken to find the initial counterexample trace. For example, CBMC took 2 minutes to find the trace \texttt{usb-serial-1}, while our analysis completed exploration of its bad neighbourhood in 2 seconds. We tested the limits of our tool in the loop-\pi examples. With 32 iterations per thread, we exceeded the timeout and hit the limit of our current implementation.

3. Case Study: Synchronization Synthesis

In our first case study, we use the representation of a sound overapproximation of the good neighbourhood of a trace τ (returned as φ_C by Alg. 2) to synthesize synchronization that eliminates the bad neighbourhood of τ. Missing synchronization primitives such as locks, barriers, and wait-notify statements present themselves as easily identifiable HB-formula patterns in φ_C. Our procedure derives the required synchronization using rules that rewrite such patterns into the corresponding primitives.
Table 1: Experiments: \(\varphi_B \) generation

<table>
<thead>
<tr>
<th>Name</th>
<th>Suite</th>
<th>#Threads/#Instrs</th>
<th>#(\pi)-functions/#Disjuncts</th>
<th>Iterations</th>
<th>(\text{Total time})</th>
<th>Size of (\varphi_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorder_2</td>
<td>sv</td>
<td>2/3</td>
<td>2.0/2</td>
<td>1</td>
<td>18ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>define_use</td>
<td>cr</td>
<td>2/4</td>
<td>2.0/2</td>
<td>1</td>
<td>15ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>enm28xx</td>
<td>cr</td>
<td>2/8</td>
<td>4.2/0</td>
<td>1</td>
<td>16ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>locks</td>
<td>es</td>
<td>3/8</td>
<td>10/1.6</td>
<td>12</td>
<td>27ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>2stage</td>
<td>hm</td>
<td>2/8</td>
<td>5/1.4</td>
<td>8</td>
<td>26ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>dbdb_receiver</td>
<td>cr</td>
<td>2/9</td>
<td>5/1.6</td>
<td>40</td>
<td>42ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>md</td>
<td>cr</td>
<td>3/11</td>
<td>4/1.8</td>
<td>40</td>
<td>76ms</td>
<td>1.0/2</td>
</tr>
<tr>
<td>lazy01</td>
<td>sv</td>
<td>3/12</td>
<td>6/3.7</td>
<td>2</td>
<td>31ms</td>
<td>2.0/2</td>
</tr>
<tr>
<td>locks_hb</td>
<td>hm</td>
<td>4/13</td>
<td>10/2.2</td>
<td>>29.0k</td>
<td>7</td>
<td>6/3.0</td>
</tr>
<tr>
<td>le_pc</td>
<td>cr</td>
<td>4/14</td>
<td>8/2.0</td>
<td>4.6k</td>
<td>1</td>
<td>1.0/2</td>
</tr>
<tr>
<td>barrier_locks</td>
<td>hm</td>
<td>3/18</td>
<td>17/2.6</td>
<td>10.6k</td>
<td>4.1min</td>
<td>1.0/2</td>
</tr>
<tr>
<td>stateful01</td>
<td>sv</td>
<td>3/19</td>
<td>10/3.4</td>
<td>2.3k</td>
<td>10.5s</td>
<td>2.0/2</td>
</tr>
<tr>
<td>read_write_lock</td>
<td>sv</td>
<td>4/22</td>
<td>16/3.4</td>
<td>9.2k</td>
<td>4.1min</td>
<td>4.0/2</td>
</tr>
<tr>
<td>loop</td>
<td>hm</td>
<td>2/38</td>
<td>14/2.7</td>
<td>2</td>
<td>38ms</td>
<td>2.0/2</td>
</tr>
<tr>
<td>ibbench</td>
<td>sv</td>
<td>3/39</td>
<td>24/3.6</td>
<td>>20.5k</td>
<td>2</td>
<td>2/10.0</td>
</tr>
<tr>
<td>l2c_hid</td>
<td>cr</td>
<td>2/42</td>
<td>26/4.5</td>
<td>>23.4k</td>
<td>3</td>
<td>TO 3/1.3</td>
</tr>
<tr>
<td>rll169-1</td>
<td>cr</td>
<td>7/71</td>
<td>22/2.7</td>
<td>>20.4k</td>
<td>1</td>
<td>TO 1.2</td>
</tr>
<tr>
<td>rll169-2</td>
<td>cr</td>
<td>7/116</td>
<td>41/2.3</td>
<td>>7.3k</td>
<td>1</td>
<td>TO 1.0</td>
</tr>
<tr>
<td>rll169-5</td>
<td>cr</td>
<td>7/134</td>
<td>48/3.1</td>
<td>>5.5k</td>
<td>1</td>
<td>TO 1.0</td>
</tr>
<tr>
<td>rll169-4</td>
<td>cr</td>
<td>7/142</td>
<td>48/3.0</td>
<td>>8.4k</td>
<td>9</td>
<td>TO 2/1.0</td>
</tr>
<tr>
<td>rll169-6</td>
<td>cr</td>
<td>7/144</td>
<td>52/2.9</td>
<td>>8.1k</td>
<td>1</td>
<td>TO 1/1.0</td>
</tr>
<tr>
<td>usbserial1</td>
<td>cr</td>
<td>7/151</td>
<td>87/3.3</td>
<td>>8.1k</td>
<td>1</td>
<td>TO 1.0</td>
</tr>
<tr>
<td>usbserial2</td>
<td>cr</td>
<td>7/163</td>
<td>93/3.6</td>
<td>>4.4k</td>
<td>3</td>
<td>TO 1.0</td>
</tr>
<tr>
<td>rll169-3</td>
<td>cr</td>
<td>8/174</td>
<td>61/3.6</td>
<td>>4.2k</td>
<td>2</td>
<td>TO 1/1.0</td>
</tr>
<tr>
<td>usbserial3</td>
<td>cr</td>
<td>7/178</td>
<td>100/3.7</td>
<td>>4.3k</td>
<td>1</td>
<td>TO 1/1.0</td>
</tr>
<tr>
<td>loop-2</td>
<td>N/A</td>
<td>2/16</td>
<td>8/3.0</td>
<td>>4.0k</td>
<td>4</td>
<td>4.0/2.0</td>
</tr>
<tr>
<td>loop-4</td>
<td>N/A</td>
<td>2/32</td>
<td>16/5.0</td>
<td>>24.6k</td>
<td>8</td>
<td>TO 8/2.0</td>
</tr>
<tr>
<td>loop-8</td>
<td>N/A</td>
<td>2/64</td>
<td>32/9.0</td>
<td>>15.3k</td>
<td>16</td>
<td>TO 16/2.0</td>
</tr>
<tr>
<td>loop-16</td>
<td>N/A</td>
<td>2/128</td>
<td>64/17.0</td>
<td>>4.4k</td>
<td>32</td>
<td>TO 32/2.0</td>
</tr>
<tr>
<td>loop-32</td>
<td>N/A</td>
<td>2/256</td>
<td>128/33.0</td>
<td>>674</td>
<td>64</td>
<td>TO 64/2.0</td>
</tr>
</tbody>
</table>

Synchronization primitives. We first describe various synchronization primitives that we derive. Recall from Sec. 2 that we use the notation \(T[\ell] \) to refer to events labeled with \(T[\ell] \), and the notations \(T[\ell:] \) and \(T[L] \) to refer to corresponding event sequences.

1. Wait-Notify. A wait-notify WaitNotify \((T_s[\ell_1], T_s[\ell_1])\) denotes a wait to make \(T_s[\ell_1] \) wait for \(T_s[\ell_2] \) to complete, and a notify to make \(T_s[\ell_1] \) signal \(T_s[\ell_2] \) upon completion.

2. Locks. A lock \(Lk[T_s[L_1], ..., T_s[L_n]] \) denotes a common lock protecting each event sequence \(T_s[L_1], ..., T_s[L_n] \), to ensure that these event sequences cannot execute concurrently.

3. Barriers. A barrier \(Bar[T_s[L_1], ..., T_s[L_n]] \) at location \(\ell_s \) of thread \(T_s \), \(\ell_s \in [1, n] \), prevents each thread \(T_s \) from proceeding beyond \(\ell_s \) until every other thread \(T_s \) reaches \(\ell_s \). In other words, \(T_s \) cannot execute the event at \(\ell_s \), until every other \(T_s \) executes the event at \(\ell_s - 1 \).

4. Shared-exclusive locks. A shared-exclusive lock (or, a readers-writers lock) \(ShExLock[Sh \cdot T_{s1}[L_{s1}], ..., T_{s1}[L_{s1}]] \) permits concurrent execution of all event sequences \(T_{s1}[L_{s1}], ..., T_{s1}[L_{s1}] \), while preventing concurrent execution of (a) any two \(T_{s1}[L_{s1}] \) and \(T_{s2}[L_{s2}] \) with \(i \neq j \), and (b) any \(T_{s1}[L_{s1}] \) and \(T_{s2}[L_{s2}] \).

Rewriting \(\varphi_C \) to derive synchronization. During the rewrite process below, we use disjunctive formulae (denoted by \(\psi \)) where each disjunct is either an atomic \(\delta \delta \)-constraint of the form \(\delta h(T_s[\ell_1], T_s[\ell_1]) \), or a disjunctive primitive. For a trace \(\tau \), we repeatedly apply the rewrite rules from Fig. 2 on \(\varphi_C \) until no more rules are applicable. The Add.WAITNOTIFY, Add.LOCK, and Add.BARRIER rules introduce the wait-notify, locks, and barrier primitives. The Merge.LOCKs rule merges locks across pairs of threads, while the Merge.LOCKs, DeadLOCKS rule merges locks that can potentially lead to deadlocks. The MultITHREAD.LOCK and MultITHREAD.BARRIER rules inductively derive locks and barriers spanning multiple threads. The Add.SHAREDEXCLUSIVELOCK rule derives a shared exclusive lock from already inferred locks. Since \(\varphi_C \), as generated by Algo. 2, is already optimized, we do not merge WaitNotify primitives.

We explain two of the above rules here. The premise of the Add.LOCK rule asks for two event sequences \(T_s[\ell_1:] \) and \(T_s[\ell_2:] \) such that one of them has to finish execution before the other starts, i.e., \(h h(T_s[\ell_1:], T_s[\ell_2:]) \lor h h(T_s[\ell_2:], T_s[\ell_1:]) \). Equivalently, the two event sequences do not execute concurrently. This is enforced by the lock \(Lk[T_s[\ell_1:], T_s[\ell_2:], T_s[\ell_3:]] \). The premise of the Merge.LOCKs, DeadLOCKS rule looks for two already derived locks, acquired by two threads in different orders (which may lead to a deadlock), and merges these locks into one.

Note that the rewriting process always terminates. However, depending on the order of rules applied, we may obtain different formulae. Upon termination, we get a CNF formula over synchronization primitives. We pick a set \(S \) of synchronization primitives, consisting of one primitive from each conjunct. Let \(P^S \) be the program obtained by inserting each synchronization primitive in \(S \) into the corresponding position in the original concurrent program \(P \).

Theorem 3.1 (Soundness of rewrite rules). Given a trace \(\tau \), let \(P^S \) be obtained as described above. Let \(\pi \in L(N_\delta) \) be a deadlock-free execution of \(P^S \). Then \(\pi \notin L(N_\delta) \), i.e., \(\pi \) is not bad.

While \(P^S \) is not guaranteed deadlock-free, we perform simple consistency checks when choosing \(S \) to prevent obvious deadlocks. For example, we ensure that WaitNotify primitives in \(S \) do not introduce ordering cycles over events(\(\tau \)).

Note that our rewrite rules are by no means complete. It may be possible to derive the above synchronization primitives using different rules that represent other scenarios. Further, our rewrite
system can also be extended to other synchronization primitives. We now present new examples illustrating the application of our rules.

Example 3.2. For the example trace shown in Fig. 1, \(\varphi_C \) is given by \(hh(T_2[2], T_1[1]) \lor hh(T_2[2], T_1[2]) \). Applying the ADD.LOCK rewrite rule yields \(Lk(T_1[1] ; T_1[1] : 2) \).

Example 3.3. For the example trace shown in Fig. 3(a), \(\varphi_C \) is given by \(hh(T_4[4], T_3[3]) \lor hh(T_4[4], T_5[5]) \lor hh(T_4[4], T_5[5]) \). Applying the ADD.LOCK rewrite rule yields: \(Lk(T_4[3] ; T_3[3] ; i, j) \lor hh(T_4[4], T_5[5]) \). Applying the ADD.BARRIER rule yields: \(Lk(T_4[3] ; T_3[3]) \lor \text{Barrier}(T_4[i], T_5[j]) \).

Example 3.4. For the example trace shown in Fig. 3(b), \(\varphi_C \) is as shown. The disjuncts \(\psi_1 \) and \(\psi_2 \) are not relevant for this example except for the fact that \(\psi_1 \) is common to the 3rd and 4th conjuncts, \(\psi_2 \) is common to the 5th and 6th conjuncts and \(\psi_1 \neq \psi_2 \).

4. Case Study: Bug Summarization

In our second case study, we use the representation for a sound overapproximation of the bad neighbourhood of a trace \(\tau \) (returned as \(\varphi_B \) by Algo. 2) for counterexample summarization and bug summarization. The HB-formula \(\varphi_B \) encapsulates relevant ordering information about all counterexamples in the neighbourhood of \(\tau \) and can be viewed as a stand-alone counterexample summary. For instance, in Fig. 3(c), one may view \(\varphi_B = hh(T_2[2], T_2[2]) \) as a counterexample summary that indicates a possible order violation. While such a bug report can already be useful to a human debugger, a cursory examination of the data-flow through the events in \(\varphi_B \) can enable formulation of a more precise bug summary. To this end, we present a set of rules to help infer specific bugs such as data races, define-use order violations and two-stage access bugs.

Table 2. Experiments: synchronization synthesis

<table>
<thead>
<tr>
<th>Name</th>
<th>#L</th>
<th>#B</th>
<th>#WN</th>
<th>Name</th>
<th>#L</th>
<th>#B</th>
<th>#WN</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorder2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>loop</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>define_use</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>fib_bench</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>em28xx</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>i2c_hid</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>locks</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>rt1869-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2stage</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>rt1869-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dbdb_receiver</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>rt1869-5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>md</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>rt1869-4</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>lazy01</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>rt1869-6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>locks_hh</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>usb_serial-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>lc_re</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>usb_serial-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>barrier_locks</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>rt1869-3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>stateful01</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>usb_serial-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>read_write_lock</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 Example programs

(a) Normalization. The goal of the program this trace is drawn from is to normalize a set of values such that their sum computes to 1. The program consists of three threads. The first and second thread process one half each of the set of values. Once the first and second thread run to completion, the third thread checks if the sum of the normalized values is 1.

globals: float value1, value2, value3, value4, sum;
init: flag1, flag2;
init: value1 = 1, value2 = 2, value3 = 4,
value4 = 8, sum = 0, flag1 = 0, flag2 = 0;

thread_firsthalf:
locals: float temp, localsum;
init: localsum = 0;
T1[1]: localsum := localsum + value1;
T1[2]: localsum := localsum + value2;
T3[3]: temp := sum;
T4[4]: sum := temp + localsum;
T5[5]: value1 := value1/sum;
T6[6]: value2 := value2/sum;
T7[7]: flag1 := 1;

thread_secondhalf:
locals: temp, localsum;
init: localsum = 0;
T8[1]: localsum := localsum + value3;
T9[2]: localsum := localsum + value4;
T10[3]: temp := sum;
T11[4]: sum := temp + localsum;
T12[5]: value3 := value3/sum;
T13[6]: value4 := value4/sum;
T14[7]: flag2 := 1;

thread_checkresult:
T15[1]: assume (flag1 = 1 and flag2 = 1);
T16[2]: assert (value1 + value2 + value3 + value4 = 1);

(b) Interrupt handler (simplified snippet of the Linux RealTek 8169 network driver). Once the interrupt variable is set by the interruptmaskset thread, the hardware starts producing interrupts. The handling of these interrupts, by the two irqhandler threads, is correct only if the driver initialization is complete (captured by the initdone variable). The irqhandlers add items to a workqueue; the addition of items is modeled using a counter workqueueitems. The variable interrupts counts the total number of interrupts handled by the irqhandler threads and the thread checkworkqueue uses interrupts to check for inconsistencies in the workqueue.

globals: int intrmask, initdone, workqueueitems, interrupts;
init: intrmask = 0, initdone = 0, workqueueitems = 0,
interrupts = 0;

thread_interruptmaskset:
T17[1]: intrmask := 1;
T18[2]: initdone := 1;

thread_first_irqhandler:
locals: int temp;
T19[1]: assume (intrmask = 1);
T20[2]: assert (initdone = 1);
T21[3]: temp := workqueueitems;
T22[4]: workqueueitems := temp + 1;
T23[5]: interrupts := interrupts + 1;

thread_second_irqhandler:
locals: int temp;
T24[1]: assume (intrmask = 1);
T25[2]: assert (initdone = 1);
T26[3]: temp := workqueueitems;
T27[4]: workqueueitem := temp + 1;
T28[5]: interrupts := interrupts + 1;

thread_checkworkqueue:
T29[1]: assert (workqueueitems ≥ interrupts);

φB: hh[T2[2], T2[2]] ∧ hh[T2[2], T2[2]] ∧ (hh[T2[4], T2[4]] ∨ hh[T2[4], T2[4]] ∨ ψ1) ∧ (hh[T2[4], T2[4]] ∨ hh[T2[4], T2[4]] ∨ ψ2) ∧ (hh[T2[4], T2[4]] ∨ hh[T2[4], T2[4]] ∨ ψ3)

(c) Network device initializer. This trace is drawn from a simplified snippet of the Linux RealTek 8169 network driver. The pci thread signals that a network device is registered using the variable registered and sets hv_start to point to the drv_hv_start method. The network thread calls drv_open once the network device is registered. The drv_open method dereferences the hv_start pointer.

globals: pointer hv_start;
init: registered = 0;

pci_thread:
T30[1]: registered := 1;
T31[2]: hv_start := &drv.hv_start;

network_thread:
T32[1]: assume (registered ≠ 0);
T33[2]: assert (*hv_start = drv_hv_start); /* pointer dereference */

void drv_hv_start() {
/* does something */
}

φB: hh[T2[2], T2[2]]

(d) Page-table. The pagetableaccess thread reads a memory location loc from pagetable and reads data from that memory location. The datamove thread reads the current memory location loc from pagetable, updates pagetable with a new memory location newloc and copies the data from the old memory location to the new memory location.

globals: int[] pagetable, memory;

thread_pagetableaccess:
locals: int loc, data, page;
T34[1]: page := 1;
T35[2]: loc := pagetable[page];
T36[3]: data := memory[loc];
T37[4]: assert (data = 10);

thread_datamove:
locals: int page, newloc, loc;
T38[1]: page, newloc := 1, 20;
T39[2]: loc := pagetable[page];
T40[3]: pagetable[page] := newloc;
T41[4]: memory[newloc] := memory[loc];

φB: hh[T2[2], T2[2]] ∧ hh[T2[2], T2[2]]
able v, (a) \text{read}(T[e], v)$ denotes that event $T[e]$ reads from v, (b) \text{write}(T[e], v)$ denotes that event $T[e]$ writes to v, and (c) \text{access}(T[e], v)$ denotes that event $T[e]$ reads from or writes to v. In the discussion below, we combine these with ordering constraints in a natural manner. For example, \text{read}(T[e_1], v) \rightarrow \text{write}(T[e_2], v)$ says that event $T[e_1]$ happens before $T[e_2]$ and that $\text{read}(T[e_1], v)$ and $\text{write}(T[e_2], v)$ hold.

Data races. Recall that in our framework, every instruction is assumed to execute atomically. This includes statements of the form $v := v + 1$, which may execute non-atomically at a low level. Hence, to infer data races corresponding to concurrent accesses of a shared variable v, we need to model statements at a lower level, i.e., by separating events into several low-level atomic events. In most cases, these low-level atomic events either read or write variables, but not both. For instance, a decomposition of an event e_1 with instruction $v := v + 1$ is given by $e_1' : e_1''$, where event e_1' has instruction $v := v + 1$, event e_1'' has instruction $v := r$, and r is a local variable modelling a register. In this case, a data race between event e_1 and some other event e_2 accessing v in another thread manifests itself in a trace σ as the ordering pattern $e_1' <_\sigma e_2 <_\sigma e_1''$. Hence, the \text{DataRace} rule infers a possible data race between events labelled $T[e_1'] : T[e_1'']$, and $T[e_2'] : T[e_2'']$ if the pattern $\text{read}(T[e_1], v) \rightarrow \text{access}(T[e_2], v) \rightarrow \text{write}(T[e_1'], v)$ is found in φ_B.

Further, if e_2 is also decomposed into $e_2' : e_2''$, where e_2' reads from v and e_2'' writes to v, a data race can manifest in a trace σ as $e_1 <_\sigma e_2' <_\sigma e_1'$ or $e_2' <_\sigma e_1 <_\sigma e_2''$. The \text{DataRace} rule infers a possible data race between $T[e_1'] : T[e_1'']$ and $T[e_2'] : T[e_2'']$, if the patterns $\text{read}(T[e_1'], v) \rightarrow \text{write}(T[e_2''], v)$ and $\text{write}(T[e_2''], v) \rightarrow \text{write}(T[e_1']', v)$ is found in the same disjunct of φ_B.

Atomicity violations. The \text{AtomicityViolation} rules generalize the \text{DataRace} rules. If the data-flow and ordering pattern $\text{access}(T[e_1], v) \rightarrow \text{access}(T[e_2], v) \rightarrow \text{access}(T[e_1'], v)$ manifests in φ_B, the first rule infers a possible atomicity violation of the event sequence $T[e_1] : T[e_1']$ via event $T[e_2]$. If the patterns $\text{access}(T[e_1], v) \rightarrow \text{access}(T[e_2], v) \rightarrow \text{access}(T[e_1'], v)$ manifest in the same disjunct of φ_B, the second rule infers a possible atomicity violation of the event sequence $T[e_1] : T[e_1']$ and event sequence $T[e_2] : T[e_2']$.

Two stage access. The \text{TwoStageAccessBug} rules capture two classic scenarios of two-stage access bugs, indicating violations of some consistency requirement of accesses to v and w. In particular, the values of v and w read by a thread could be inconsistent if either of the following patterns manifest in φ_B: (a) $\text{write}(T[e_1], v) \rightarrow \text{read}(T[e_2], v) \rightarrow \text{read}(T[e_2], w) \rightarrow \text{write}(T[e_2], w)$; or (b) $\text{read}(T[e_1], v) \rightarrow \text{write}(T[e_2], v) \rightarrow \text{write}(T[e_2], w) \rightarrow \text{read}(T[e_2], v)$.

Define-use ordering. The \text{DefineUse} rule infers a specific type of order violation indicating the use of a variable before it is defined. Given φ_B in DNF, if the ordering $\text{read}(T[e_1], v) \rightarrow \text{write}(T[e_2], v)$ manifests in a disjunct δ, the rule infers a define-use order violation if there exists a trace $\sigma \in N_\varphi$ such that σ satisfies δ and $T[e_1]$ precedes all events that write to v in σ.

Starting from φ_B given in DNF, we repeatedly apply the inference rules from Fig. 4 until no more rules are applicable. We report all inferred bugs as possible violations. Note that our goal here is only to assist the user in program debugging. Our inference rules are not complete. We do not claim that our inferred bugs will manifest in the program’s executions, or that they will match a human debugger’s intuition. We now present examples illustrating the application of some of our bug inference rules.

Example 4.1. For the example trace shown in Fig. 1, φ_B is given by $\text{bb}(T_0[1], T_0[2]) \land \text{bb}(T_0[1], T_0[2])$. Since $\text{read}(T_0[1], \text{balance})$, $\text{write}(T_0[2], \text{balance})$, $\text{read}(T_0[1], \text{balance})$ and $\text{write}(T_0[2], \text{balance})$ hold, we can apply the \text{DataRace} rule to infer a \text{DataRace} \text{rule} to infer a \text{DataRace} rule. Note that this bug inference matches the synchronization loop $T_0[1] \rightarrow T_0[2] \rightarrow T_0[2]$ synthesised in Example 3.2.

Example 4.2. Consider the example trace shown in Fig. 3(c). In our encoding, the pointer $\text{hw} _ \text{start}$ is modelled as an integer variable hw that is initially 0 (since $\text{hw} _ \text{start}$ is uninitialized). The pointer dereference in $T_2[2]$ is modelled as $\text{assert}(\text{hw} > 0)$. For this example, φ_B is given by $\text{bb}(T_0[2], T_0[2])$. Since $\text{read}(T_0[2], \text{hw})$ and $\text{write}(T_0[2], \text{hw})$ hold, and trace $T_0[1], T_0[1]$, $T_0[2], T_0[2]$ satisfies the last premise of the \text{DefineUse} rule, we can apply the rule to infer a define-use order violation between $T_2[2]$ and $T_0[2]$.
Example 4.3. For the example trace shown in Fig. 3(d), φ_B is given by $\text{hh}(T_3[3], T_2[2]) \land \text{hh}(T_3[3], T_5[4])$. Since $\text{write}(T_3[3], \text{pagetable})$, $\text{write}(T_4[4], \text{memory})$, $\text{read}(T_2[2], \text{pagetable})$ and $\text{read}(T_3[5], \text{memory})$ hold, we can apply the \textsc{TwoStageAccessBug} rule to infer $\text{TwoStageAccessBug}(T_3[3 : 4], T_2[2 : 3])$.

4.2 Experiments
Given a trace τ, \textsc{TARA} supports bug summarization as an optional step after generating φ_B. Starting from φ_B in DNF, the implementation attempts to apply the \textsc{DataRace}, \textsc{AtomicityViolation}, \textsc{TwoStageAccessBug} and \textsc{DefineUse} inference rules (in that order). Identical bug reports are merged to avoid duplicates.

The experimental results of using our \textsc{TARA}-based bug summarization on our test-suite are presented in Table 3. We report the numbers of data races (#DR), atomicity violations (#AV), two-stage access bugs (#2S) and define-use bugs (#DU) inferred. The Human column in the table presents a classification of the bugs present in the benchmarks, as reported by an expert user (OV stands for other column in the table presents a classification of the bugs present in the majority of benchmarks, \textsc{TARA} summarized the bug correctly (Yes). In some cases, \textsc{TARA} did not infer a bug summary (–). For the \textsc{usb_serial}-1 benchmark, \textsc{TARA}’s bug summary contradicted the human classification. For each example, the implementation takes at most 12 milliseconds.

Table 3 Experiments: bug summarization

<table>
<thead>
<tr>
<th>Name</th>
<th>#2S</th>
<th>#DR</th>
<th>#AV</th>
<th>#DU</th>
<th>Human</th>
<th>Bug summary right?</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorder</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>define_use</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>em28xx</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>locks</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>DR</td>
<td>Yes</td>
</tr>
<tr>
<td>2stage</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2S</td>
<td>Yes</td>
</tr>
<tr>
<td>dbdb_receiver</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>md</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>lazy01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>locks_hb</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>DR, DU</td>
<td>Yes</td>
</tr>
<tr>
<td>lc_ce</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>barrier_locks</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>DR, OV</td>
<td>Yes</td>
</tr>
<tr>
<td>stateful01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>read_write_lock</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>AV</td>
<td>Yes</td>
</tr>
<tr>
<td>hm_loop</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>DR</td>
<td>Yes</td>
</tr>
<tr>
<td>fib_bench</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>AV</td>
<td>Yes</td>
</tr>
<tr>
<td>i2c_hid</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>AV, OV</td>
<td>Yes</td>
</tr>
<tr>
<td>rtl8169-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>rtl8169-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DU</td>
<td>Yes</td>
</tr>
<tr>
<td>rtl8169-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>rtl8169-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>rtl8169-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>rtl8169-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>usb_serial-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>OV</td>
<td>No</td>
</tr>
<tr>
<td>usb_serial-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
<tr>
<td>usb_serial-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OV</td>
<td>–</td>
</tr>
</tbody>
</table>

5. Case Study: Accelerating CEGAR
In the final case study, we present a procedure for learning predicates for refinement in a CEGAR loop [14], with the help of \textsc{TARA}. An abstraction-refinement loop proceeds by building an abstract model of an input program and applying a model-checker on the abstract model. If the abstract model satisfies the correctness specification, then the input program is correct. Otherwise, the model-checker finds an abstract counterexample, i.e., an execution in the abstract model. The abstract counterexample is spurious if there is no concrete execution that corresponds to the abstract counterexample. Given a spurious counterexample, the refinement procedure refines the abstract model. This is done by finding predicates that inform the abstraction procedure to construct the next abstract model by adding the relevant details to the current abstract model such that the spurious counterexample is absent from next abstract model. The process starts over with the newly refined abstraction. After a number of iterations, the abstract model may have no more counterexamples, which proves the correctness of the input program. For simpler presentation, we assume that the input program is correct and all the abstract counterexamples are spurious.

An abstraction-refinement loop often takes many iterations to find the right set of predicates to prove correctness of the input program. This usually depends on the design of the refinement procedure. Many heuristics have been proposed to find the relevant predicates in fewer iterations (see, for example, [4]). We aim to use \textsc{TARA} to accelerate the search for the right predicates, i.e., reduce the number of iterations of a CEGAR loop.

Our refinement procedure takes a concurrent abstract counterexample as input and returns refinement predicates. First, we analyse the counterexample using \textsc{TARA} and obtain an HB-formula φ_B that encodes a set of incorrect interleavings. We sample a number of interleavings from φ_B and attempt to compute refinement predicates that simultaneously remove all the sampled spurious interleavings using a method similar to \emph{beautiful interpolants} [1].

5.1 Abstraction and Refinement
An abstract model of a concurrent program $P = \langle V, \{T_1, \ldots, T_k\}, SV, \langle LV_1, \ldots, LV_n \rangle \rangle$ is another concurrent program $P' = \langle V, \{T_1, \ldots, T_k\}, SV, \langle LV_1, \ldots, LV_n \rangle \rangle$ such that, for each $i \in [1, k]$ and event e in T_i, there is an event \hat{e} in T_i such that $\Gamma_0 e \Gamma_1$ is feasible iff $\Gamma_0 e \Gamma_1'$ is feasible.

In predicate abstraction, the abstract event \hat{e} corresponding to an event e is defined using a set of predicates as follows. Let us suppose predicates p_1, \ldots, p_m are used for abstraction. Let $i \in [1, m]$. Let β_i be the weakest precondition of e over p_i, and γ_i be the weakest precondition of e over $\neg p_i$. Let $\tilde{\beta}_i$ and $\tilde{\gamma}_i$ be the weakest formulas that are Boolean combinations of p_1, \ldots, p_m, and imply β_i and γ_i, respectively. $\Gamma_0 e \Gamma_1$ is feasible iff $\forall i \in [1, m] : (\Gamma_0 e \beta_i \rightarrow \Gamma_1) \land (\Gamma_0 e \gamma_i \rightarrow \Gamma_1 \land \neg p_i)$.

Let $\Gamma_0 e \Gamma_1 \ldots e_n \Gamma_n$ be a spurious counterexample, i.e., a trace in the abstract model that violates the specification. A refinement procedure computes additional predicates $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}, \alpha_n$ over program variables that satisfy the following constraint.

$\alpha_0 = \text{true} \land \alpha_n = \text{false} \land \bigwedge_{i=1}^{n} \alpha_{i-1} \land e_i \rightarrow \alpha'_i$

Note that the primed formula α'_i is the formula α_i where each variable v is replaced by its primed version v'. Recall that v' represents the value of v the execution of an instruction. An abstract model computed using predicates $\alpha_1, \ldots, \alpha_{n-1}$ is guaranteed to not exhibit the spurious counterexample [23].

5.2 Sampling an HB-formula
We pass trace $\hat{e}_1 \ldots \hat{e}_n$ to \textsc{TARA} and obtain an HB-formula φ_B in DNF to represent bad abstract traces. φ_B is a formula over events e_1, \ldots, e_n. With slight abuse of notation, we assume that φ_B is a formula over events e_1, \ldots, e_n, which can be obtained by replacing abstract events by their corresponding concrete events in φ_B. We sample a few concrete infeasible traces that satisfy φ_B and try to compute the simultaneous refinement predicates, i.e., predicates that eliminate all the sampled traces from the abstract program. Intuitively, learning predicates simultaneously using multiple spurious counterexamples may allow us to find more \emph{general} predicates. Both sampling and simultaneous refinement are heuristics choices.
Here, we present one possible choice for the sampling. However, one can imagine a wide array of heuristics for these choices. In our sampling heuristic, we search for two disjuncts in φ_B of the form $\varphi_1 \land e_2 < e_0$ and $\varphi_2 \land e_0 < e_a$ such that negation of any HB-formula in φ_1 is not in φ_2. We generate traces τ_1 and τ_2 such that (a) they satisfy $\varphi_1 \land \varphi_2 \land e_0 < e_a$ and $\varphi_1 \land \varphi_2 \land e_0 < e_a$ respectively; and (b) they are of the following form with $e_1^k = e_0$ and $e_2^k = e_a$.

$\tau_1 = e_0 \ldots e_{k_0} e_1^1 \ldots e_1^{k_1} e_2^1 \ldots e_2^{k_2}$$\quad \text{prefix}$

$\tau_2 = e_1^0 \ldots e_1^{k_0} e_2^0 \ldots e_2^{k_2} e_1^1 \ldots e_1^{k_1} e_2^1 \ldots e_2^{k_2}$$\quad \text{suffix}$

If $\varphi_1 \land \varphi_2 \land e_0 < e_a$ and $\varphi_1 \land \varphi_2 \land e_0 < e_a$ are satisfiable, such traces always exist. Both the traces have a common prefix and suffix, and two middle segments $e_1^1 \ldots e_1^{k_1}$ and $e_2^1 \ldots e_2^{k_2}$ are swapped. From the traces, we obtain refinement predicates $\alpha_1 \ldots \alpha_{k_0}, \beta_1 \ldots \beta_{k_1+k_2}, \gamma_1 \ldots \gamma_{k_1+k_2}$, and $\delta_1 \ldots \delta_{k_3}$ by solving the following constraints.

$\alpha_0 = true \land \bigwedge_{i=1}^{k_0} (\alpha_{i-1} \land e_i^0 \rightarrow e_i^1) \land \alpha_{k_0} = \beta_0 = \gamma_0 = \delta_0 = \varphi$ (prefix)

$\bigwedge_{i=1}^{k_1} (\beta_{i-1} \land e_i^0 \rightarrow \beta_i^1) \land \bigwedge_{i=k_1+1}^{k_2} (\beta_{i-1} \land e_i^{k_1} \rightarrow \beta_i^1)$ (mid trace 1)

$\bigwedge_{i=1}^{k_1} (\gamma_{i-1} \land e_i^0 \rightarrow \gamma_i^1) \land \bigwedge_{i=k_1+1}^{k_2} (\gamma_{i-1} \land e_i^{k_1} \rightarrow \gamma_i^1)$ (mid trace 2)

$\delta_0 = \beta_{k_1+k_2} = \gamma_{k_1+k_2} \land \bigwedge_{i=1}^{k_3} (\delta_{i-1} \land e_i^0 \rightarrow \delta_i^1) \land \delta_{k_3} = false$ (suffix)

In the above equations, the first and last constraints correspond to the prefix and suffix respectively. The second and third constraints correspond to the middle segments of the two traces.

5.3 Constraint Solving for Simultaneous Refinement

We discuss how to solve the above constraints for refinement. The above constraints are a set of non-recursive Horn clauses. Many techniques exist to solve such constraints (e.g. [7, 22]). Since we are aiming for simultaneous refinement, we prefer the solutions for the unknown predicates to be simple atomic formulas. If an unknown predicate appears as consequent of multiple implications (for example, α_{k_0+1}), then the solver may naturally give a solution that is a disjunction of two atomic formulas. We use the method that is presented in Sec. 4 of [1] for the theory of linear arithmetic that forces a solver to return solutions for the above constraints with single atomic formulas if such a solution exists.

<table>
<thead>
<tr>
<th>Example</th>
<th>Experiments: CEGAR acceleration</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SATABS Iterations</td>
<td>Time(s)</td>
<td>SATABS[TARA] Iterations</td>
</tr>
<tr>
<td>example1</td>
<td>55</td>
<td>35.4</td>
<td>45</td>
</tr>
<tr>
<td>example2</td>
<td>65</td>
<td>45.7</td>
<td>60</td>
</tr>
<tr>
<td>example3</td>
<td>45</td>
<td>23.0</td>
<td>41</td>
</tr>
</tbody>
</table>

5.4 Experimental Results

We have implemented the above refinement procedure in SATABS [16] and refer to the modified version as SATABS[TARA]. In Table 4 we present the result of running SATABS and SATABS[TARA] on three hand crafted examples. Each of these examples contain two threads and 15-20 lines of code. Our method reduces the number of iterations in all the examples. However, the total time of verification increases for two examples due to the fact that our refinement procedure is not well optimized.

6. Related Work

Representations of trace sets. The Φ_{CTP} encoding used in Sec. 2 was introduced in [41], and subsequently generalized in [27, 37]. We may find more applications and variations of our tool TARA from exploring other suitable happens-before constraint based encodings of “interesting” interleavings from the body of predictive analysis literature (cf. [35, 38]). Concurrent counterexample traces have been generalized into partial order (Mazurkiewicz) traces in [8, 9]. As demonstrated in this paper, partial orders may not be adequate to represent arbitrary trace sets. The work in [20] introduces a new data structure, an inductive data-flow graph (IDFG), to generalize proofs of programs. While IDFGs is also a representation of (concurrent) trace sets, it is not clear how one may apply IDFGs for program debugging or synthesis. In other work, interference scenarios have been proposed in [19] to represent concurrent executions that are behaviourally equivalent under the same input values. For sequential programs, the authors in [2] represent all counterexamples of recursive programs using pushdown automata.

Synchronization synthesis. In the formal methods and programming languages community, synchronization synthesis of concurrent programs has been an active area of research for a long time [8, 9, 13, 30, 39, 40]. In the past, the approaches in [13, 40] were based on inferring synchronization by constructing and exploring the entire product graph or tableaux corresponding to a concurrent program. Recent approaches infer synchronization incrementally from traces [39] or generalizations of bad traces [8, 9]. However, the techniques from [8, 9, 39] infer atomic sections rather than locks—atomic sections are not directly implementable and need to be translated into locks either manually, or using other automated techniques (see, for example, [10]). Jin et al. introduce CFIX [26], a tool that fixes bugs in concurrent C programs by matching bug patterns and proposing fixes. However, in their case, the bug patterns are simple (corresponding to only conjunctions of happens-before constraints) and hence, cannot infer synchronization such as barriers. On the other hand, the CFIX tool is very robust and practical, and has generated fixes and corresponding patches for real open-source libraries.

Bug summarization. While there have been various techniques for fault localization, error explanation, counterexample minimization and bug summarization for sequential programs, we restrict our attention to relevant works for concurrent programs. In [28], the authors focus on shortening counterexamples in message-passing programs to a set of “crucial events” that are both necessary and sufficient to reach the bug. In [25], the authors introduce a heuristic to simplify concurrent error traces by reducing the number of context-switches. There are several papers that survey and classify common concurrency bug patterns [18, 29]. We can extend our bug inference rules using the bug patterns from the papers. Finally, there is a large body of work on automatic detection of specific bugs such as data races and atomicity violations [17, 32, 34, 43].

Accelerating CEGAR. There are several works to enhance the CEGAR loop by finding better predicates, e.g. [4, 36]. In the setting of hardware model-checking (for circuits), Glusman et al. [21] extend the CEGAR loop by adding several predicates if a spurious counterexample is found; they generate all counterexamples of the same length and gather information about valuations crucial to the incorrectness of the counterexamples. In a similar setting, Wang et al. [42] improve the CEGAR by introducing a technique to eliminate all spurious counterexamples for an invariant. Sakunkonchak et al. [33] apply CEGAR optimizations to software model checking and speed up the search for predicates that make the counterexample spurious. However, they do not use interpolants and instead search the counterexample for conflicting predicates. Bjesse et al. [6] use predicates obtained from CEGAR to guide bounded-model checking (BMC) and extend its reach.
7. Concluding Remarks

We propose a representation for concurrent trace sets based on HB-formulas. We present a method and a tool TARA for generating succinct representations of sound overapproximations of good and bad neighbourhoods of a trace. We use TARA to successfully drive three applications in concurrent program reasoning — synchronization synthesis, bug summarization and CEGAR. We believe that our representation and algorithms can significantly boost the applicability and utility of trace-based techniques for concurrency.

While the initial experiments using TARA have been promising, there are several avenues for future work. We plan to extend TARA to infer synchronization from traces over different set of events. In the bug summarization domain, we plan to add a larger class of bug inference rules. For accelerating CEGAR based verification, we plan to implement a more efficient refinement procedure and explore other sampling rules for picking abstract counterexamples.

Acknowledgements. The authors would like to thank Jyotirmoy Deshmukh, Roderick Bloem, and Bettina Köninger for enabling fruitful discussions. The authors would also like to thank the anonymous reviewers for their considerable, constructive feedback.

References