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Abstract

Example-based specifications for program synthesis are in-
herently ambiguous and may cause synthesizers to generate
programs that do not exhibit intended behavior on unseen
inputs. Existing synthesis techniques attempt to address this
problem by either placing a domain-specific, syntactic bias
on the hypothesis space or heavily relying on user feedback
to help resolve ambiguity. We present a new framework to
address the ambiguity/generalizability problem in example-
based synthesis. The key feature of our framework is that
it places a semantic bias on the hypothesis space based on
relational perturbation properties. The framework is portable
acrossmultiple domains and synthesizers and is based on two
core steps: (1) automatically augment the set of user-provided
examples by applying relational perturbation properties and
(2) use a generic example-based synthesizer to generate a
program consistent with the augmented set of examples. Our
framework can be instantiated with three different user inter-
faces, with varying degrees of user engagement to help infer
relevant relational perturbation properties. This includes an
interface in which the user only provides examples and our
framework automatically infers relevant properties. We im-
plement our framework in a tool SketchAX specialized to
the Sketch synthesizer and demonstrate that SketchAX is
effective in significantly boosting the performance of Sketch
for all three user interfaces.

Keywords Example-based Synthesis, Max-SMT, Generaliz-
ability

1 Introduction

Example-based synthesis, or, Programming By Examples
(PBE) [8, 9, 14] is an emerging paradigm of program syn-
thesis that has been applied successfully across diverse do-
mains [6, 8, 13, 20, 22, 23]. The task in PBE is to generate a
program from a hypothesis space (often defined as a domain-
specific language or DSL) that satisfies a set of input-output
(I/O) examples. This example-based specification mechanism
can be a double-edged sword. Example-based specifications
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have made program synthesis more tractable as well as acces-
sible to non-expert users who may not be able to write for-
mal/complete specifications. However, example-based spec-
ifications also pose some of the biggest challenges in PBE:
ambiguity-resolution [7] and the related problem of generaliz-
ability. Since examples are inherently an ambiguous/incom-
plete form of specification, there can be a large number of
programs that are consistent with a set of examples. Unsur-
prisingly, not all of these programs may exhibit the (implicit)
intended behavior on unseen inputs.
There are two main classes of techniques that have been

used to address the ambiguity/generalizability problem in
PBE, with some caveats. (1) Syntactic bias-based techniques
use highly structured DSLs [2, 24] or ranking functions [21]
to place a syntactic bias on the hypothesis space. These
solutions are either inadequate by themselves or too domain-
specific. (2) User feedback loop-based techniques employ a
user to validate candidate programs or abstract representa-
tions of examples, or, answer questions as in active learn-
ing [5, 15]. While some of these interaction models [5] are
based on principled approaches to address the generalizabil-
ity problem in PBE, they place a heavy burden on the user
that ultimately limits the scope of applicability of PBE.
In this paper, we present a new approach for addressing

the ambiguity/generalizability problem in PBE. Our frame-
work is portable across multiple domains and synthesizers,
can be instantiated with different user interfaces, and can
be used in conjunction with existing techniques based on
structured DSLs, ranking functions or user feedback loops.
The key feature of our framework is that it places a semantic
bias on the hypothesis space based on relational perturbation
properties. While, in general, relational properties may ex-
press constraints that relate multiple programs or multiple
executions of a single program, relational perturbation prop-
erties relate the perturbation/change in a program output to
the perturbation/change in a program input. An example of
such a property is permutation invariance: the program out-
put does not change when the elements of the program input
(array) are permuted. Relational perturbation properties en-
able us to design a simple and efficient solution that is similar,
at least in spirit, to data augmentation used for improving
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the generalizability of machine learning models [12, 18]. Our
core approach is based on two steps: (1) automatically gen-
erate an augmented set of examples by applying relational
perturbation properties to the user-provided examples and
(2) use a generic PBE synthesizer to generate a program
consistent with the augmented set of examples.
Our solution strategy of enforcing relational properties

using examples instead of formal specifications is inspired
by two observations: (i) not all PBE synthesizers (e.g. [8])
accept specifications over all inputs and (ii) in cases where
a PBE synthesizer accepts such specifications, there is typi-
cally a significant performance penalty in terms of synthesis
time. We choose relational perturbation properties as they
enable us to easily generate additional examples from any
set of user-provided examples. For instance, given an I/O
example (x ,y) consisting of an input array x = [1, 2, 3] and
an output y = 3, it is trivial to generate additional examples
by applying permutation invariance: ([3, 2, 1], 3), ([2, 1, 3], 3),
and so on. On the other hand, if we were to use a more gen-
eral relational property, such as associativity for a program P
with two inputs and one output (∀x ,x ′,x ′′. P(P(x ,x ′),x ′′) =

P(x , P(x ′,x ′′))), the user-provided examples would need to
meet several requirements to enable generation of addi-
tional examples. For associativity, one would need the user-
provided example set to include the examples ((x ,x ′),y),
((y,x ′′), z) and ((x ′,x ′′), r ) in order to generate the single
additional example ((x , r ), z).
So where do the relational perturbation properties come

from? Our framework provides three different ways to an-
swer this question using three user interfaces, with varying
degrees of user enagement. In User Interface I, the user picks
relevant relational perturbation properties in addition to
providing examples. In User Interface II, the user provides
examples and helps our framework infer relevant properties
by validating/invalidating a small set of examples. Finally,
in User Interface III, which is identical to the standard PBE
setting, the user only provides examples and our framework
automatically infers a relevant set of properties using a Par-
tial Max-SMT [3] formulation and a ranking function over
property sets. The framework learns the ranking function
from a training set comprised of successful augmented syn-
thesis instances from User Interface I.

In order to evaluate the efficacy of our technique, we spe-
cialize our approach to the Sketch synthesizer [24] and
implement it in a tool SketchAX. Our extensive evaluation
on a large class of benchmarks demonstrates that SketchAX
significantly boosts Sketch’s ability to synthesize correct
programs for all three user interfaces. For instance, for bit-
vector benchmarks that satisfy some relational perturbation
properties, SketchAX improves the success rate of Sketch
by 157.5%, 157.5% and 155.3%, respectively, for the three user
interfaces.
Contributions. Our paper makes the following contributions:

- We present a new approach to address the ambiguity/gen-
eralizability problem in PBE. Our approach is based on the
novel idea of placing a semantic bias on the hypothesis
space using relational perturbation properties (Sec. 4).

- We propose a flexible, portable, synthesizer-agnostic frame-
work that can be instantiated with three different user in-
terfaces, with varying degrees of user engagement to help
infer relevant properties (Sec. 5).

- We develop a Partial Max-SMT formulation to automati-
cally infer relevant properties for User Interface III, where
the user only provides I/O examples (Sec. 5). We further de-
velop a procedure to learn a ranking function over property
sets to drive the Max-SMT formulation (Sec. 6).

- We implement our framework in a tool SketchAX special-
ized to the Sketch synthesizer (Sec. 6) and demonstrate
that SketchAX is effective in significantly boosting the
performance of Sketch for all three user interfaces (Sec. 7).

2 Illustrative examples

We illustrate the core approach of our framework with a few
motivating examples using the Sketch synthesizer.

max. Suppose a user wants to synthesize a max program
that returns the maximum of 3 integer-valued inputs, us-
ing Sketch as a PBE synthesizer. A partial program (with
holes) that the user may provide is shown in Fig. 1(a). No-
tice that for the example set E in Fig. 1(b), Sketch yields
an incorrect program. Our tool SketchAX addresses this
generalizability problem by exploiting the fact that the max
program should satisfy permutation-invariance: the program
output should not change if we permute the program inputs.
SketchAX automatically augments the initial set of exam-
ples E by applying the permutation-invariance property to
the examples in E as shown in Fig. 1(c). With this augmented
set of examples, Sketch is now able to generate the correct
max program.
Permutation invariance is an instance of a relational per-

turbation property that relates perturbed inputs to corre-
sponding perturbed outputs of programs. Specifically, it is a
structural perturbation property which changes the relative
positions of inputs/outputs. The max program also satisfies a
value perturbation property (specifically, value preservation)
which modifies the values of inputs/outputs. E.g. if we mul-
tiply all inputs by some positive constant integer, the output
will also be multiplied by the same constant.

We formalize our notion of relational perturbation prop-
erties in Sec. 4. Next, we illustrate two useful structural and
value perturbation properties.

matrixTranspose. The top half of Fig. 2 shows a partial pro-
gram and an example set E used to synthesize a program to
compute the transpose of a matrix. The program generated
by Sketch is incorrect. From linear algebra, we know that
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int max(int x, int y, int z){ 
  int m =!"v; 
  if (!"e) m = !"v; 
  if (!"e) m = !"v; 
  return m;  
}

Partial program

(a) (b)

SKETCH

( 0, 10,  2) !$ 10; (-1, 10, 20) !$ 20; (-1, -2, -3) !$ -1; 
( 0,  2, 10) !$ 10; (-1, 20, 10) !$ 20; (-1, -3, -2) !$ -1; 
(10,  0,  2) !$ 10; (10, -1, 20) !$ 20; (-2, -1, -3) !$ -1; 
(10,  2,  0) !$ 10; (10, 20, -1) !$ 20; (-2, -3, -1) !$ -1; 
( 2,  0, 10) !$ 10; (20, -1, 10) !$ 20; (-3, -1, -2) !$ -1; 
( 2, 10,  0) !$ 10; (20, 10, -1) !$ 20; (-3, -2, -1) !$ -1;

Augmented example set
int max(int x, int y, int z) { 
  int m = z; 
  if(z !# y) m = y; 
  if(m  <  x) m = x; 
  return m; 
}

Synthesized program

(c)

( 0, 10,  2) !$ 10; 
(-1, 10, 20) !$ 20; 
(-1, -2, -3) !$ -1;

Example set E
<latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit>

int max(int x, int y, int z) { 
  int m = x; 
  if(y < z) m = z; 
  if(m < y) m = y; 
  return m; 
}

Synthesized program  

SKETCH

Figure 1. Computing the maximum of three integers using Sketch and SketchAX.

int[3*3] transpose(int[3*3] in1) { 
  int[3*3] out=0; 
  repeat(3*3) { 
    out[!"*3 + !"] = in1[!"*3 + !"]; 
  } 
  return out; 
}

Partial program int[3*3] transpose(int[3*3] in1) { 
  int[9] out = ((int[9])0); 
  out[8] = in1[8]; 
  out[0] = in1[8]; 
  out[2] = in1[6]; 
  out[1] = in1[3]; 
  out[3] = in1[0]; 
  out[3] = in1[1]; 
  out[4] = in1[4]; 
  out[0] = in1[0]; 
  out[5] = in1[7]; 
  return out; 
}

int[3*3] transpose(int[3*3] in1) { 
  int[9] out = ((int[9])0); 
  out[8] = in1[8]; 
  out[4] = in1[4]; 
  out[2] = in1[6]; 
  out[1] = in1[3]; 
  out[0] = in1[0]; 
  out[3] = in1[1]; 
  out[5] = in1[7]; 
  out[6] = in1[2]; 
  out[7] = in1[5]; 
  return out; 
}

{ 2,1,0,        { 2,1,0, 
  1,0,0,    !$    1,0,1, 
  0,1,0  }        0,0,0  } 
{ 1,0,0,        { 1,1,1, 
  1,0,0,    !$    0,0,0, 
  1,0,1  }        0,0,1  } 
{ 0,1,0,        { 0,2,2, 
  2,2,0,    !$    1,2,0, 
  2,0,1  }        0,0,1  }

{ 2,1,0,      { 2,1,0, 
  1,0,0,   !$   1,0,1, 
  0,1,0  }      0,0,0  } 
{ 2,1,0,      { 2,0,1, 
  0,1,0,   !$   1,1,0, 
  1,0,0  }      0,0,0  } 
{ 1,0,0,      { 1,2,0, 
  2,1,0,   !$   0,1,1, 
  0,1,0  }      0,0,0  } 
{ 1,0,0,      { 1,0,2, 
  0,1,0,   !$   0,1,1, 
  2,1,0  }      0,0,0  } 
{ 0,1,0,      { 0,2,1, 
  2,1,0,   !$   1,1,0, 
  1,0,0  }      0,0,0  }

{ 0,1,0,      { 0,2,2, 
  2,0,1,   !$   1,0,2, 
  2,2,0  }      0,1,0  } 
{ 2,2,0,      { 2,0,2, 
  0,1,0,   !$   2,1,0, 
  2,0,1  }      0,0,1  } 
{ 2,2,0,      { 2,2,0, 
  2,0,1,   !$   2,0,1,    
  0,1,0  }      0,1,0  } 
{ 2,0,1,      { 2,0,2,   
  0,1,0,   !$   0,1,2,    
  2,2,0  }      1,0,0  }  
{ 2,0,1,      { 2,2,0, 
  2,2,0,   !$   0,2,1, 
  0,1,0  }      1,0,0  }

{ 0,1,0,      { 0,1,2, 
  1,0,0,   !$   1,0,1, 
  2,1,0  }      0,0,0  } 
{ 1,0,0,      { 1,1,1, 
  1,0,0,   !$   0,0,0, 
  1,0,1  }      0,0,1  } 
{ 1,0,0,      { 1,1,1, 
  1,0,1,   !$   0,0,0, 
  1,0,0  }      0,1,0  } 
{ 1,0,1,      { 1,1,1, 
  1,0,0,   !$   0,0,0, 
  1,0,0  }      1,0,0  } 
{ 0,1,0,      { 0,2,2, 
  2,2,0,   !$   1,2,0, 
  2,0,1  }      0,0,1  }

Augmented example set

Example set E
<latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE=">AAACdXicbVFNSwMxEE3Xr1o/q0cRgm1FQequFz0KKnoQUbRVaItk0+k2NJtdklmhLP0JXvW3+Uu8ml2L2OpA4PHeG+Zlxo+lMOi6HwVnZnZufqG4WFpaXlldWy9vNE2UaA4NHslIP/nMgBQKGihQwlOsgYW+hEd/cJbpjy+gjYjUAw5j6IQsUKInOENL3Vcvqs/rFbfu5kX/Am8MKmRct8/lQrvdjXgSgkIumTEtz42xkzKNgksYldqJgZjxAQugZaFiIZhOmmcd0ZplurQXafsU0pz93ZGy0Jhh6FtnyLBvprWM/E9rJdg76aRCxQmC4t+DeomkGNHs47QrNHCUQwsY18JmpbzPNONo11Oq5ZEGMFQRAu2DfAHrYFSKoI951Mkk+fwY+KhUaxvAkAmVmdKrn84bSOBHteZM3jsXgUBzcG23rw4uNcBgf7rF3sOb3v5f0Dyqe27duzuqnFbHlymSLbJD9ohHjskpuSK3pEE4CcgreSPvhU9n26k6u99WpzDu2SQT5Rx+ASjav18=</latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit>

SKETCH

SKETCH

Synthesized program

Figure 2. Synthesizing a function to compute the transpose of a matrix using Sketch and SketchAX.

if we permute the rows of the input matrix, the columns of
its transpose will be permuted in the same way. SketchAX
applies this perturbation property to E, thereby enabling
Sketch to synthesize the correct program. For instance, the
highlighted example in E in Fig. 2 is perturbed by swapping
the top 2 rows of the input matrix and swapping the left 2
columns of the output matrix to yield the highlighted per-
turbed example.

arrayAdd. The top half of Fig. 3 shows a partial program
and example set used to synthesize a program that performs
the element-wise addition of two arrays in1 and in2. The
program generated by Sketch is incorrect. SketchAX ap-
plies a value perturbation property to the examples, enabling
Sketch to synthesize the correct program. Specifically, if

in1 is perturbed by adding d1 to each of its elements and
in2 is perturbed by adding d2 to each of its elements, each
element of the output array should be perturbed by d1 + d2.
The perturbed examples shown in the bottom half of Fig. 3
are obtained using d1,d2 ∈ {0, 1}.
Remark. Here, we do not discuss the source of relational
perturbation properties. Recall that our framework supports
three user interfaces to help infer relevant properties. Our
procedures for all user interfaces are presented in Sec. 5.

3 Preliminaries

We first define our models of programs and example-based
synthesizers.
Programs. The semantics JPK of a program P is a function
JPK : Din 7→ Dout mapping variables over an input domain

3
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int[4] arrAdd(int[4] in1, int[4] in2) { 
  int[4] out = ((int[4])0); 
  out[1] = (in1[1]) + (in2[1]); 
  out[3] = (in1[2]) + (in2[1]); 
  out[2] = (in1[2]) + (in2[2]); 
  out[0] = (in1[0]) + (in2[0]); 
  return out; 
}

int[4] arrAdd(int[4] in1, int[4] in2) { 
  int[4] out = ((int[4])0); 
  out[3] = (in1[3]) + (in2[3]); 
  out[1] = (in1[1]) + (in2[1]); 
  out[0] = (in1[0]) + (in2[0]); 
  out[2] = (in1[2]) + (in2[2]); 
  return out; 
}

int[4] arrAdd(int[4] in1, int[4] in2) { 
  int[4] out=0; 
  repeat(!") { 
    out[!"] = in1[!"] + in2[!"]; 
  } 
  return out; 
}

Partial program

({2,1,1,0},{2,1,2,2}) !$ {4,2,3,2}; 
({1,0,1,0},{0,1,1,2}) !$ {1,1,2,2}; 
({0,1,2,2},{0,2,2,2}) !$ {0,3,4,4};

({2,1,1,0},{2,1,2,2}) !$ {4,2,3,2}; ({2,1,2,1},{0,1,1,2}) !$ {2,2,3,3}; 
({2,1,1,0},{3,2,3,3}) !$ {5,3,4,3}; ({2,1,2,1},{1,2,2,3}) !$ {3,3,4,4}; 
({3,2,2,1},{2,1,2,2}) !$ {5,3,4,3}; ({0,1,2,2},{0,2,2,2}) !$ {0,3,4,4}; 
({3,2,2,1},{3,2,3,3}) !$ {6,4,5,4}; ({0,1,2,2},{1,3,3,3}) !$ {1,4,5,5}; 
({1,0,1,0},{0,1,1,2}) !$ {1,1,2,2}; ({1,2,3,3},{0,2,2,2}) !$ {1,4,5,5}; 
({1,0,1,0},{1,2,2,3}) !$ {2,2,3,3}; ({1,2,3,3},{1,3,3,3}) !$ {2,5,6,6};

Augmented example set

Example set E
<latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit><latexit sha1_base64="VmQhw0VYrGrQdWkYLDDRFRLAAiE="></latexit>

SKETCH

SKETCH

Synthesized program

Figure 3. Synthesizing a function to compute the sum of two arrays using Sketch and SketchAX.

Din to variables over an output domain Dout . For simplicity
of presentation, we assume that Din , Dout range over arrays
of integers. Our implementation can handle a wider variety
of variable domains including scalars, arrays and matrices1
over Booleans and integers. We use Dn to denote a domain
of integer arrays of size n. We say a program P is consistent
with an input/output (I/O) example (x ,y) if JPK(x) = y.
Equivalent programs. Two programs P and P ′ are equiva-
lent, denoted P ≡ P ′, if P and P ′ share the same input domain
Din , and, ∀x ∈ Din . JPK(x) = JP ′K(x).
Synthesizers. An example-based synthesizer, also sometimes
referred to as a synthesizer, accepts as input a set E of I/O ex-
amples and generates a program P that is consistent with all
examples in E. We sometimes refer to I/O examples simply as
examples. Given a synthesizer S and a set E of examples, we
use S(E) to denote the program generated by S2. We assume
that all user-provided examples are free of error and noise,
i.e., all examples are consistent with the implicit specification
a user may have in mind.

Some synthesizers are constraint-based. Such synthesizers
accept constraints in first-order logic (modulo background
theories) and use satisfiability modulo theory (SMT) solvers
to generate a program that satisfies all constraints. Note that
I/O examples can easily be encoded as constraints. Given
a set C of constraints, we use S(C) to denote the program
generated by a constraint-based synthesizer S in its Max-
SMT mode.

In our work, we assume a constraint-based synthesizer can
solve a Partial Max-SMT problem. Thus, the synthesizer can
accept a set of constraints that are declared to be hard (i.e.,
non-relaxable) or soft (i.e., relaxable). Given hard constraints
Chard and soft constraintsCsof t , the synthesizer generates a

1Matrices are modeled as arrays in our implementation.
2We assume that a synthesizer is deterministic. While many synthesizers
may execute nondeterministically, they have options to force deterministic
behavior. For instance, one can use the ‘–slv-seed’ option for the synthesizer
Sketch to force determinism.

program, denoted S(Chard ,Csof t ), that satisfies all the hard
constraints and maximizes the number of satisfied soft con-
straints.

4 Relational Perturbation Properties

We now formalize our notion of relational perturbation. We
first present a fairly general parametric notion of relational
perturbation and then present interesting instantiations that
are used in our evaluation in Sec. 7.
Perturbation arrays and functions.We consider two classes
of perturbation that can be applied to (integer) arrays: struc-
tural and value perturbation. A structural perturbation func-
tion applied to an array changes the positions of the array
elements according to a given structural perturbation array
of indices. A value perturbation function applied to an array
changes the values of all array elements according to a given
value perturbation array of parameters. Thus, a structural per-
turbation function does not modify the values of an array, a
value perturbation function does not modify the positions of
array elements, and neither perturbation function modifies
the size of an array.

Definition 4.1 (Structural perturbation array). A structural
perturbation array of size n, Qn , is an array of indices in
Dn : (1) ∀i ∈ {0, . . . ,n − 1}. Qn[i] ∈ {0, . . . ,n − 1} and (2)
∀i, j ∈ {0, . . . ,n − 1}. Qn[i] = Qn[j] ⇒ i = j.

Definition 4.2 (Structural perturbation function). LetQn be
a structural perturbation array. AQn-structural perturbation
function f sQn

: Dn 7→ Dn applied to an array x ∈ Dn returns
an array x ′ ∈ Dn such that ∀i ∈ {0, . . . ,n − 1}. x[i] =
x ′[Qn[i]].

Example 4.3. In Fig. 1, the input array [−1,−3,−2] in the
highlighted example of E ′ can be obtained by applying the
[0, 2, 1]-structural perturbation function to the input array
[−1,−2,−3] in the highlighted example of E. We write this
as: f s

[0,2,1]([−1,−2,−3]) = [−1,−3,−2].
4
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Example 4.4. The application of f s
[n−1,n−2...,0] to an array

x ∈ Dn returns an array that reverses the elements of x .

The set of all structural perturbation arrays of size n is
denoted Qn . Note that if n = 1, thenQ1 = [0] and f sQ1

(x) = x

for any x ∈ D1. We refer to the identical structural pertur-
bation array [0, 1, . . . ,n − 1] as idsn . Thus, f sidsn (x) = x for
any x ∈ Dn . We refer to the structural perturbation array
[k + 1, . . . ,n − 1, 0, 1, . . . ,k], corresponding to a rotation to
the right by k positions, as rotkn , and the complementary
structural perturbation array, corresponding to a rotation to
the left by k positions, as rot−kn .

Definition 4.5 (Value perturbation array). A value pertur-
bation array, V = [d1,d2], is an array of rational-valued
parameters d1,d2 ∈ Q.

Definition 4.6 (Value perturbation function). Given a value
perturbation arrayV = [d1,d2], aV -value perturbation func-
tion f vV : Dn 7→ Dn applied to an array x ∈ Dn returns an ar-
ray x ′ ∈ Dn such that ∀i ∈ {0, . . . ,n− 1}. x ′[i] = d1x[i]+d2.

Example 4.7. The application of f v
[2,1] to the array x =

[2, 3, 5, 7] yields the array y = [5, 7, 11, 15] and the appli-
cation of f v

[1/2,−1/2] to y yields x again.

Example 4.8. While the current formalization is limited to
single input arrays, we use the example from Figure 3 to illus-
trate how the formalization extends naturally to multiple in-
put arrays. In Figure 3, the input arrays ([2, 1, 1, 0], [3, 2, 3, 3])
in the highlighted perturbed example can be obtained by ap-
plying a ([1, 0], [1, 1])-value perturbation function to the in-
put arrays ([2, 1, 1, 0], [2, 1, 2, 2]) in the highlighted example
of E; the first input array is left unchanged and the elements
of the second input array are incremented by 1.

Thus, a value perturbation function applies the same affine
transformation to all elements of an array. The (infinite) set
of all value perturbation arrays is denoted V . We refer to
the identical value perturbation array [1, 0] as idv .

Relational perturbation properties. We define relational
perturbation properties to relate perturbed inputs to corre-
sponding perturbed outputs of programs. We use A and f
to denote both structural and value perturbation arrays and
functions, respectively. We refer to a perturbation array and
perturbation function applied to the input (output) of a pro-
gram as an input (output) perturbation array Ain (Aout ) and
an input (output) perturbation function fAin (fAout ), respec-
tively.

Henceforth, we fix the sizes of input and output arrays to
be n,m, respectively.

Definition 4.9 (Relational perturbation property). A rela-
tional perturbation property R is a tuple (K1,K2, ⊕,Ain) of
a matrix K1 of rationals, an array K2 of rationals, an opera-
tor ⊕ and a set Ain of input perturbation arrays such that:

for each Ain ∈ Ain , the corresponding output perturbation
arrayAout = K1Ain ⊕K2

3. The operator ⊕ ∈ {+,+m} where
+ is addition and +m is addition modulom.

Note that the above definition of a relational perturbation
property is very general and can potentially be instantiated
in infinitely many ways using its parameters K1, K2 andAin .
We present two classes of interesting instantiations below
that are our evaluation focuses on (Sec. 7). In what follows,
0m×n denotes the zero matrix of sizem × n and In denotes
the identity matrix of size n.
Structural relational perturbation properties. These are pertur-
bation properties where both the input and output perturba-
tion is structural. Thus, each Ain is a column vector of size
n, Aout is a column vector of sizem, the matrix K1 is of size
m×n, the array K2 is a column vector of sizem, and ⊕ = +m .

1. Permutation invariance. Permutation invariance spec-
ifies that the program output does not change when
the elements of the program input (array) are per-
muted. Formally, for all Qn ∈ Qn , we have JPK(x) =
JPK(f sQn

(x)). Permutation invariance is the relational
perturbation property (0m×n , id

s
m ,+m ,Qn). Note that

for all Qn ∈ Qn , Aout = 0m×n Qn +m idsm , i.e., Aout =

idsm , as desired.
2. Permutation preservation. For this property, we assume

that the sizes of input and output arrays are the same,
i.e., n = m. Permutation preservation specifies that
when the elements of the program input are permuted,
the elements of the program output are permuted in
the same way. Formally, for all Qn ∈ Qn , we have
f sQn

(JPK(x)) = JPK(f sQn
(x)). This can be represented as

the relational perturbation property (In , 0n×1,+n ,Qn).
3. (k,−k)-rotation. For this property, we also assume that

n = m. (k,−k)-rotation specifies that when the ele-
ments of the program input are rotated to the right
by k positions, the elements of the program output
are rotated to the left by k positions. Formally, for all
k ∈ {−(N − 1), . . . ,N − 1}, we have f s

rot−kn
(JPK(x)) =

JPK(f s
rotkn

(x)). This can be represented as the relational

perturbation property (In ,kn×1,+n , {rot
k
n | k ∈ {−(N−

1), . . . ,N − 1}}), where kn×1 is a column vector of size
n with all elements equal to k .

Value relational perturbation properties. These are perturba-
tion properties where both the input and output perturbation
are value perturbations. Here,Ain ,Aout and the array K2 are
all column vectors of size 2, the matrix K1 is of size 2 × 2,
and ⊕ = +.

1. Value invariance. Value invariance specifies that for
all V ∈ V , we have JPK(x) = JPK(f vV (x)). Value invari-
ance can be represented by the relational perturbation
property (02×2, id

s
2 ,+,V).

3For convenience, we assume arrays are column vectors.
5
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2. Value preservation. Value preservation specifies that for
all V ∈ V , we have f vV (JPK(x)) = JPK(f vV (x)) and can
be represented as the relational perturbation property
(I2, 02×1,+,V).

We define two additional value perturbation properties
that are used in our evaluation (Sec. 7): Vдiven-value invari-
ance andVдiven-value preservation. These restrict the focus
to a given set Vдiven of value perturbation arrays, instead
of the set V of all possible value perturbation arrays.

Relational perturbation functions. Relational perturba-
tion functions capture the notion of applying a relational
perturbation property R to an example set E. Informally,
the application of an R-relational perturbation function to E
yields a perturbed example set Eper t obtained by perturbing
each example in E according to R.

Definition 4.10 (Relational perturbation function). Given
relational perturbation property R = (K1,K2, ⊕,Ain), an R-
relational perturbation function fR : (Dn ,Dm) 7→ (Dn ,Dm)

applied to an example set E returns an example set Eper t
such that (x ′,y ′) ∈ Eper t iff there exist (x ,y) ∈ E and Ain ∈

Ain such that x ′ = fAin (x) and y ′ = fAout (y) with Aout =

K1Ain ⊕ K2.

5 Algorithmic Framework

We now present our overall solution framework to improve
the generalizability of existing example-based synthesizers.
Our framework supports three different user interfaces that
differ in the degree of user involvement in identifying suit-
able relational perturbation properties for an example-based
synthesis problem. All our solutions are synthesizer-agnostic.
The solutions for the first two user interfaces apply to any
example-based synthesizer and the solution to the third user
interface applies to any constraint-based (example-based)
synthesizer. In Sec. 6, we describe how to specialize these
solutions to the Sketch synthesizer.

Algorithm 1: Example Augmentation
1 procedure PerturbExamples(E, R)

Input :E: a set of I/O examples
R = (k1,k2, ⊕,Ain): a relational
perturbation property

Output :Eper t : a set of I/O examples obtained by
applying R to E

2 Eper t = ∅

3 foreach (x ,y) ∈ E do

4 foreach Ain ∈ Ain do

5 Eper t = Eper t ∪ {(fAin (x), fk1Ain ⊕k2 (y))}

6 return Eper t

We begin with a procedure that implements the core strat-
egy of our framework: augment user-provided example sets by

applying relational perturbation properties. Given an example
set E and a relational perturbation property R, this simple
procedure, shown in Algo. 1, perturbs each example in E by
applying R to it according to Def. 4.10.

In what follows, instead of reasoning about parameterized
relational perturbation properties (which can possibly be
instantiated in infinitely many ways), we restrict our focus
to a finite set of relational perturbation properties.

5.1 Augmented Synthesis: User Interface I

Algorithm 2: Augmented Synthesis: User Interface I
1 procedure AugmentSynthesisI(E, R, S)

Input :E, R: as before
S : an example-based synthesizer

Output :P : a program consistent with examples in E

2 Eauд = E

3 for R ∈ R do

4 Eper t = PerturbExamples(R,E)

5 Eauд = Eauд ∪ Eper t
6 return S(Eauд)

In User Interface I, the user provides an example set E
and a finite set R of relational perturbation properties. Our
solution for this user interface is shown in Algo. 2. We ex-
plicitly identify user inputs/interactions in a procedure by
underlining them. Note that besides E and R, the procedure
also requires as input a synthesizer S . Unlike E and R which
are user-provided inputs (hence, underlined), the synthesizer
S is a tunable parameter of our framework.

Given these inputs, Algo. 2 generates a program consistent
with examples in E. The procedure first uses Algo. 1 to obtain
an augmented example set Eauд by perturbing the examples
in E with all the properties inR. Then, the procedure invokes
synthesizer S using Eauд to generate the output program.

5.2 Augmented Synthesis: User Interface II

In User Interface II, the user provides an example set E and in-
teracts with our framework to validate/invalidate perturbed
examples. The user burden in this case is less than User Inter-
face I — instead of picking applicable relational perturbation
properties, the user only needs to examine examples. As
before, the user inputs/interactions are underlined in our
procedure, Algo. 3, for this user interface. The procedure is
additionally parameterized by a synthesizer S , a set of rela-
tional perturbation properties R, and the number n of user
interactions per property.

For each property in R, Algo. 3 uses Algo. 1 to generate a
set Eper t of perturbed examples. Then, a set of n randomly
chosen perturbed examples from Eper t are shown to the user.
If the user accepts all n perturbed examples, the example
set E is augmented with the perturbed examples Eper t . The
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Algorithm 3: Augmented Synthesis: User Interface II
1 procedure AugmentSynthesisII(E, S , R, n)

Input :E, S , R: as before
n: the number of perturbed examples
shown to a user

Output :P : a program consistent with examples in E

2 Eauд = E

3 for R ∈ R do

4 Eper t = PerturbExamples(R,E)

5 Erand = RandomlyChoose(Eper t ,n)

6 if UserAccept(Erand ) then

7 Eauд = Eauд ∪ Eper t
8 return S(Eauд)

procedure invokes synthesizer S using the final augmented
example set Eauд to generate the output program.

5.3 Augmented Synthesis: User Interface III

Algorithm 4: Augmented Synthesis: User Interface III
1 procedure AugmentSynthesisIII(E, S , R)

Input :E, R: as before
S : a constraint-based synthesizer

Output :P : a program consistent with examples in E

2 Chard = {P(x) = y | (x ,y) ∈ E}

3 Csof t = ∅

4 for R ∈ R do

5 Eper t = PerturbExamples(R,E)

6 C = true;
7 for (x ,y) ∈ Eper t do
8 C = C ∧ (P(x) = y)

9 Csof t = Csof t ∪ {C}

10 L = AllMaxSMTSol(S,Chard ,Csof t )

/* RL: the set of property sets in L */

11 return AugmentSynthesisI (E, Rank(RL), S)

In User Interface III, the user only provides an example set
E. The user burden in this case is obviously the least among
all our user interfaces. In fact, there is no additional burden
on the user beyond a standard PBE setting. Not surprisingly,
this user interface is the most challenging for our frame-
work as we need to automatically infer relevant relational
perturbation properties without any help from a user. Our
solution, based on a Partial Max-SMT formulation, is shown
in Algo. 3. Besides the (underlined) user-provided example
set, the procedure is parameterized by a synthesizer S and a
set of relational perturbation properties R. We require S to
be a constraint-based synthesizer. Thus, S can solve a Partial
Max-SMT problem.

For each example in E, the procedure generates a corre-
sponding hard constraint. For each property R ∈ R, the
procedure generates a soft constraint corresponding to the
set of perturbed examples obtaining by applying R to E (us-
ing Algo. 1). Once all constraints are generated, we have
a Partial Max-SMT synthesis problem defined by the tu-
ple (S,Chard ,Csof t ) A solution (P ,R∗) to this partial Max-
SMT synthesis problem consists of a program P , synthe-
sized by S , which is consistent with the set of all examples
in E (i.e., Chard ) and all examples perturbed according to
some maximal subset of properties R̄⊆2R (corresponding to
a maximally satisfiable set of soft constraints inCsof t ). Note
that, in general, there can be multiple such solutions, say
{(P1, R̄1), . . . , (Pt , R̄t )}; let us denote this set by L. If Algo. 4
were to simply return S(Chard ,Csof t ), this would be a pro-
gram P corresponding to an arbitrary solution (P , R̄) from
L (based on the search strategy of S). In particular, P may
not be the most generalizable program and R̄ may not be the
most suitable property set for the given example-based syn-
thesis problem. While it is not clear how to formally define
optimality of solutions to the Partial Max-SMT synthesis
problem, Algo. 4 uses a more sophisticated approach than
simply returning S(Chard ,Csof t ).

First, Algo. 4 uses a procedure AllMaxSMTSol to obtain the
entire set L of Partial Max-SMT synthesis solutions (Line
10). Let RL denote the set of property sets in L. In Line
11, Algo. 4 uses a procedure Rank to obtain the property set
in RL ranked highest by a ranking function and invokes
Algo. 2 with this highest ranked property set.

The procedures AllMaxSMTSol and Rank can be instanti-
ated inmanyways.We describe our specific implementations
in the next section.

5.4 Correctness

An example-based synthesizer S is sound if: whenever S gen-
erates a program P from a set E of examples, P is guaranteed
to be consistent with all examples in E. An example-based
synthesizer S is complete if: whenever there exists a program
in S ’s hypothesis space consistent with examples in a given
example set E, S can always generate such a program.

Recall that we assume that a user does not make mistakes:
all user-provided/validated examples are free of error.

Theorem 5.1. The synthesis procedures in Algo. 2, Algo. 3
and Algo. 4 are sound and complete if the synthesizer S is sound
and complete.

Note that we are unable to provide any formal guarantees
about the generalizability of the programs synthesized by
our procedures. However, as we will see in Sec. 7, all our
procedures can significantly improve the generalizabity of
the Sketch synthesizer.
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int [N] F ( int [N] in ) {
?? / / h o l e s in unknown program
r e t u r n out ;

}
harness void use rP rov i dedE (E ) {

for ( in , out ) ∈ E :
assert out == F ( in ) ;

}
harness void augmentedE (Eper t ) {

for ( in , out ) ∈ Eper t :
assert out == F ( in ) ;

}

Figure 4. Sketch encoding for Algo. 1.

6 SketchAX

In this section, we describe the key components of the special-
ization, SketchAX, of our framework to the Sketch synthe-
sizer. Besides the basic Sketch encoding of our algorithms,
we present an efficient alternative to AugmentSynthesisIII
and a novel procedure for learning a ranking function over
property sets from training data.
Basic Sketch encoding. The main idea of the Sketch en-
coding for all our algorithms (see Fig. 4) is to use the harness
function in Sketch to impose I/O constraints, correspond-
ing to user-provided and augmented examples, as assert
statements.
Implementation of AugmentSynthesisIII. When using
an exact encoding of Algo. 4 in Sketch, we found that
Sketch often struggles to complete the difficult Partial Max-
SMT optimization problem within a specified time bound
(even for returning one solution). Hence, we encode a simple
greedy procedure for solving the maximization constraint:
instead of considering all properties in R at once, the proce-
dure performs a greedy search over subsets of properties in
R of increasing sizes. The procedure marks a property set
as satisfiable if AugmentSynthesisI can successfully syn-
thesize a program using the property set and Sketch. The
procedure maintains largest satisfiable subsets of properties
until no subset can be expanded any further, or the procedure
exceeds a time bound. Note that the procedure generates
all solutions to the Partial Max-SMT that can be computed
within the time bound.
Learning a ranking function. Algo. 5 describes our pro-
cedure for learning a ranking function over property sets in
R from a training set. The training set consists of a list of
successful augmented synthesis instances from User Interface
I; each instance contains an I/O example set, a correct set
of relational perturbation properties, and a correct program
synthesized by AugmentSynthesisI using the properties;
correctness of the program and property set is verified using
a complete functional specification. The procedure accepts
the training set as three separate lists, ET , PT and RT as
shown and outputs a ranked list A of property sets. Note

Algorithm 5: Learning the Ranking Function
1 procedure LearnRank(ET ,PT ,RT , S)

Input :ET : a list of n I/O example sets
PT : a list of n correct synthesized
programs
RT : a list of n correct property sets
S : an example-based synthesizer

Output :A: a ranked list of property sets
/* D is a dictionary */

2 D = {}

3 for i ∈ [1, 2, . . . ,n] do
4 L = AllMaxSMTSynthesis(ET [i], S, R)

5 L+ = {(P , R̄) | (P , R̄) ∈ L ∧ R̄ ⊆ RT [i]}

6 L− = L \ L+

7 for (Pj , R̄j ) ∈ L+ do

8 for (Pk , R̄k ) ∈ L−
do

9 if “R̄j > R̄k ” < L then

10 D[“R̄j > R̄k ”] = 0
11 if Pj ≡ P

T [i] then
12 D[“R̄j > R̄k ”]+ = 1
13 foreach ‘R̄j > R̄k ” ∈ D do

14 if “R̄k > R̄j ” ∈ D then

15 if D[“R̄j > R̄k ” ] ≥ D[“R̄k > R̄j ” ] then
16 delete “R̄k > R̄j ” from D

17 else

18 delete “R̄j > R̄k ” from D

19 A = RankProperties(D,R)

20 return A

that LearnRank can be parameterized by any example-based
synthesizer S (it uses Sketch in SketchAX).

The ranked listA is computed from a dictionaryD, where
a key is a string (of the form “R1 > R ′′

2 ) representing an
ordered pair of property sets and the value is the number
of successful instances of that ordering in the training set.
Let AllMaxSMTSynthesis denote a version of the procedure
AugmentSynthesisIII that is identical till Line 10 and re-
turns the set L of all solutions to a Partial Max-SMT syn-
thesis problem (computed in Line 10). For each example
set in the training set, LearnRank updates the dictionary
in Lines 4–12 as follows. Given the ith example set ET [i],
AllMaxSMTSynthesis is used to infer the set L of all solu-
tions (P , R̄) using the example set. If the property set R̄ of a
solution is a subset of the corresponding correct set of prop-
erties in RT [i], the solution is added to the set L+ of accepted
solutions. If not, the solution is added to the set L− of re-
jected solutions. The dictionary is updated by creating entries
with keys that order every property set in L+ above every
property set in L− (Lines 7–10). Moreover, each time the
program in an accepted solution is found to be semantically
equivalent to the known correct program PT [i], the value
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for the corresponding entry in the dictionary is incremented
(Lines 11–12).

Finally, a simple processing in Lines 14–18 ensures con-
sistency of the dictionary by making sure the ordering re-
lation is anti-symmetric (the ordering with the lower value
is deleted). Note that the dictionary encodes a partial order
between property sets as not all property sets may be or-
dered. The procedure RankProperties returns a ranked list
of property sets over R compatible with the dictionary.

7 Evaluation

Our comprehensive evaluation of SketchAX investigates
the improvement over Sketch in synthesis of correct bench-
marks and the run-time performance of our algorithms for
all three user interfaces. We also take a closer look at the sen-
sitivity to parameters such as training set size and example
set size. In what follows, the implementations in SketchAX
of the algorithms for the three user interfaces are denoted
SketchAX I, SketchAX II and SketchAX III, respectively.
Experimental setup We focus on the following set of rela-
tional perturbation properties as they suffice for the bench-
marks we considered — p1: permutation invariance, p2: per-
mutation preservation, p3: (k,−k)-rotation, p4:Vadd -value
preservation, p5: Vmult -value preservation and p6: permu-
tation transposition. Here,Vadd is {[0,d] | d ∈ {1, . . . , 10}}
and Vmult is {[d, 0] | d ∈ {2, . . . , 10}}. Thus, property p4
perturbs inputs/outputs by adding d ∈ {1, . . . , 10} to all ele-
ments and property p5 perturbs inputs/outputs by multiply-
ing all elements with d ∈ {2, . . . , 10}. Property p6, illustrated
in Fig. 2, applies an identical permutation to the rows and
columns of input and output matrices, respectively.

We analyze the effectiveness of SketchAX on 168 bench-
marks from Sketch Repositories [1]. Each benchmark was
automatically selected using a script based on the following
requirements: (1) there is a complete functional specifica-
tion for the benchmark; (2) the benchmark contains at least
one hole; (3) Sketch can synthesize a program from the
benchmark; (4) and the input/output of the benchmark are
of types bit/int or their arrays. Based on the input/output
types, we further classify the 168 benchmarks into 3 classes:
Bit benchmarks which only use bits/bit-vectors; Int bench-
marks which only use int/int arrays; and Mixed benchmarks
which use both bits/bit-vectors and int/int arrays.

We leverage the complete functional specifications of the
benchmarks to check the correctness of synthesized pro-
grams (using the keyword implements in Sketch for check-
ing program equivalence).
In our default setting, we evaluate the success rate of

Sketch and our algorithms over 10 runs for each bench-
mark, yielding 1680 synthesis instances in total. Each run
uses a different set of 3 I/O examples, randomly generated
from the complete functional specification. We set a timeout
of 5 minutes for synthesis-solving across all experiments.

For the perturbation of an I/O example with a relational per-
turbation property (Line 5 in AugmentSynthesisI), we set
a timeout of 5 seconds and an upper-bound of 128 perturbed
examples to ensure Sketch terminates within a reasonable
time. On average, we generated 160 perturbed examples for
each benchmark.

We use Sketch version 1.7.5. We ran our experiments on
shared servers equipped with Intel E5320@1.86GHz CPU
and 8GB RAM.

7.1 SketchAX I
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Figure 5. Instance success rate of Sketch and SketchAX I.
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Figure 6. Benchmark success rate of Sketch and
SketchAX I.
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Figure 7. Improvement of benchmark success ratew.r.t. vary-
ing thresholds for defining successful benchmark synthesis.

Figures 5 and 6 summarize the results of our synthesis
experiments with Sketch and SketchAX I. For each bench-
mark, the applicable relational perturbation properties (from
p1, . . . ,p6) are manually chosen by us. Fig. 5 shows the in-
stance success rate for different benchmark categories. Recall
that there are 10 synthesis instances per benchmark. The
instance success rate is the percentage of synthesis instances
that yield correct synthesized programs. The numbers below
each benchmark category on the x-axis indicate the number
of benchmarks in that category. Fig. 6 shows the benchmark
success rate for different benchmark categories. A benchmark
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Figure 8. Instance success rate of Sketch and SketchAX algorithms.
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Figure 9. Benchmark success rate of Sketch and SketchAX algorithms.

synthesis is declared successful if at least 70% if its synthesis
instances yield correct synthesized programs. The bench-
mark success rate is then simply computed as the percentage
of benchmarks whose synthesis is successful. We later inves-
tigate other thresholds for defining a successful benchmark
synthesis ( Fig. 7).

Let us first take a closer look at Fig. 5. The numbers within
the SketchAX I bars indicate the improvement over the
instance success rate of Sketch with SketchAX I. The over-
all improvement in the instance success rate of Sketch
with SketchAX I is 13.2%. The improvement is significantly
higher (35%) for benchmarks which satisfy at least one of
the relational perturbation properties p1, . . . ,p6, thereby val-
idating our fundamental hypothesis. The improvement is
astronomical (182.1%) for Bit benchmarks satisfying some
perturbation properties, a category in which Sketch does
not perform too well by itself. The improvement for Int
benchmarks satisfying some properties is small (3.3%) as
Sketch performs really well in this category by itself. The
improvement for benchmarks that do not satisfy any proper-
ties and for Mixed benchmarks is negligible. It is important
to note, though, that even for benchmarks that do not satisfy
any properties, SketchAX’s success rate does not fall below
that of Sketch.
The improvements in benchmark success rates, shown

in Fig. 6, are higher: 17.5% for all benchmarks, 233% for Bit
benchmarks satisfying some properties, and 5.6% for Int
benchmarks satisfying some properties.

In Fig. 7, we investigate the effect of different thresh-
olds for defining successful benchmark synthesis. The y-
axis tracks the improvement in benchmark success rate of
SketchAX I over Sketch for all benchmarks. Notice that
for all thresholds, SketchAX performs better than Sketch,
typically by more than 15%. However, for the 100% thresh-
old, the improvement drops to 10.7%. Since our example sets
are randomly-generated, there are often 1-2 example sets
of particularly poor quality, for which SketchAX I fails to
synthesize correct programs.
Henceforth, we use 70% as the default threshold to mea-

sure benchmark success rate.

7.2 SketchAX II

Figures 8 and 9 summarize the results of our synthesis ex-
periments with Sketch and all SketchAX algorithms. Note
that there is an extra category — Test benchmarks — in
these figures and the numbers associated with the other cat-
egories have changed from Figures 5 and 6. As mentioned
in Sec. 6, we need to partition the benchmarks to train and
test the ranking function. Hence, we randomly choose 49
of the 168 benchmarks to learn our ranking function, and
test SketchAX III on the rest. To keep the comparison fair,
we use the same test benchmarks to also evaluate the other
algorithms. We investigate other choices for partitioning the
benchmarks later (see Fig. 10).
Figures 8 and 9 show that SketchAX II, which employs

a user to validate 1 perturbed example per property, has a
similar performance as SketchAX I across all categories.
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Figure 10. Effectiveness of ranking function for varying
training set sizes

Further, observe that for the benchmarks which do not sat-
isfy any properties, SketchAX II performs slightly better
than SketchAX I, leading to a small overall improvement
in its success rate across all benchmarks. There is an inter-
esting explanation for this. For some synthesis instances,
some relational perturbation properties hold on the given
example set even though the properties don’t hold for the
program in general. Thus, the user validates the resulting
perturbed examples and SketchAX II applies the properties
to successfully augment the example set and the synthesis.
In contrast, SketchAX I does not apply such properties to
the example set and hence, fails to augment the synthesis in
these cases.

We also tested SketchAX II by having the user validate 2
and 3 perturbed examples per property and found that the
results were similar.

7.3 SketchAX III

The noteworthy improvements in success rates over Sketch
we have discussed so far have been for SketchAX with User
Interfaces I and II, where the user plays an active role in pro-
viding or helping infer an applicable set of relational pertur-
bation properties. The real testament to SketchAX’s ability
to augment Sketch lies in the success rates of SketchAX III
in Figures 8 and 9. SketchAX III performs similar to Sketch
in most categories, with a small overall improvement for all
(test) benchmarks. The reason for this small overall improve-
ment is the same as for SketchAX II.

Effectiveness of ranking function and impact of train-

ing set size. The learned ranking function is clearly a key
contributor to the success of SketchAX III. We take a closer
look in Fig. 10 at the effectiveness of a learned ranking func-
tion over the Bit benchmarks. We focus on this benchmark
category as changes in effectiveness are more obvious (than
in categories where the improvement of SketchAX III over
Sketch is less). We define the effectiveness of a ranking
function as its success rate divided by the (maximal) suc-
cess rate of AllMaxSMTSynthesis (see Algo. 5). Recall that
AllMaxSMTSynthesis returns the set of all solutions to a
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Figure 11. Time cost of Sketch, SketchAX I and
SketchAX III.

Table 1. Statistical view of time cost (in seconds).

Sketch SketchAX I SketchAX III
Average 1.52 9.14 64.79

1st quartile 1.02 1.12 3.19
Median 1.08 1.34 8.88

3rd quartile 1.25 2.13 28.06

Partial Max-SMT synthesis problem. An instance of using
AllMaxSMTSynthesis is declared successful if any of the
solutions it generates contains a correct program. Obvi-
ously, this give us an upper-bound for the success rate of
SketchAX III, regardless of what ranking function we use.
Fig. 10 compares the effectiveness of our learned ranking
strategywith that of a ranking function that randomly choses
a property set from the set of all Partial Max-SMT solutions.
Our learned ranking function is clearly more effective.

We also evaluate the impact of the size of the training set
on the effectiveness of the ranking strategy. The x-axis in
Fig. 10 indicates the training set size as a percentage of the
168 benchmarks, with the training benchmarks chosen ran-
domly. Fig. 10 demonstrates that a training set that uses 30%
of the benchmarks yields a ranking function with effective-
ness 99.2%. This justifies our default choice of the training
set size.
Inference of correct property sets. Since SketchAX III in-
fers relevant property sets to use to augment examples, we ex-
amine its inference accuracy. For the 41 test benchmarks that
satisfy some properties, this inference accuracy tracks the
percentage of synthesis instances for which SketchAX III
inferred property sets that are subsets of the correct property
sets. The inference accuracy is 93.3%, 100% and 94.2% for Bit,
Int and Mixed benchmarks, respectively, and 95.9% overall.
Thus, the inference accuracy of SketchAX III is quite high.

7.4 Time cost of SketchAX

Fig. 11 shows the total synthesis time taken by Sketch and
SketchAX I and SketchAX III on each of the 119 test bench-
marks. We exclude SketchAX II as, barring the user interca-
tions (whose time cost is hard to estimate), the computations
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Table 2. Instance success rate (%) with varying example set size

(78) Bit benchmarks (15) Bit benchmarks sat. properties (63) Bit benchmarks sat. no properties
1 ex. 2 ex. 3 ex. 4 ex. 5 ex. 1 ex. 2 ex. 3 ex. 4 ex. 5 ex. 1 ex. 2 ex. 3 ex. 4 ex. 5 ex.

Sketch 32.2 45.8 56.8 61.8 65.4 18.0 22.7 31.3 35.3 40.7 35.6 51.3 62.9 68.1 71.3
SketchAX I 39.1 55.1 65.6 71.2 73.9 45.3 68.7 80.7 84.0 84.0 37.6 51.9 62.1 68.1 71.4
Improvement 21.5 20.5 15.6 15.2 12.9 151.9 202.9 157.5 137.7 106.6 5.8 1.2 -1.3 0.0 0.2
SketchAX II 40.5 56.4 67.7 72.1 74.2 44.7 68.7 80.7 84.0 84.0 39.5 53.5 64.6 69.2 71.9
Improvement 25.9 23.3 19.2 16.6 13.5 148.2 202.9 157.5 137.7 106.6 11.2 4.3 2.8 1.6 0.9
SketchAX III 42.4 59.1 67.7 71.8 74.1 45.3 68.7 80.0 82.0 83.3 41.7 56.8 64.8 69.4 71.9
Improvement 31.9 29.1 19.2 16.2 13.3 151.9 202.9 155.3 132.1 104.9 17.4 10.8 3.0 1.9 0.9

in SketchAX II are almost identical to those in SketchAX I.
We also exclude the disproportionately high time (42 min-
utes) taken by SketchAX III on on one benchmark as it made
it harder to see the time patterns in the rest of the bench-
marks. Observe that for most benchmarks, SketchAX I and
SketchAX III took time similar to that taken by Sketch. The
statistical results in Table 1 provide a more fine-grained view
of the time performance. While the average times taken
by SketchAX I and SketchAX III are noticeably higher
than that taken by Sketch, their times for the 3 quartiles
are significantly lower and quite reasonable. Notice that
SketchAX I closely matches the times taken by Sketch on
the 1st and 2nd quartile. And for 75% of the benchmarks
(3rd quartile), the time taken by SketchAX I is 2.13 seconds.
As for SketchAX III, 25% of the benchmarks (1st quartile)
were synthesized within 3.19s and half of the benchmarks
(median) were tackled within 8.88 seconds.

7.5 Sensitivity of SketchAX to example set size

To illustrate how the size of the user-provided example set
affects the success rate of SketchAX algorithms, we ran the
algorithms with 1 to 5 examples for the test Bit benchmarks
(see Table 2). As expected, more I/O examples can improve
the success rates of all tools/algorithms: (from about 30%
to about 65% for Sketch and from about 40% to about 74%
for SketchAX algorithms). In general, the improvement due
to augmented synthesis increases as the number of exam-
ples decreases. However, for benchmarks satisfying some
relational perturbation properties, the improvement starts
going down when the number of examples decreases below a
certain threshold (2 in our case). This is because the number
of initial examples is too small to reliably augment.

8 Related Work

Data augmentation in machine learning. Deep learning
techniques use data augmentation as a common technique
for improving machine learning classifiers [12, 18]. For in-
stance, for learning a classifier on a set of input images, they
generate new images by applying label-preserving trans-
formations (e.g. image translation, horizontal reflections, or
altering RGB channel intensities). This not only provides
more training data for large deep learning models, but also

enables the model to learn certain input invariance proper-
ties, thereby improving generalization on unseen data. In
contrast, our algorithms for PBE synthesis learn the desired
program from a small set of examples. Instead of limiting our-
selves only to label-preserving transformations, our frame-
work also supports perturbations where the labels (outputs)
can change with respect to the input changes, e.g. the per-
mutation preservation and value preservation perturbations.
Handling ambiguity in PBE. Besides using highly struc-
tured DSLs [2, 24] to place a syntactic bias on the hypothesis
space, many PBE synthesizers use a ranking function that
aims to score consistent programs by their ability to gener-
alize. The ranking function is either manually designed [8]
or learnt from data [21]. Another approach gathers addi-
tional information from the user to disambiguate the pro-
gram space [15], e.g., by creating distinguishing inputs [11]
or abstract examples [5]. Raychev et al. [17] present a feed-
back loop that identifies and discards potentially incorrect
examples. Unlike these approaches, our approach handles
ambiguity by placing a semantic bias on the hypothesis space
using relational perturbation properties to automatically aug-
ment the example sets.
Programming By Examples. PBE techniques have been
successfully developed for various domains: string transfor-
mations [8, 19], data structure manipulations [6, 22], number
transformations [20], parser synthesis [13], map-reduce style
distributed programs [23], web data integrations [10]. Recent
papers [4, 16] use deep learning to automatically generate
PBE systems. Most of these PBE systems generate programs
that are consistent with a user-provided set of examples. Sys-
tems such as BlinkFill [19] also take into account additional
specifications (besides examples) from spreadsheets. Our ap-
proach can complement many existing synthesizers given
corresponding perturbation properties in different domains.
Relational program synthesis. Recent work on relational
program synthesis [25] seeks to synthesize programs from
complete relational specifications. In contrast, we use a class
of relational properties to augment program synthesis from
incomplete example-based specification.
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9 Conclusion

We proposed a new approach to address the ambiguity/-
generalibility issue in PBE based on the idea of example
augmentation using relational perturbation properties. We
presented synthesizer-agnostic solutions for three user in-
terfaces and demonstrated the effectiveness of our approach
in significantly boosting the performance of the Sketch syn-
thesizer. As a next step, we plan to investigate richer classes
of relational properties in diverse domains and apply our
approach to multiple PBE synthesizers.
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