
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

SemCluster: Clustering of Programming
Assignments based on Quantitative Semantic Features

David Perry

Purdue University

perry74@purdue.edu

Dohyeong Kim

Purdue University

kim1051@purdue.edu

Roopsha Samanta

Purdue University

roopsha@purdue.edu

Xiangyu Zhang

Purdue University

xyzhang@cs.purdue.edu

Abstract
A fundamental challenge in automated reasoning about pro-

gramming assignments at scale is clustering student sub-

missions based on their underlying algorithms. State-of-the-

art clustering techniques are sensitive to control structure

variations, cannot cluster buggy solutions with similar cor-

rect solutions, and either require expensive pair-wise pro-

gram analyses or training efforts. We propose a novel tech-

nique that can cluster assignments based on their algorithmic

essence: (A) how the input space is partitioned into equiva-

lence classes and (B) how the problem is uniquely addressed

within individual equivalence classes. We capture these al-

gorithmic aspects as two quantitative semantic program

features that are merged into a program’s vector represen-

tation. Programs are then clustered using their vector rep-

resentations. The computation of our first semantic feature

leverages model counting to identify the number of inputs

belonging to an input equivalence class. The computation

of our second semantic feature abstracts the program’s data

flow by tracking the number of occurrences of a unique pair

of consecutive values of a variable during its lifetime. The

comprehensive evaluation of our tool SemCluster shows

that SemCluster (1) generates far fewer clusters than other

clustering techniques, (2) precisely identifies distinct solu-

tion strategies, and, (3) boosts the performance of automated

feedback generation, all within a reasonable amount of time.

Keywords Program clustering, Program analysis, Quanti-

tative reasoning

1 Introduction
Recent years have witnessed skyrocketing enrollments in

introductory programming courses offered by universities

and as Massive Open Online Courses (MOOCs) [4], as well

as increased participation in online judge systems such as

CodeChef [1], Codeforces [2], and HackerRank [3]. While

this surge in interest in programming is exciting, these mas-

sive, new learning environments pose significant challenges

in simulating the quality of education in smaller, traditional

PL’18, January 01–03, 2018, New York, NY, USA
2018.

classrooms. In particular, instructional tasks such as per-

sonalized feedback and fair grading, are often prohibitive,

if not impossible. Some platforms involve students in pro-

viding additional test-cases [11], or, for peer-feedback and

peer-grading [46], but such strategies can suffer from inac-

curacies, biases and latencies [28, 36].

Recognizing these challenges, researchers in multiple com-

munities have started developing techniques for automated
reasoning about programming assignments at scale [10, 14–

17, 19, 22, 24, 25, 29, 31, 33, 34, 36, 41, 42]. Given large collec-

tions of solutions for individual programming assignments,

many of these techniques rely on reducing the solution space

by first clustering similar solutions. For instance, automated

feedback generation or grading systems use a representative

correct solution from each cluster to generate feedback or a

grade for incorrect solutions, respectively [15, 19]. Tools for

analyzing student data help instructors (as well as learners)

view distinct, pedagogically valuable solutions by visualizing

representative correct solutions from each cluster [14, 17, 22].

Unfortunately, the performance of most approaches for pro-

gram clustering in education [14, 15, 17, 19, 24] is far from

satisfactory. Clustering techniques such as [14, 15] place too

much emphasis on syntactic program features and, more-

over, require the program features to match exactly. This

results in an excessive number of clusters, where semanti-

cally similar programs with small syntactical differences are

placed in different clusters. For instance, Clara [15] gen-

erates 51 clusters for a programming assignment, HORSES,

with 200 submissions and only 4 different solution strate-

gies. Such fine-grained clustering is ineffectual in assisting

instructors or automated reasoning engines in instructional

tasks. Clustering techniques such as [17, 24] rely on expen-

sive computations over pairs of programs (tree edit distance

between abstract syntax trees and a notion of probabilis-

tic, semantic equivalence, respectively). This greatly hinders

the scalability of these clustering techniques. Some cluster-

ing techniques [19] are specialized to a particular problem

domain (e.g., dynamic programming) and are not broadly

applicable. A recent approach [42] successfully uses neural

networks to learn program embeddings and redefines the

state-of-the-art in program clustering. Unfortunately, this

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

CFF
1

CFF
1

DFF
1

DFF
1

PFV
1

PFV
1

K-means
Clustering
K-means

Clustering

CFF
n

CFF
n

DFF
n

DFF
n

PFV
n

PFV
n

Test
 Suite

Exec.
Traces
Exec.

Traces

GradingGrading

Feedback/
Repair

Feedback/
Repair

Solution
Analysis
Solution
Analysis

P
1

P
1

P
n

P
n

P
1

P
1P

1
P

1T
1

T
1

P
n

P
nP
1

P
1

P
n

P
nP
5

P
5

P
n

P
nP
2

P
2

P
n

P
nP
3

P
3

P
n

P
nP
4

P
4

P
n

P
nP
6

P
6

Exec.
Traces
Exec.

Traces

SemCluster

Figure 1. High-level overview of SemCluster.

approach requires a substantial training effort, both in terms

of time and in manual effort in selection of training data,

that affects its usability.

This paper advances the state-of-the-art in clustering of

programming submissions with a new technique based on

program analysis. Our main contribution is a vector repre-

sentation of programs, based on purely semantic program

features, which can be used with standard clustering al-

gorithms from the machine learning literature. Our tech-

nique (sketched in Fig. 1) enjoys several desirable charac-

teristics. First, it is able to cluster programs based on their

high-level algorithmic solution strategy, ignoring syntactical

and low-level implementation variations across programs.

This results in far fewer clusters than most clustering ap-

proaches (our techniques generate 4 clusters for the prior-

mentioned assignment HORSES). Second, by generating the

vector representation, our technique avoids expensive pair-

wise program analyses. Third, our technique is general and

applicable to a broad range of programming assignments.

Finally, our program analysis-based technique matches the

clustering performance (and, in some cases, outperforms)

that of the state-of-the-art neural network-based clustering

technique [42], without requiring an expensive training ef-

fort. Our clustering approach can be used to drive many

automated reasoning tasks in programming education and

beyond (e.g., personalized feedback, grading, visualization,

similarity detection, fault localization and program repair).

Our proposed program representation is based on the key

observation that the essence of a solution to a programming

problem lies in the way the problem space is partitioned

into sub-spaces and how the problem is uniquely addressed

within individual sub-spaces. We use control flow features
(CFFs) to represent the former aspect of a solution strategy, as

this aspect typically manifests in the use of control structures

that ensure each sub-space corresponds to a particular con-

trol flow path. We use data flow features (DFFs) to represent

the latter aspect of a solution strategy, as this aspect typically

manifests in the use of different operations (along the path).

Given a programming assignment solution and a test-suite,

we compute CFFs by counting inputs that follow the same

control flow paths as different tests. We compute DFFs as the

frequency of occurrence of distinct pairs of successive values

of individual variables in program executions on tests. CFFs

and DFFs for each solution are merged to create a program
feature vector (PFV). Finally, K-means clustering is used to

cluster all solutions based on their PFVs.

We have implemented our proposed clustering approach

in a tool, SemCluster, and evaluated it on a variety of pro-

grams drawn from CodeChef [1], CodeHunt [6] and GitHub.

The evaluation on 17 real-world programming problemswith

8,989 solutions shows that SemCluster generates 4-15 clus-

ters. This is in sharp contrast to the 27-125 clusters generated

by Clara [14] and OverCode [14]. We further demonstrate

the high degree of precision with which SemCluster iden-

tifies unique algorithms among submissions, the ability of

SemCluster to successfully drive Clara’s feedback gener-

ation system and the reasonable run-time performance of

SemCluster (3.6 minutes on average per assignment, with

529 submissions on average per assignment).

In summary, this paper makes the following contributions:

1. We propose an effective, efficient and broadly applica-

ble program clustering technique based on a quantita-

tive, semantic program representation (Sec. 4.3).

2. We present dynamic analyses to compute the control

flow- (Sec. 4.1) and data flow-based (Sec. 4.2) compo-

nents of our program representation

3. We comprehensively evaluate and demonstrate the

effectiveness of our tool SemCluster (Sec. 5, Sec. 6) in

identifying distinct solution strategies and in boosting

the performance of automated feedback generation.

2 Motivating example
We use the example in Fig. 2 to illustrate why many pro-

gram clustering techniques may fail to cluster programs

with similar solution strategies. Existing techniques place

great emphasis on syntactical differences instead of focusing

on the semantic similarities of programs. We describe how

our clustering approach, based on quantitative semantic pro-
gram features, can capture the essence of solution strategies

and address issues with existing techniques.

Fig. 2 contains code snippets from 3 student submissions

for a programming assignment, "Filling the Maze", from

CodeChef [1]. This assignment requires exploring a graph

and determining if a given node is reachable from the starting

node. The input, graph, to the functions searchA, searchB,
and searchC is an adjacency matrix representing a graph

(with only four nodes for simplicity). The output, result, is
an array representing the order in which the nodes of the

graph are traversed. Array isChecked tracks if a node has
been traversed.

The solution strategies employed by functions searchA
and searchB are significantly different from that used in

searchC. Specifically, searchA and searchB use iterative

depth-first search (DFS) to explore the graph and searchC
uses breadth-first search (BFS). The only difference between

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

1 def searchA(graph):
2 stack = [0]
3 isChecked = [1,0,0,0]
4 result = [0]
5 node = 0
6 while node != -1:
7 nodeAdded = False
8 for i in range (4):
9 if graph[node][i] == 1 and

isChecked[i] == 0:
10 stack.append(i)
11 isChecked[i] = 1
12 nodeAdded = True
13 result.append(i)
14 break;
15 if nodeAdded == False:
16 stack.pop()
17 if len(stack) > 0:
18 node = stack[-1]
19 else:
20 node = -1
21 else:
22 node = stack[-1]
23 return result

1 def searchB(graph):
2 stack = [0]
3 isChecked = [1,0,0,0]
4 result = [0]
5 node = 0
6 while node != -1:
7 valAdded = False
8 for j in range (4):
9 if graph[node][j] == 1 and

isChecked[j] == 0 and
valAdded == False:

10 stack.append(j)
11 isChecked[j] = 1
12 valAdded = True
13 result.append(j)
14 if valAdded == False:
15 stack.pop()
16 if len(stack) > 0:
17 node = stack[-1]
18 else:
19 node = -1
20 else:
21 node = stack[-1]
22 return result

1 def searchC(graph):
2 queue = [0]
3 isChecked = [1,0,0,0]
4 result = [0]
5 node = 0
6 for i in range (4):
7 node = queue.pop(0)
8 for j in range (4):
9 if graph[node][j] == 1 and

isChecked[j] == 0:
10 queue.append(j)
11 isChecked[j] = 1
12 result.append(j)
13 return result

Figure 2. Two slightly different implementations of DFS, searchA and searchB and one implementation of BFS, searchC.

searchA and searchB is how their if statements (line 9) en-

sure that at most one unexplored child of the current node is

explored and added to the stack. searchA implements this by

inserting a break statement within the if’s body. searchB
conditions the if statement on the value of a Boolean vari-

able, valAdded, indicating if a new node has been added to

the stack.

Therefore, an effective clustering technique should cluster

searchA and searchB together and place function searchC
into a different cluster.

Limitations of existing techniques. Existing clustering

techniques such as Clara [15] and OverCode [14] place

the functions searchA, searchB, and searchC in separate

clusters. This is primarily a limitation of their notions of

program similarity and choice of program representation.

Both Clara and OverCode only consider whether two pro-

grams exactly match in some chosen features, or not. Nei-

ther clustering technique tracks the degree to which two

programs match in a feature. Such strict clustering strategies

are especially problematic when attempting to cluster buggy

programs with the closest correct version. In fact, Clara and

OverCode can only cluster correct programs.

Further, while these techniques represent programs using

both syntactic and semantic program features, the syntactic

program features, in particular, are restrictive. For instance,

Clara requires the control flow structures (i.e., loops and

branches) of two programsmatch for them to be placed in the

same cluster. The minor (highlighted) implementation dif-

ferences between searchA and searchB cause a significant
difference in their control flow structures. Hence, the pro-

grams are not clustered together by Clara and may not be

clustered together by any technique that compares programs

using syntactic features such as control flow structures. Over-

Code first cleans programs by renaming common variables
identified using a dynamic analysis. OverCode requires the

1

3

2

4

Ga

1

3

2

4

Gb

1

3

2

4

Gc

1

3

2

4

Gd

Figure 3. Two equivalent input graphs, Ga and Gb , for

searchA and searchB, and two equivalent input graphs, Gc
and Gd , for searchC.

set of program statements of two clean programs exactly

match for them to be clustered together. Again, the minor

implementation differences between searchA and searchB
cause a mismatch in the syntactic feature used by Over-

Code and hence, the functions are not clustered together.

Quantitative semantic program features. Our key obser-
vation is that the essence of problem-solving in computing

is divide-and-conquer. Given a problem, the programmer of-

ten first partitions the input space into equivalence classes

such that each class represents a unique way of addressing

the problem. The specific partitioning used, thus, character-

izes the underlying solution. Further, within such an input
equivalence class, the set of operations used and their order

also contribute in identifying the algorithm. We encapsu-

late the former as a control flow program feature and the

latter as a data flow program feature. The overarching idea of
our technique is to generate a quantitative program feature

based on these two features so that a clustering algorithm

can be used to effectively and efficiently cluster (correct and

buggy) programs based on their underlying algorithms. Our

method avoids an expensive pair-wise comparison of pro-

grams, which is prohibitive in our context due to the large

number of programs considered.

Informally, the control flow program feature tracks the

volume of inputs flowing through different control flow paths

in the program, essentially describing the input space parti-

tioning. To understand how the algorithm implemented in a

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

program impacts the number of inputs corresponding to each

control flow path in a program, consider the execution of

functions searchA, searchB and searchC on graphGa from

Fig. 3. Regardless of their small implementation differences,

searchA and searchB use DFS to visit the nodes ofGa in the

order 1, 2, 3, 4, without any backtracking. Similarly, searchC
uses BFS to visitGa in the same order 1, 2, 3, 4. Observe that

the order of visiting nodes, including backtracking, directly

corresponds to a specific sequence of control flow decisions,

i.e., a specific control flow path, in each program. Now con-

sider the executions of the functions on graph Gb . Despite

the extra edge in this graph, functions searchA and searchB
still visit its nodes in the same order as graphGa , i.e., 1, 2, 3, 4,

without any backtracking. Thus, the executions of searchA
and searchB on Ga and Gb follow identical control flow

paths. In other words, these two input graphs fall into the

same input equivalence class for both searchA and searchB.
In contrast, when graphGb is given as input to searchC, the
order in which its nodes are explored changes to 1, 2, 4, 3.

That is, Ga and Gb do not belong to the same input equiva-

lence class for searchC. Following similar reasoning, graphs

Gc and Gd belong to the same input equivalence class for

searchC but not for searchA and searchB. This is because
the nodes of Gc and Gd are visited in the same order 1, 2, 4,

3 (i.e. via the same control flow path) by searchC, but not
by searchA and searchB.

The control flow feature represents the sizes of the input

equivalence classes. For our example, the feature is computed

for each program by counting the number of graphs that are

explored in the exact same order by the program. Finally, an

application of K-means clustering using the control flow fea-

ture successfully ignores the small syntactical differences

between searchA and searchB and clusters them together,

while placing searchC into a different cluster.

Remark. In Sec. 4.1, we show that the control flow feature

is not adequate by itself as it only summarizes the control

flow signature of a program. Hence, we introduce the data

flow program feature, which summarizes the data flow sig-

nature of a program. The program representation used by

our technique is computed as an aggregate over the control

flow feature and the data flow feature.

3 Preliminaries
In this section, we present our program model, and review

the concepts of model counting and K-means clustering that

form the basis of our approach.

Program model. We introduce a simple programming lan-

guage. A program P is composed of a function signature

f (i1, . . . ,iq) : o, a set of variables X , and a sequence of la-

beled statements σ = s1; . . . ; sm . The function f is defined

over a set of input variables I = {i1, . . . iq } and an output vari-
able o for the function’s returned value. The set of variables

X = {x1, . . . ,xr } defines auxiliary variables employed by the

programmer for the specific programming task. All variables

are associated with a specific type and are only assigned

appropriate values from a finite universeU of values
1
. Pro-

gram statements are skip, return, assignment, conditional, or

loop statements. Each statement is designated by a unique

location identifier from the set L = {l0,l1, . . . ,lb ,exit } and
can use any of the variables in I ∪ X ∪ {o}.
A program configuration ζ is a pair (l ,ν) consisting of

a program location l ∈ L and a valuation function ν that

assigns values to all program variables. Specifically, ν : I ∪
{o} ∪ X 7→ U ∪ {nd } where nd represents an undefined

value. We use (l ,ν) → (l ′,ν ′) to denote the execution of

the statement at location l with valuation ν , resulting in a

transfer of control to location l ′ with valuation ν ′. An input
valuation νI is a valuation such that for all input variables i ∈
I , νI (i) , nd and for all other variables x ∈ X ∪ {o}, νI (x) =
nd . A program P ’s execution, πP (νI), on input valuation νI is
a sequence of configurations ζ0,ζ1, . . . ,ζj where ζ0 = (l0,νI),
for all h, ζh → ζh+1, and ζj = (exit ,νj). Thus, all program
executions terminate at the exit location.
A test t is a pair (νI ,res) where νI is an input valuation

and res is the expected output. We use πP (t) to denote a

program execution of P on the input valuation νI of test t .
A control flow path is a projection of a program execution

onto locations. Thus, if πP (t) is (l0,νI), (l1,ν1), . . . , (lj ,νj), the
control flow path induced by t , denoted CFPP,t , is given by

l0,l1, . . . ,lj . Note that many input valuations may induce the

same control flow path. We say that two tests t and t ′ belong
to the same input equivalence class [5] iff the control flow

paths induced by them are the same i.e., CFPP,t ≡ CFPP,t ′ .
Model counting. Given a propositional formula F , #SAT or

propositional model counting is the problem of computing

the number of satisfying assignments to propositions in F .
Propositional model counting is the canonical #P-complete

problem. Practical solutions are based on exact counting as
well as approximate counting of models [39, 45].

A less investigated problem, #SMT [7], extends the model

counting problem to measured logical theories. A theory is

measured if for every formula ϕ in the theory, the set of its

models JϕK is measurable. Given a formula ϕ in a measured

theory, #SMT is the problem of computing the measure of

JϕK. This is a well-known hard problem.While algorithms for

exact and approximate model counting have been proposed

for some theories over integer and real arithmetic [7, 12, 23],

the approach used in this paper uses an eager encoding of

#SMT into #SAT via bit-blasting.
K-means clustering. K-means clustering is a method for

partitioning a set of data points intoK clusters such that each

data point d belongs to the cluster with the closest centroid
or mean. The distance metric typically used is the squared

Euclidean distance. Formally, given a set {d1,d2, . . . ,dn } of

1
Our method handles programs over scalars, arrays and pointers of types

Booleans, integers, and characters.

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

PL’18, January 01–03, 2018, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Algorithm 1: Computing a CFF for a test

1 procedure ComputeCFF(P ,t)
Input :P : a program

t : a test
Output :CFFP,t : the CFF obtained from P and t

2 CFPP,t = Execute (P , t)

3 f = CFP2SMT (CFPP,t , P)

4 CFFP,t = ModelCount (SMT2CNF (f))

5 return CFFP,t

data points, with each data point d ∈ Rm represented using

anm-dimensional feature vector, K-means clustering seeks

to partition the data points into K sets Copt = {C1, . . . ,CK }

such that: Copt = argminC
∑K

i=1
∑
d ∈Ci

d − µi2 . Here, µi ,
the centroid of cluster Ci , equals

1

|Ci |
∑
d ∈Ci d .

K-means clustering is known to be NP-hard. Effective ap-

proximate solutions [26] work by choosing K means and

assigning data points to clusters with the closest mean. The

means for clusters are then recomputed and the data point as-

signments are updated. This iterative refinement procedure

is repeated until no changes occur.

4 Quantitative Semantic Features
Recall our overall SemCluster workflow from Fig. 1. Given

a test suite T and a set P of solutions to a programming

assignment, for each solution P ∈ P, we first compute two

classes of quantitative semantic features: control flow fea-

tures (CFFs) and data flow features (DFFs). These features

are then combined together into a single program feature

vector (PFV) for each solution. Finally, K-means clustering

is used to cluster all solutions based on their PFVs.

In this section, we describe the computation of CFFs, DFFs

and PFVs. We fix a test suite T = {t1,t2, . . . ,tm }.

4.1 Control Flow Features
Recall from Sec. 2 that, informally speaking, CFFs provide a

quantitative summary of the way a program partitions the in-

put space into equivalence classes. A plausible design of such

a program feature involves counting the number of inputs in

each input equivalence class. However, this requires explor-

ing all possible paths of a program and can be intractable

in general. Instead, we leverage the available test suite to

restrict our focus to a subset of the input equivalence classes.

Intuitively, CFFs only track the number of inputs belonging to
input equivalence classes that contain some test input.

Given a program P ∈ P and a test t ∈ T , Algo. 1 computes

the corresponding CFF, denoted CFFP,t . First, the algorithm
executes the program on the test input and computes the

control flow path CFPP,t containing all program locations

reached during execution. Next, the path condition forCFPP,t
is generated as an SMT formula, whose satisfying solutions

Table 1. CFVs and their Euclidean distances for searchA,
searchB, and searchC from Fig. 2.

Program CFV
Ga Gc

Euclidean Distance
searchA searchB searchC

searchA <8192, 1024> N/A 0 7798.6

searchB <8192, 1024> 0 N/A 7798.6

searchC <1024, 8192> 7798.6 7798.6 N/A

are inputs that drive P ’s execution through CFPP,t . Finally,
the algorithm computes CFFP,t by counting the number of

satisfying solutions for the path condition. This is the well-

known problem of #SMT (Sec. 3). In our implementation, we

solve this by first converting the SMT formula to a SAT for-

mula through bit-blasting, i.e., encoding every variable into a
bitvector and every computation into a set of bit operations.

Next, the SAT formula is transformed to conjunctive normal
form (CNF), and handed off to an exact propositional model

counter [39]. This encoding of #SMT into #SAT is exact as

our input domain is finite.

For each program P ∈ P, Algo. 1 is repeated to compute a

CFF for every test in the test suite T . The resulting CFFs are

then combined into a Control Flow Vector (CFV):

CFVP,T = ⟨CFFP,t1 ,CFFP,t2 , . . . ,CFFP,tm ⟩. (1)

Graph Search Example. The CFVs generated when the pro-

grams from Fig. 2 are executed on the input graphs Ga and

Gc from Fig. 3 are shown in Table 1. The first dimension of

the vectors in the column CFV contains the CFF for inputGa .

The second dimension contains the CFF for inputGc . The last

three columns in Table 1 indicate the Euclidean distances be-

tween each pair of vectors. As expected, the distance between

searchA and searchB is small, and the distances between

searchA and searchC and between searchB and searchC
are large. This enables SemCluster to cluster searchA and

searchB together and place searchC in a different cluster.

1

3

2

4

*....
,

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

+////
-

Figure 4. GraphGa and its

adjacency matrix.

Let us take a closer look

at the CFF value, 8192,

computed for programs

searchA and searchB on

the input graph Ga from

Fig. 3. Algo. 1 computes

this result because the size

of the input equivalence

class of Ga for both pro-

grams is 8192. To understand this calculation, note that the

input equivalence class ofGa for searchA (searchB) consists
of all graphs with four nodes which induce program execu-

tions in searchA (searchB) that explore the graph nodes in

the same order as Ga . Thus, this class contains any graph

with edges from nodes 1 to 2, 2 to 3, and 3 to 4, or, in other

words, any graph that can be obtained by adding additional

edges to Ga . Now consider the adjacency matrix in Fig. 4

corresponding to graph Ga : the entry (i, j) in the matrix is 1

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

iff there is an edge from node i to node j, and 0 otherwise.

We can calculate the size of the input equivalence class of

Ga by counting the number of additional edges that can be

added to the graph based on the number of 0’s in the ma-

trix. Since every entry that is 0 can be one of two possible

values (1 if there is an edge or 0 otherwise) in each graph,

the total number of graphs belonging to the equivalence

class is 2
13 = 8192. Note that this computation is fully au-

tomated in SemCluster using constraint generation and

model counting.

Inadequacy of CFF.While CFFs capture the partitioning of the

input space, they alone may not suffice to make distinctions

between all solution strategies. Consider the two programs

bubSort and selSort in Fig. 5(a). Both programs take an

n-size array of integers as input and return an array sorted in

ascending order. While the algorithms employed by the two

programs are very different — bubble sort and selection sort

— they have the exact same set of input equivalence classes.

To see this, consider the inputs in Fig. 5(b). Inputs Ia and

Ib belong to the same equivalence class for both programs.

This is because Ia and Ib have the same size and the same

relative ordering of elements: smallest, largest, second largest,

and smallest. Similarly, inputs Ic and Id belong to the same

equivalence class for both programs. As a result, the CFF for

Ia (and Ic) is the same for bubSort and selSort, as shown in
Fig. 5(c), and the distance between the CFVs of the programs

is 0. Hence, the programs will be clustered together if we

only rely on CFFs.4.2 Data Flow Features
To cope with this problem, we propose another feature that

provides a quantitative summary of a program’s data flow.

Indeed, when students design their programs, they not only

need to design suitable control structures to partition the

input space, but must also decide what operations to use and

define how they interact with inputs and memory.

Existing techniques cluster programs based on a strategy

that attempts to align variables across different student sub-

missions [14, 15]. Two variables from different programs

are aligned if the variables have the exact same sequence

of values in program executions on the same input. This re-

quirement for clustering is very rigid and prevents programs

with slight implementation differences from being clustered

together. Additionally, this variable alignment computation

requires expensive pair-wise analysis across programs.

Therefore, we propose a quantitative program feature,

DFF, that abstracts a program’s data flow, is resilient to re-

ordering of semantically equivalent operations, and is com-

putable locally for each program without requiring pair-wise

analysis. Informally, DFFs track how many times a specific
value in memory is changed to another specific value. Intu-
itively, by modeling frequencies of specific value changes,

we allow the feature computation to be local. By consid-

ering value changes (of variables), we encode part of the

sequence of values of a variable in a program execution.

While more complex data flow features can be designed, our

DFFs were found to be highly effective when combined with

CFFs (Sec. 6).

Given a program P ∈ P, a test t ∈ T , and the set P of

solutions, Algo. 2 computes the corresponding set of DFFs,
as a hash table DFFSP,t,P . Note that given a test, while there

is exactly one CFF for each program, there are multiple DFFs

for each program. Let us first formalize our notion of value

changes tracked by Algo. 2. Given a program execution πP (t),
a value change,v → v ′, is a pair of distinct valuesv , v ′ such
that there exists variable x ∈ X ∪{o} and successive program
configurations ζh = (l ,ν) and ζh+1 = (l ′,ν ′) in πP (t) with
ν (x) = v and ν ′(x) = v ′. Observe that a value change does
not track the variable or program configurations associated

with it. Hence, there can be multiple instances of the same

value change along a program execution (each associated

with a different variable or program configuration). Given

a program P and a test t , the ComputeLocalDFFS function
in Algo. 2 computes the set of unique value changes and the

number of instances of each unique value change in πP (t).
The algorithm first executes an instrumented version of the

program to collect a trace containing all value changes that

occur during execution (lines 2-3). Next, this trace is scanned

to find the number of times each value change occurs (lines 5-

9). These frequencies are stored in the hash table localDFFS .
The hash table’s key is a string identifying a unique value

change and the value is the number of occurrences of the

value change in the program execution.

To compute DFFs for program P given test t , it is not
enough to restrict our focus to the unique value changes in

P ’s execution on t . Since the number of such unique value

changes can vary across the executions of different programs

on the same test t , computing DFFs of different programs

for test t using ComputeLocalDFFS can result in DFFs of

different sizes (which, in turn, can significantly complicate

the computation of a uniformly-sized program feature vector

for all programs). Hence, instead, ComputeDFFS computes

DFFSP,t,P , by tracking all value changes that occur in the
executions of all programs in P on test t . This ensures that the
size of DFFSP,t,P is the same for all P ∈ P for a given test t .
The computation in lines 2-3 in Algo. 2 iterates through all

programs in P calculating their local hash tables, localDFFS .
Next, in lines 4-6, each entry in localDFFS is iterated through
and the corresponding key is added to the global hash table

DFFSP,t,P with an initial value of zero. Finally, in lines 8-

12, the localDFFS is recomputed for the target program P
and merged with the previously computed DFFSP,t,P . Note
the values of entries in DFFSP,t,P , that correspond to value

changes absent in πP (t), are 0. In what follows, let us assume

that DFFSP,t,P is sorted according to keys and let DFVP,t de-
note a vector consisting of the values in the sortedDFFSP,t,P
(thus, DFVP,t is a vector of frequencies of value changes for
some fixed ordering of value changes).

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

PL’18, January 01–03, 2018, New York, NY, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

1 void swap(int *xp, int *yp)
2 {
3 int temp = *xp;
4 *xp = *yp;
5 *yp = temp;
6 }
7

8 void bubSort(int arr[], int n)
9 {
10 int i, j;
11 for (i = 0; i < n-1; i++)
12 for (j = 0; j < n-i-1; j++)
13 if (arr[j] > arr[j+1])
14 swap(&arr[j], &arr[j+1]);
15 }

1 void swap(int *xp, int *yp)
2 {
3 int temp = *xp;
4 *xp = *yp;
5 *yp = temp;
6 }
7

8 void selSort(int arr[], int n)
9 {
10 int i, j, min_idx;
11 for (i = 0; i < n-1; i++)
12 {
13 min_idx = i;
14 for (j = i+1; j < n; j++)
15 if (arr[j] < arr[min_idx])
16 min_idx = j;
17 swap(&arr[min_idx],&arr[i]);
18 }
19 }

(a)

1 5 3 1

Ia

2 7 3 2

Ib

4 3 2 1

Ic

9 7 2 1

Id

(b)

Program CFV
Ia Ic

Euclidean Distance
bubSort selSort

bubSort <120,210> N/A 0

selSort <120,210> 0 N/A

(c)

Program 5→3 3→5 5→1 1→5 1→3 3→1

bubSort 1 1 1 1 1 1

selSort 0 0 1 1 0 0

(d)

Figure 5. (a) Two sorting programs, (b) example inputs, (c) CFVs of the programs on Ia , Ic , (d) the DFFs of the programs on Ia .

For each program P ∈ P, Algo. 2 is repeated to generate

DFVP,t for every test t in the test suite T . The vectors are
then combined into a Data Flow Vector (DFV) for P :

DFVP,T = ⟨DFVP,t1 , DFVP,t2 , . . . , DFVP,tm ⟩. (2)

Sorting Example. An example of the simplified DFFs
2
for the

programs in Fig. 5 on input Ia from Fig. 5 can be seen in Fig. 5

(d). Notice that the value changes used to create the DFFs are

representative of the semantics of the programs. bubSort has
to make 6 swaps as the algorithm iterates through the array

making swaps each time two adjacent values are out of order.

On the other hand, selSort only needs to make one swap.

On its first pass, it makes no swaps as the smallest value is

already in the 0th position of the array. On the next pass,

it swaps the values in the 1st and 3rd positions, 5 and 1 re-

spectively, which results in a sorted array. These differences

in DFFs make it possible for SemCluster to distinguish the

two sorting algorithms and place them in different clusters.

4.3 Program Feature Vector
Finally, we describe how to combineCFVP,T andDFVP,T for a

program P into a single program feature vector (PFV) PFVP,T .
Unfortunately, this combination cannot be done by simply

concatenating the two feature vectors. As stated earlier, for

each test, CFVs contain one feature, while DFVs contain

multiple features. Thus, a simple concatenation of CFV and

DFV would generate a PFV with many more dimensions

related to data flow. This would result in DFFs having a

disproportionate impact on how programs are clustered.

Hence, we design the PFV for program P by normalizing

each feature as follows. Let M = max (|DFVP,t1 |, |DFVP,t2 |,

2
For this figure, DFFs are calculated using only value changes that occur

on the arrays themselves. Changes that occur on variables used for loop

conditions and intermediate calculations are omitted for brevity.

. . . , |DFVP,tm |) denote the maximum length of DFVP,t over
all tests t . The normalized CFV, denoted nCFVP,T , is given
by M × CFVp,T . For each test t ∈ T , the vector DFVP,t is

normalized to yield nDFVP,t , given by
M

|DFVP ,t |
× DFVP,t .

Finally, the PFV is computed as:

PFVP,T = ⟨nCFVP,T , nDFVP,t1 , . . . , nDFVp,tm ⟩. (3)

5 Implementation
Control flow features. To help compute a CFF for a pro-

gram and test combination, we have implemented an LLVM

[20] pass that instruments a submission by inserting a log-

ging instruction at the beginning of each basic block. An

execution of the instrumented submission produces a trace

file containing the control flow path induced by the test input.

We have also implemented an LLVM pass that walks through

the target submission, using the trace file, to generate an

SMT formula compatible with Microsoft’s Z3 solver[9]. In

addition to the program constraints, additional constraints

are included in the SMT formula to enforce bounds, provided

by an instructor, on the values of symbolic input variables.

These bounds ensure the result of model counting is finite

and allows the instructor to have a more fine-grained control

over the set of inputs the clustering is based on.

We create models to encode the behavior of common li-

braries and data structures found in programs. Our models

for arrays enforce a maximum array size and include opera-

tions for reading, writing, and commonly used functions de-

fined in string.h. Our tool also supports pointer operations
by implementing the monolithic memory model described in

[32]. This model strikes a nice balance between performance

and the ability to model common programming practices.

Once our tool creates an SMT formula, we use Z3’s bit-
blast tactic to produce a propositional formula, followed by

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Algorithm 2: Computing DFFs for a test

1 procedure ComputeDFFS(P , t , P)
Input :P : a program

t : a test
P: a set of programs

Output :DFFSP,t,P : a hash table containing value

changes and their frequencies

2 foreach P ∈ P do
3 localDFFS = ComputeLocalDFFS (P , t)

4 foreach key,val ∈ localDFFS do
5 DFFSP,t,P = {key : 0}

6 end
7 end
8 localDFFS = {}

9 localDFFS = ComputeLocalDFFS (P , t)

10 foreach key,val ∈ localDFFS do
11 DFFSP,t,P[key] = val

12 end
13 return DFFSP,t,P
14 procedure ComputeLocalDFFS(P , t)
15 instProд = InstDF (P)

16 vcTrace = Execute (instProд)

17 localDFFS = {}

18 foreach valueChanдe ∈ vcTrace do
19 if valueChanдe ∈ localDFFS then
20 localDFFS[valueChanдe]+ = 1

21 else
22 localDFFS[valueChanдe] = 1

23 end
24 end
25 return localDFFS

the state-of-the-art model counter, SharpSAT[39], to produce

a CFF for the specific program and test combination.

Data flow features. To compute DFFs for a student submis-

sion and test input based on value changes, we have imple-

mented an LLVM pass that inserts a logging function before

and after any instruction that modifies memory. When the

instrumented program is executed, a trace file containing the

values of memory before and after each update is produced

and used to compute DFFs.

Clustering. The PFVs computed from the CFFs and DFFS

are given as input to the K-means clustering algorithm im-

plemented in the machine learning library scikit-learn [26].

6 Evaluation
We present the results of a comprehensive evaluation of

SemCluster’s clustering performance. We compare Sem-

Cluster against the state-of-the-art — two program analysis-

based approaches,Clara andOverCode, and a deep learning-

based approach, Dynamic Program Embeddings (DPE). We

Table 2.Number of clusters generated by different clustering

techniques.

Problem Avg.
LOC

of
Subs C OC DPE SC

CFV DFV PFV CSPA

COINS 38 1033 89 101 10 4 9 8 8

PRIME1 59 920 120 125 9 14 12 9 8

CONFLIP 34 212 27 27 5 7 6 4 5

MARBLES 40 200 82 85 5 12 9 6 6

HORSES 36 200 42 51 6 9 7 5 5

LEPER 49 195 50 54 7 8 11 7 7

LAPIN 65 175 62 62 9 9 11 7 8

MARCHA1 45 100 37 37 6 6 7 4 5

BUYING2 32 100 33 33 5 7 4 5 5

SetDiff 16 273 52 59 5 4 5 5 6

MostOne 29 297 76 78 8 12 11 7 6

Comb 14 706 85 87 9 12 15 10 10

K-th Lar 11 949 120 125 15 17 20 14 13

ParenDep 18 820 101 111 16 22 21 15 16

LCM 15 806 99 103 12 17 24 13 12

ArrayInd 3 973 27 27 5 10 12 5 5

FibSum 14 1030 30 32 12 14 17 13 14

evaluate the performance of clustering using the following

criteria: number of clusters generated (Sec. 6.1), run-time

performance of clustering-based instructional tasks (Sec. 6.2),

precision of clusters w.r.t. known algorithms (Sec. 6.3), and

precision of clusters w.r.t. instructional tasks (Sec. 6.4). Fi-

nally, we do an in-depth comparison with the DPE approach

whose performance is closest to SemCluster (Sec. 6.5).

Dataset. We collected solutions to various programming as-

signments from the educational platform CodeChef [1] and

Microsoft’s competitive programming site CodeHunt [6]. To

solve these assignments, students need a basic understanding

of various algorithms, control structures, and data structures.

Moreover, these assignments are representative of common

challenges students encounter in an introductory program-

ming course. In total, our dataset comprises 17 programming

assignments, with a total of 8,989 submissions.

To perform a ground truth experiment for assignments

with well-defined algorithms, we also collected 100 array

sorting and graph searching implementations from GitHub.

Each program was modified to accept inputs in a consistent

format and executed on a set of tests to ensure correctness.

Additionally, all implementations were manually inspected

to ensure they matched their repositories’ descriptions.

6.1 Number of Clusters
For our first evaluation, we track the number of clusters

produced by different clustering techniques. We show that

SemCluster clusters correct student submissions into a sig-

nificantly smaller number of clusters than Clara and Over-

Code, while achieving results similar to DPE. Note that for

this experiment only correct solutions are clustered asClara

and OverCode are incapable of clustering incorrect solutions.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

PL’18, January 01–03, 2018, New York, NY, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

The results can be found in Table 2. The first three columns

contain the names of programming assignments, average

number of lines of code per submission, and the number of

submissions for each assignment. Assignments above the

horizontal line are from CodeChef and the ones below are

from CodeHunt (in all tables henceforth).

The number of clusters generated by Clara, OverCode

and DPE are reported in the columns C, OC and DPE, resp.
We reportmultiple results for SemCluster in the SC columns,

corresponding to different strategies for combining CFVs and

DFVs. The CFV and DFV columns show the results when

the program feature vector simply equals the CFV (eq. 1) and

DFV (eq. 2), respectively (and does not combine them). The

PFV column shows the results when the CFV and DFV are

normalized and combined into a single vector (Sec. 4.3). The

CSPA column displays the results of using cluster ensem-
bles, a machine learning approach for clustering data with

multiple representations. The specific algorithm used is the

cluster-based similarity partitioning algorithm (CSPA) [37].

Notice that, for the majority of assignments, CSPA and

PFV return a smaller number of clusters than when using

CFVs or DFVs individually. This justifies our choice in Sec. 4.3

to combine these two classes of features. Also note that CSPA

and PFV achieve very similar results. This further justifies

our PFV design that weighs CFVs and DFVs equally. Finally,

we observed that the run-time performance of SemCluster

is better on average when using PFV than CSPA. For all

these reasons, the rest of our evaluation is performed on the

version of SemCluster that uses the PFV representation.

The number of clusters generated by SemCluster (PFV)

is dramatically lower than Clara and OverCode. This is

expected as our approach is insensitive to syntactical dif-

ferences among submissions and only considers semantic

features when clustering. This reduction in the number of

generated clusters is crucial in enabling instructors to feasi-

bly analyze distinct solution strategies and in scaling down

the solution space for automated reasoning engines for feed-

back, grading etc. Additionally, note that the cluster sizes

reported by SemCluster and DPE are similar. This speaks

volumes about the performance of SemCluster as it avoids

the expensive task of training a neural network like DPE.

6.2 Run-time
To evaluate the scalability of SemCluster, we track the total

amount of time required to compute clusters and perform a

specific instructional task. This experiment was performed

by using Clara, OverCode, DPE and SemCluster to clus-

ter student submissions and using the respective clusters to

drive Clara’s feedback generation mechanism
3
. All result-

ing feedback was manually inspected to ensure correctness.

3
We use Clara for generating feedback as OverCode does not have a

feedback generation mechanism and the repair/feedback tool used by DPE

is not publicly available.

Table 3. Run-time performance of feedback generation using

clusters generated by different tools. (T in minutes)

Problem C OC DPE SC
T M A T M A T M A T M A

COINS 104.2 39 62.0 112.0 42 64.0 2.0 1 1.9 6.9 1 1.8

PRIME1 89.5 55 77.3 93.2 64 83.2 1.8 1 1.7 9.5 1 1.5

CONFLIP 5.5 8 10.1 5.5 8 10.1 .6 1 1.1 2.3 1 1.2

MARBLES 3.9 37 40.3 4.4 45 55.8 .5 1 1.6 2.1 1 1.4

HORSES 4.9 23 31.4 5.6 29 40.6 .7 1 1.7 2.8 1 1.9

LEPER 5.4 22 30.2 5.9 24 32.5 .7 1 2.3 4.4 1 2.3

LAPIN 5.9 35 47.8 6.1 35 47.8 .7 1 1.5 5.7 1 1.7

MARCHA1 2.5 15 22.1 2.3 15 22.1 .4 1 1.7 2.3 1 1.5

BUYING2 2.4 12 18.7 2.4 12 18.7 .4 1 1.3 2.6 1 1.3

SetDiff 3.5 22 30.3 4.2 32 38.6 .6 1 1.2 2.8 1 1.4

MostOne 6.7 35 47.2 6.9 35 49.8 .7 1 2.7 6.0 1 2.9

Comb 10.1 46 59.4 10.5 49 63.3 1.4 1 2.1 2.4 1 1.8

K-th Lar 11.8 63 78.2 13.4 68 81.2 1.8 1 1.7 2.2 1 2.1

ParenDep 12.6 50 69.7 15.3 59 77.3 1.5 1 1.7 3.1 1 1.9

LCM 12.2 45 59.2 13.4 47 62.3 1.4 1 2.0 2.8 1 2.2

ArrayInd 6.3 12 17.3 6.5 12 17.3 1.3 1 1.3 0.9 1 1.3

FibSum 6.3 16 21.2 6.8 17 25.3 1.6 1 2.1 3.0 1 1.4

The total time taken in minutes can be seen in Table 3 in the

T column for each tool. Notice that for most assignments,

Clara and OverCode take an order of magnitude more time

than DPE and SemCluster.

To understand why the run-times of Clara and OverCode

are worse than both DPE and SemCluster we recorded the

number of program comparisons required by each to gener-

ate effective feedback. The results are also reported in Table 3

for each tool in theM and A columns, where M and A show

the median and average number of required comparisons,

resp. Notice that the number of comparisons required for

Clara and OverCode are much higher than those for Sem-

Cluster and DPE. This is expected as Clara and OverCode

cannot cluster incorrect and correct submissions together.

Therefore, to find a correct submission that can be used to

fix an incorrect submission, these tools need to compare

the incorrect submission to submissions from each cluster

of correct submissions, until a correct submission with an

almost identical control structure is found. In contrast, the

median number of comparisons required when using DPE

and tool is always 1. Since these tools cluster semantically

similar incorrect and correct submissions together, to repair

an incorrect submission, it often suffices to use a random

correct submission from the same cluster. Note that the aver-

age number of comparisons for both DPE and SemCluster

are not 1. This occurs because there are some incorrect sub-

missions that cannot be fixed using any correct submissions

in the dataset. When (unsuccessfully) attempting to repair

such submissions, DPE and SemCluster end up comparing

them against all correct programs in their cluster, driving up

the average number of comparisons.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

HORSES

7

7%

20

20%

51

51%

23

23%

BS QS

NSNA NSA

MARCHA1

2

2%

12

12%

61

61%

25

25%

RSS ISS

DP BC

Figure 6. Solution strategy distributions for two assign-

ments.

Note that the overall amount of time is the smallest when

using DPE. This is because the reported run-time for DPE

only includes the generation of embeddings for every sub-

mission and the application ofK-means clustering. The most

computationally expensive part of DPE — training — is omit-

ted. An evaluation of DPE’s training time and a discussion

of its issues related to deployment can be found in Sec. 6.5.

6.3 Precision of Clusters: Solution Strategy
To judge the quality of clustering, it is not enough to simply

examine the number of clusters generated. It is also impor-

tant to evaluate the precision with which the clustering can

identify high-level solution strategies across submissions

Manual review of CodeChef submissions. In our first experi-

ment to evaluate the precision of SemCluster’s clustering,

we manually reviewed the clusters of two programming

assignments, HORSES and MARCHA1. Our evaluation con-

siders 100 randomly chosen submissions of both assignments

from the CodeChef dataset.

HORSES requires students to read in a list of integers

and find two values with the smallest difference. Both DPE

and SemCluster classified the 100 solutions into 4 different

clusters, while Clara and OverCode generated 42 and 51

clusters, respectively. A manual review of the clustering

generated by SemCluster revealed the common high-level

solution strategies in submissions within clusters (see Fig. 6).

The first and second clusters, BS and QS, sort the list of

numbers and then do a linear traversal of the sorted list,

calculating the differences between adjacent values. The only

difference is that BS uses bubble sort and QS uses quicksort.

The third (NSNA) and fourth (NSA) clusters do not employ a

sorting algorithm. As a result, they must perform an O (n2)-
traversal through the list, comparing all differences between

pairs of values in the array. Their implementations differ in

how they handle subtractions that yield negative numbers.

NSNA uses an if statement to determine if differences are

negative and multiplies them by −1. In contrast, NSA uses

an absolute value function to handle these cases.

MARCHA1 is essentially the subset sum problem: given

a list of integers and another integerm, is it possible to ob-

tain a combination of list elements whose sum ism? While

DPE and SemCluster generated 4 clusters, both Clara and

Problem Avg.
LOC

of
Subs Algs. # Clusters

C OC DPE SC

Sorting 72 100 4 45 51 4 4

Search 47 100 2 39 43 2 2

Figure 7. The clustering results for four sorting algorithms

and two graph search algorithms.

OverCode generated 37 clusters. We repeated a manual re-

view of the clustering generated by SemCluster to analyze

the results. The breakdown of the four high-level solution

strategies corresponding to the four clusters shown in Fig. 6

are as follows: iterative subset sum (ISS), recursive subset

sum (RSS), dynamic programming (DP), and binary conver-

sion (BC). The two most common strategies, RSS and ISS,

explore all possible value combinations of various sizes until

the desired combination sum is observed, in a recursive or

iterative fashion, respectively. The third most common strat-

egy is a more efficient implementation and employs dynamic

programming. The final strategy uses binary conversion and

is not as straight-forward a solution as the others. These sub-

missions iterate from 0 to 2
n −1 in binary notation, using the

binary numbers to index into the list and select elements for

examination in each iteration (e.g. the binary number 1001

corresponds to a combination consisting of list elements at

index 0 and 3). This approach is typically more space-efficient

when the set of numbers is large.

This ability to cluster together a large number of student

submissions with similar solution strategies, while still distin-

guishing such esoteric solutions, illustrates the effectiveness

and precision of our clustering approach.

Ground truth experiment with GitHub programs. We further

evaluated the precision of SemCluster’s clustering with

a ground truth experiment using a collection of programs

from GitHub that implement well-known sorting algorithms

(bubble sort, selection sort, insertion sort, merge sort) and

graph search algorithms (DFS, BFS). The results can be seen

in Fig. 7. Notice that SemCluster and DPE are able to per-

fectly partition the programs into clusters that correspond

to the algorithm they implement. These results display the

true potential of our clustering system.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

PL’18, January 01–03, 2018, New York, NY, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

6.4 Precision of Clusters: Feedback and Repair
To evaluate the usefulness of our approach in driving in-

structional tasks, we performed an experiment, similar to

the one in Sec. 6.2, that uses Clara’s feedback generation

mechanism. For this task, Clara takes as input a correct and

incorrect version of a student submission, aligns them, and

generates feedback in the form of suggestions for repairing

the buggy submission. For this to work effectively, the pro-

vided correct solution must implement an algorithm similar

to the buggy submission.

All submissions from our dataset were first clustered using

DPE and SemCluster. For each cluster, every correct sub-

mission was used to generate feedback for every incorrect

submission belonging to the same cluster. The percentages

of correct submissions that allowed Clara to generate cor-

rect feedback are reported in the In columns of Table 4. The

suggested feedback/repair was applied to the buggy submis-

sions and checked to ensure it passed all test cases. Note that

the percentages reported for successful in-cluster repairs are
quite high for both DPE and SemCluster, thereby indicat-

ing the usefulness of these clustering approaches in driving

instructional tasks.

We further examined the performance of Clara’s repair

mechanism when aligning buggy submissions with correct

submissions from different clusters. For each cluster, every

correct submission was used to generate feedback for every

incorrect submission belonging to a different cluster. The

percentages of correct submissions that allowed Clara to

generate correct feedback are reported in theOut columns of

Table 4. As expected, the percentages reported for successful

out-of-cluster repairs for both tools are small.

Clara’s feedback mechanism targets generation of feed-

back based on minimal repairs. In the above experiment, we

did not explore the question of how to choose correct sub-

missions to minimally repair an incorrect submission from

the same cluster. We hypothesize that minimal repairs can

be generated using the correct submissions whose program

representations are closest (in terms of Euclidean distance) to

the incorrect submission. We test this hypothesis by tracking

the average percentage of incorrect submissions for which

the minimal repair is generated from the Top-1 and Top-3

closest correct submissions in the same cluster. The results

in the Top-1 and Top-3 columns of Table 4 show that both

SemCluster and DPE can be effectively used to generate

minimal repairs based on our hypothesis. Note that SemClus-

ter has a higher Top-1 accuracy for all but 3 programming

assignments.

6.5 Comparison With DPE
As seen in the previous evaluations, DPE and SemCluster

produce a similar number of clusters and have comparable

precision when performing instructional tasks. The aspect

Table 4. Using clusters to drive feedback and repair.

Program In Out Top-1 Top-3
DPE SC DPE SC DPE SC DPE SC

COINS 85.2 83.2 7.3 9.4 85.3 87.2 93.4 95.2

PRIME1 77.2 80.9 14.2 12.5 81.9 82.1 88.7 89.3

CONFLIP 82.9 82.7 9.7 10.8 77.8 85.3 96.7 96.2

MARBLES 78.7 81.1 12.3 9.4 81.2 79.2 84.3 87.7

HORSES 89.9 84.3 10.3 12.1 85.2 88.4 93.7 95.4

LEPER 82.1 82.1 9.7 9.7 83.5 87.3 95.4 97.2

LAPIN 88.9 87.7 10.8 11.3 81.3 82.1 88.5 89.2

MARCHA1 82.8 79.3 6.6 7.2 83.2 85.4 90.7 92.5

BUYING2 88.2 88.2 11.1 11.1 75.3 77.2 84.7 85.3

SetDiff 86.1 87.2 16.9 15.8 90.1 88.2 96.8 94.3

MostOne 78.4 75.7 11.3 12.2 77.2 79.3 86.5 89.2

Comb 84.9 84.3 8.7 9.2 84.5 86.5 93.7 94.2

K-th Lar 77.2 79.9 17.2 14.3 74.8 73.2 91.2 88.5

ParenDep 88.2 87.3 11.9 12.9 71.4 73.8 84.3 87.2

LCM 77.4 79.1 20.2 18.2 83.4 82.8 93.2 91.4

ArrayInd 89.7 89.7 13.2 13.2 91.4 93.2 97.1 97.4

FibSum 77.2 87.9 9.1 5.2 87.3 91.2 97.3 96.9

Table 5. Run-time performance of clustering in minutes.

Assignment Training Rep. K-means Total
DPE SC DPE SC DPE SC DPE SC

COINS 69.1 0 1.6 6.7 0.4 0.3 71.1 6.9

PRIME1 74.8 0 1.5 9.1 0.3 0.4 76.6 9.5

CONFLIP 37.7 0 0.3 2.0 0.3 0.2 38.3 2.3

MARBLES 35.0 0 0.3 1.8 0.2 0.2 35.6 2.1

HORSES 34.1 0 0.4 2.4 0.3 0.4 34.7 2.8

LEPER 71.7 0 0.3 4.0 0.4 0.4 72.4 4.4

LAPIN 101.1 0 0.3 5.2 0.5 0.5 101.9 5.7

MARCHA1 38.0 0 0.2 2.0 0.3 0.3 38.4 2.3

BUYING2 27.4 0 0.2 2.2 0.2 0.3 27.8 2.6

SetDiff 44.5 0 0.4 2.5 0.2 0.2 45.1 2.8

MostOne 65.3 0 0.5 5.7 0.2 0.3 65.9 6.0

Comb 37.9 0 1.2 2.2 0.2 0.2 39.3 2.4

K-th Lar 33.5 0 1.6 2.0 0.2 0.2 35.3 2.2

ParenDep 32.1 0 1.3 2.8 0.2 0.3 33.6 3.1

LCM 29.5 0 1.2 2.5 0.2 0.2 31.0 2.8

ArrayInd 23.9 0 1.2 0.7 0.2 0.2 25.3 0.9

FibSum 38.0 0 1.4 2.7 0.2 0.2 39.6 3.0

in which the largest difference occurs is run-time. To bet-

ter understand this difference, we take a closer look at the

run-time behavior of DPE and SemCluster in Table 5. The

Training, Rep., K-means and Total columns depict the

time taken for training, for generating representations for

all submissions, for clustering using K-means and in total,

respectively (in minutes).

Observe that the total times required by SemCluster are

the same as Table 3; however, the total times for DPE have

increased drastically. This is because DPE needs thousands

of seconds for its very expensive training phase. First, the

training data is generated. This requires identifying common

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

mistakes made in programming assignment submissions and

using this information to generate hundreds of thousands of

mutants that implement an incorrect version of the solution.

Next, each one of these mutated programs is executed to

collect data that captures its semantic behavior. Finally, this

data is used to train a neural network that generates program

representations (i.e. embeddings) from programs.

However, an increase in run-time is not the only draw-

back of program clustering techniques requiring training.

Another weakness affects the possibility of its deployment

as training data may not always be available or possible

to automatically generate. These situations can arise when

programming assignments are being assigned for the first

time or even if small changes are made to previously used

assignments. To highlight this drawback, we show that the

amount of training data available to DPE directly affects

the number of clusters it report (see Table 6). Each column

indicates the number of clusters reported by DPE when us-

ing the respective percentage of assignment submissions for

training their model. Notice that the number of clusters is

much larger when the amount of available training data is

smaller. Finally, the last column reports the number of clus-

ters generated by DPE when using a synthetic training set.

This is the training strategy used in [42]. These mutants are

used as training data to the neural network that generates

the embeddings.

We emphasize that the number of clusters generated by

DPE are similar to SemCluster only when using a difficult-

to-generate synthetic training set. Therefore, it is very im-

pressive that SemCluster is able to achieve this level of

accuracy without any training. Additionally, because Sem-

Cluster does not require a training phase, the approach is

more generalizable and does not overfit to a specific domain.

SemCluster can be applied to any set of student submissions,

whereas DPE must be fine-tuned for each application.

7 Related Work
Program clustering, similarity and representations in
education. Early clustering approaches for student submis-

sions represent programs using abstract syntax trees (ASTs)

and compute their similarity using edit distances [17, 33],

or canonicalization, i.e., application of semantics-preserving

transformations [33, 47]. Codewebs [24] uses a notion of

probabilistic semantic equivalence that clusters functionally

equivalent but syntactically different AST sub-graphs. Clus-

tering techniques such as OverCode [14] and Clara [15]

employ a combination of control flow structures and vari-

ables values. However, these clustering techniques place a

great deal of emphasis on syntactic details of programs, re-

sulting in the generation of far too many clusters.

A recent direction in program clustering is the use of

deep learning to learn program embeddings based on rep-

resenting programs as ASTs, sequences of tokens, control

Table 6. Number of clusters generated by DPE when using

different training sets.

Problem # of Clusters
60% 70% 80% 90% Syn.

COINS 44 32 19 16 10

PRIME1 41 32 20 15 9

CONFLIP 31 24 16 9 5

MARBLES 37 22 12 10 5

HORSES 33 20 14 9 6

LEPER 41 23 11 9 7

LAPIN 55 32 21 12 9

MARCHA1 39 22 12 10 6

BUYING2 41 25 14 10 5

SetDiff 22 15 10 6 5

MostOne 33 25 16 8 8

Comb 45 31 19 12 9

K-th Lar 57 35 21 17 15

ParenDep 55 31 22 19 16

LCM 43 29 17 13 12

ArrayInd 34 20 10 7 5

FibSum 57 39 22 17 12

flow structures, Hoare triples and sequences of program

states [22, 27, 29, 31, 41, 42]. While this is a promising di-

rection, these techniques require substantial training efforts

and careful selection of training inputs.

There are clustering approaches developed for specialized

usage scenarios. CoderAssist [19] is a clustering technique

that clusters student submissions for dynamic programming

assignments based on domain-specific characteristics of var-

ious solution strategies. The approach in [10] is a statisti-

cal approach for classifying interactive programs using a

combination of syntactic features. The clustering approach

in [16] clusters programs by inferring transformations to fix

incorrect programs. The transformations are learned from

examples of students fixing their code.

Finally, outside of the context of clustering, different no-

tions of syntactic as well as semantic program similarity

have been proposed to drive automated feedback generation

and repair [8, 36].

Code similarity, code cloning. Approaches for code simi-

larity analysis and clone detection are based on static anal-

yses for comparing ASTs [40, 48], tokens [18, 30, 35], and

program dependence graphs [13, 21] to find similar code.

However, these approaches may fail to detect similar code

because of differences in syntactical features. Other methods

use dynamic analysis to extract characteristics of programs

by observing execution behaviors, or birthmarks, that can be

used to identify program similarities [38, 43, 44]. However,

they tend to (intentionally) ignore algorithmic differences of

individual components.

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

PL’18, January 01–03, 2018, New York, NY, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

8 Conclusion
We develop a novel clustering technique for programming

assignments that makes use of model counting to identify

the number of inputs that follow a specific control flow path,

and leverages a dynamic analysis to collect the frequencies

of each unique pair of consecutive values of a variable dur-

ing its lifetime. These features are merged into a program’s

vector representation, which is then used for clustering pro-

grams. Our results show that SemCluster is highly effective

in generating far fewer clusters than most existing tech-

niques, precisely identifies distinct solution strategies, and,

boosts the performance of automated feedback generation,

all within a reasonable amount of time.

References
[1] [n. d.]. CodeChef. https://www.codechef.com/.
[2] [n. d.]. Codeforces. http://codeforces.com/.
[3] [n. d.]. HackerRank. https://www.hackerrank.com//.
[4] 2017. The 50 most popular MOOCs of all time. https://www.

onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/.
[5] Boris Beizer. 2003. Software testing techniques. Dreamtech Press.

[6] Judith Bishop, R Nigel Horspool, Tao Xie, Nikolai Tillmann, and

Jonathan de Halleux. 2015. Code Hunt: Experience with coding con-

tests at scale. In Proceedings of the 37th International Conference on
Software Engineering-Volume 2. IEEE Press, 398–407.

[7] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2017. Ap-

proximate counting in SMT and value estimation for probabilistic

programs. Acta Informatica 54, 8 (2017), 729–764.
[8] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Pro-

gram repair with quantitative objectives. In International Conference
on Computer Aided Verification. Springer, 383–401.

[9] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337–340.

[10] A. Drummond, Y. Lu, S. Chaudhuri, C. Jermaine, J. Warren, and S.

Rixner. 2014. Learning to Grade Student Programs in a Massive Open

Online Course. In 2014 IEEE International Conference on Data Mining.
785–790. https://doi.org/10.1109/ICDM.2014.142

[11] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT:

automatically grading programming assignments. In ACM SIGCSE
Bulletin, Vol. 40. ACM, 328–328.

[12] Matthew Fredrikson and Somesh Jha. 2014. Satisfiability Modulo

Counting: A New Approach for Analyzing Privacy Properties. In

Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
(CSL-LICS ’14). ACM, New York, NY, USA, Article 42, 10 pages. https:
//doi.org/10.1145/2603088.2603097

[13] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection

of semantic clones. In Proceedings of the 30th international conference
on Software engineering. ACM, 321–330.

[14] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and

Robert C Miller. 2015. OverCode: Visualizing variation in student

solutions to programming problems at scale. ACM Transactions on
Computer-Human Interaction (TOCHI) 22, 2 (2015), 7.

[15] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2016. Automated

clustering and program repair for introductory programming assign-

ments. arXiv preprint arXiv:1603.03165 (2016).
[16] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lu-

cas Figueredo, Loris D’Antoni, and Björn Hartmann. 2017. Writing

Reusable Code Feedback at Scale with Mixed-Initiative Program Syn-

thesis. In Proceedings of the Fourth (2017) ACM Conference on Learning
@ Scale (L@S ’17). 89–98. https://doi.org/10.1145/3051457.3051467

[17] Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas.

2013. Syntactic and functional variability of a million code submissions

in a machine learning MOOC. (2013), 25.

[18] Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. 2007. A source code

linearization technique for detecting plagiarized programs. In ACM
SIGCSE Bulletin, Vol. 39. ACM, 73–77.

[19] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit

Gulwani. 2016. Semi-supervised verified feedback generation. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 739–750.

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer

Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.cfm?
id=977395.977673

[21] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: de-

tection of software plagiarism by program dependence graph analysis.

In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 872–881.

[22] Lannan Luo andQiang Zeng. 2016. SolMiner:MiningDistinct Solutions

in Programs. In Proceedings of the 38th International Conference on
Software Engineering Companion. 481–490. https://doi.org/10.1145/
2889160.2889202

[23] Feifei Ma, Sheng Liu, and Jian Zhang. 2009. Volume computation for

boolean combination of linear arithmetic constraints. In International
Conference on Automated Deduction. Springer, 453–468.

[24] Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas

Guibas. 2014. Codewebs: Scalable Homework Search for Massive Open

Online Programming Courses. In Proceedings of the 23rd International
Conference on World Wide Web. 491–502. https://doi.org/10.1145/
2566486.2568023

[25] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das,

Amey Karkare, and Arnab Bhattacharya. 2017. Automatic Grading

and Feedback Using Program Repair for Introductory Programming

Courses. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’17). 92–97.
https://doi.org/10.1145/3059009.3059026

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[27] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015.

Building program vector representations for deep learning. In Interna-
tional Conference on Knowledge Science, Engineering and Management.
Springer, 547–553.

[28] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew

Ng, and Daphne Koller. 2013. Tuned models of peer assessment in

MOOCs. (2013).

[29] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati,

Mehran Sahami, and Leonidas Guibas. 2015. Learning program em-

beddings to propagate feedback on student code. arXiv preprint
arXiv:1505.05969 (2015).

[30] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding

plagiarisms among a set of programs with JPlag. J. UCS 8, 11 (2002),
1016.

[31] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina

Barzilay. 2016. SkP: A Neural Program Corrector for MOOCs. In Com-
panion Proceedings of the 2016 ACM SIGPLAN International Conference
on Systems, Programming, Languages and Applications: Software for

13

https://www.codechef.com/
http://codeforces.com/
https://www.hackerrank.com//
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
https://doi.org/10.1109/ICDM.2014.142
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1145/3051457.3051467
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1145/3059009.3059026

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

PL’18, January 01–03, 2018, New York, NY, USA David Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Humanity (SPLASH Companion 2016). 39–40. https://doi.org/10.1145/
2984043.2989222

[32] Zvonimir Rakamarić and Alan J Hu. 2009. A scalable memory model

for low-level code. In International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 290–304.

[33] Kelly Rivers and Kenneth R Koedinger. 2013. Automatic generation of

programming feedback: A data-driven approach. In The First Workshop
on AI-supported Education for Computer Science (AIEDCS 2013), Vol. 50.

[34] Kelly Rivers and Kenneth R. Koedinger. 2015. Data-Driven Hint Gener-

ation in Vast Solution Spaces: a Self-Improving Python Programming

Tutor. International Journal of Artificial Intelligence in Education (2015),
1–28. https://doi.org/10.1007/s40593-015-0070-z

[35] Saul Schleimer, Daniel SWilkerson, and Alex Aiken. 2003. Winnowing:

local algorithms for document fingerprinting. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data.
ACM, 76–85.

[36] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.

Automated feedback generation for introductory programming assign-

ments. ACM SIGPLAN Notices 48, 6 (2013), 15–26.
[37] Alexander Strehl and Joydeep Ghosh. 2002. Cluster ensembles—a

knowledge reuse framework for combiningmultiple partitions. Journal
of machine learning research 3, Dec (2002), 583–617.

[38] Haruaki Tamada, Keiji Okamoto, Masahide Nakamura, Akito Monden,

and Ken-ichi Matsumoto. 2004. Dynamic software birthmarks to

detect the theft of windows applications. In International Symposium
on Future Software Technology, Vol. 20. Citeseer.

[39] Marc Thurley. 2006. sharpSAT–counting models with advanced com-

ponent caching and implicit BCP. In International Conference on Theory
and Applications of Satisfiability Testing. Springer, 424–429.

[40] Nghi Truong, Paul Roe, and Peter Bancroft. 2004. Static analysis

of students’ Java programs. In Proceedings of the Sixth Australasian
Conference on Computing Education-Volume 30. Australian Computer

Society, Inc., 317–325.

[41] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Search, Align, and

Repair: Data-Driven Feedback Generation for Introductory Program-

ming Exercises. In Proceedings of Programming Language Design and
Implementation (PLDI).

[42] Ke Wang, Zhendong Su, and Rishabh Singh. 2018. Dynamic Neural

Program Embeddings for Program Repair. In International Conference
on Learning Representations.

[43] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. Be-

havior based software theft detection. In Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 280–290.

[44] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2009. De-

tecting software theft via system call based birthmarks. In Computer
Security Applications Conference, 2009. ACSAC’09. Annual. IEEE, 149–
158.

[45] Wei Wei and Bart Selman. 2005. A new approach to model counting.

In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 324–339.

[46] Daniel S. Weld, Eytan Adar, Lydia Chilton, Raphael Hoffmann, Eric

Horvitz, Mitchell Koch, James Landay, Christopher H. Lin, and

Mausam. [n. d.]. Personalized Online Education: ĂŤA Crowdsourc-

ing Challenge. In Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence.

[47] Songwen Xu and Yam San Chee. 2003. Transformation-based diag-

nosis of student programs for programming tutoring systems. IEEE
Transactions on Software Engineering 29, 4 (2003), 360–384.

[48] Wuu Yang. 1991. Identifying syntactic differences between two pro-

grams. Software: Practice and Experience 21, 7 (1991), 739–755.

14

https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1007/s40593-015-0070-z

	Abstract
	1 Introduction
	2 Motivating example
	3 Preliminaries
	4 Quantitative Semantic Features
	4.1 Control Flow Features
	4.2 Data Flow Features
	4.3 Program Feature Vector

	5 Implementation
	6 Evaluation
	6.1 Number of Clusters
	6.2 Run-time
	6.3 Precision of Clusters: Solution Strategy
	6.4 Precision of Clusters: Feedback and Repair
	6.5 Comparison With DPE

	7 Related Work
	8 Conclusion
	References

