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Abstract. The goal of automatic program repair is to identify a set of
syntactic changes that can turn a program that is incorrect with respect
to a given specification into a correct one. Existing program repair tech-
niques typically aim to find any program that meets the given specifica-
tion. Such “best-effort” strategies can end up generating a program that
is quite different from the original one. Novel techniques have been pro-
posed to compute syntactically minimal program fixes, but the smallest
syntactic fix to a program can still significantly alter the original pro-
gram’s behaviour. We propose a new approach to program repair based
on program distances, which can quantify changes not only to the pro-
gram syntax but also to the program semantics. We call this the quanti-
tative program repair problem where the “optimal” repair is derived using
multiple distances. We implement a solution to the quantitative repair
problem in a prototype tool called Qlose (Quantitatively close), using
the program synthesizer Sketch. We evaluate the effectiveness of dif-
ferent distances in obtaining desirable repairs by evaluating Qlose on
programs taken from educational tools such as CodeHunt and edX.

1 Introduction

Recent years have seen the emergence of computer-aided personalized education
as a new, important research field. Sophisticated techniques relying on formal
methods, programming languages, and program synthesis have been designed to
assist teachers in grading and providing feedback for introductory programming
assignments [34], automata constructions [1], and geometric constructions [18,
21]. In this paper, we propose a novel program repair framework that enhances
the state of the art in automated feedback generation for students in introductory
programming courses.
? This research was supported in part by the European Research Council (ERC) under
grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award).



The goal of automatic program repair is to identify a set of syntactic changes
that can turn a program that is incorrect with respect to a given specification
into a correct one. In the context of automated feedback generation, repairing a
program corresponds to finding a “fix” to the student’s incorrect solution. The
specification can be as simple as a set of test cases.

Existing program repair techniques are typically “best-effort” and aim to find
any repair that meets the given specification. Such techniques can end up gener-
ating a program that is quite different from the original one. Although this may
be acceptable in some settings, in the context of education, the goal should be to
slowly guide the students towards a correct solution. In particular, if a student
solution is close to a correct one, a teacher wouldn’t point the student to a com-
pletely different program, but would rather show how the student solution can
be corrected with small changes. Advanced program repair techniques address
this problem by computing syntactically minimal program repairs [34, 33, 28].

In this paper, we argue that even the smallest syntactic fix to a program can
significantly alter its behaviour. We propose a new approach to program repair
based on program distances, which quantify changes not only to the program
syntax but also to the program semantics. While syntactic distances capture
the number of edits to the program, semantic distances quantify the number of
changes to the “behaviour” of a program with respect to a given set of tests. We
formalize the quantitative program repair problem in which the “optimal” repair is
defined as a correct program that minimizes an objective function over multiple
program distances. Although our framework is general, we present two types of
syntactic distances, three types of semantic distances, and propose a solution to
the quantitative program repair problem with respect to these distances.

We have implemented our techniques in a prototype tool called Qlose (Quan-
titatively close), which is built on top of the Sketch synthesis system [36]. In
Qlose, we encode the functional correctness property of the student solution
with respect to a set of tests as a hard constraint and the syntactic and se-
mantic distances with respect to the original solution as soft constraints. The
repair generated by Sketch maximizes the number of soft constraints that can
be satisfied, while satisfying the hard constraints. We evaluate Qlose on 11
representative benchmark programs taken from student submissions to the Mi-
crosoft CodeHunt platform [39] and the Introduction to Programming course
on the edX platform. Our preliminary results show that encoding quantitative
program repair using syntactic and semantic distances is practically feasible for
small student solutions and leads to more desirable repairs.

Contributions. This paper makes the following key contributions.

– We define new notions of syntactic and semantic distances between programs
with respect to a given set of tests and use these notions to formalize the
quantitative program repair problem (§ 3, § 4).

– We encode the quantitative repair problem in a prototype tool called Qlose,
which is built on top of the Sketch synthesis system (§ 5).

– We evaluate Qlose and the strengths of the different distances on 11 rep-
resentative student submissions taken from education platforms (§ 6).



Test set
Input Output

s c k expected actual
ab? ? 2 true false

aba?gc ? 5 true true
?aba ? 3 true true

1 FindCBuggy(str s, ch c, int k){
2 for(int j=0;j<k;j++)
3 if(s[j]==c)
4 return true;
5 return false;
6 }

(a)

1 FindCBadFix(str s, ch c, int k){
2 for(int j=0;j<k;j++)
3 if(c=='?') //new condition
4 return true;
5 return false;
6 }

(b)

1 FindCGoodFix(str s, ch c, int k){
2 for(int j=0;j<=k;j++) // new guard
3 if(s[j]==c)
4 return true;
5 return false;
6 }

(c)

Fig. 1: A buggy program (a) with two possible syntactic repairs (b) and (c).

2 Motivating Example

We use the example in Fig. 1 to show that semantic distances can sometimes
yield more intuitive program repairs than syntactic distances.4 Fig. 1 contains a
set of tests that is representative of the intended semantics of a desired program.
Given this test set, the student has come up with the program FindCBuggy in
Fig. 1(a) which fails the first test but passes the other ones. The desired program
is one that given a string s, a character c, and an integer k outputs whether the
character c appears in s at some position j ≤ k. Besides a small imprecision,
the student solution captures the intended algorithm in the sense that successful
executions of the program are not far from those in the correct algorithm.

Limitation of syntactic distances. To give feedback to the student, one can try
fixing the student solution using existing program repair techniques that mini-
mize the number of syntactic changes to an incorrect program. Techniques like
the ones presented in [28, 34] would return one of the two programs at the bottom
of Fig. 1. Both of these programs differ from the one in Fig. 1(a) by exactly one
expression. However, one of the repaired programs is, in some sense, more “dis-
ruptive” than the other. In particular, although the program in Fig. 1(b) simply
changes the guard of the if-statement, its executions on previously correct tests
are now very different: on all tests the loop is now executed only once! On the
other hand, for the program in Fig. 1(c), the executions on correct tests are the
same as for the original program. Syntactic program distances cannot distinguish
between these two candidate repairs and are inadequate for this example.

Semantic distances. One can capture the intuition that the program in Fig. 1(c)
is a better repair for the student solution than the program in Fig. 1(b) by
examining the execution of these programs on successful tests. For example, if

4 This example is a slight variation of the one appearing in Fig. 3 of [28].



we were to track the locations (lines of code) traversed by the three programs on
the second input test with s = aba?gc we would get the following sequences of
locations: (a) 2, 3, 2, 3, 2, 3, 2, 3, 4; (b) 2, 3, 4; and (c) 2, 3, 2, 3, 2, 3, 2, 3, 4. These
sequences highlight that the program in Fig. 1(c) is semantically closer to the
student solution.

A similar argument can be made for repairing using only a semantic distance
as the repaired program may be syntactically very far from the original one. In
summary, in order to repair programs in a meaningful way, it is often necessary
to take into account multiple quantitative objectives such as the number of
syntactic edits and the distance between program behaviours.

3 Program Repair

In this section, we formalize programs, correctness specifications, and permissible
program edits. We then use these notions to define the program repair problem.

3.1 Programs

We fix a simple imperative programming language, in which a program P consists
of a function definition f(i1, . . . , iq) : o, a set of program variables V , and a
sequence of labeled statements σ = s1 . . . sn. A statement is one of the following:
skip, return, assignment, conditional or loop statement.5 Each statement in σ
is labeled with a unique location identifier from the set L = {`0, `1, . . . , `p, exit}.
The function f has a designated set of input variables I = {i1, . . . , iq} and a
designated output variable o. The program statements are allowed to use an
auxiliary set of variables V = {v1, . . . , vr}. We assume a universe U of values.
We also assume that all variables are associated with a given type and and are
only assigned values from U with the proper types.

We now define the semantics of our programs. The semantics of program
statements is standard. Without loss of generality, we assume execution of a
return statement assigns a value to the output variable and transfers control to
a designated location exit.

A program configuration η is a pair (`, ν) where ` ∈ L is a location and
ν : I ∪ {o} ∪ V 7→ U ∪ {nd} is a valuation function that assigns values to all
variables. The element nd indicates that a variable has not been assigned a value
yet or is out of scope. We write (`, ν)→ (`′, ν′) if execution of the statement at
location ` under variable valuation ν transfers control to location `′ with variable
valuation ν′.

The execution π(ν) of program P on a valuation ν is a sequence of configu-
rations η0, η1, . . . , where η0 = (`0, ν) and for each h, ηh → ηh+1. An execution
terminates once the location exit is reached.

Here we are only interested in executions for which the initial valuation ν is
such that for every input variable x ∈ I, ν(x) 6= nd, and for every non-input
5 Our implementation supports a richer subset of the Python language including lists,
strings, and function calls.



variable y ∈ V ∪ {o}, ν(y) = nd. Given a partial valuation νI : I 7→ U assigning
values to the input variables, let ν+I be the valuation such that for every input
variable x ∈ I, ν+I (x) = νI(x), and for every other variable y 6∈ I, ν+I (y) = nd.
We denote by JP K : (I 7→ U) 7→ U the partial function computed by a program
P , and define it as JP K(νI) = res iff π(ν+I ) terminates with output valuation ν′
and ν′(o) = res.

Example 1. Consider the program FindCBuggy in Fig. 1(a). The input vari-
ables I are {s, c, k} and the designated output variable is o. The set of program
variables is the singleton {j}. The execution of FindCBuggy on ν such that
νI(s) = ab?, νI(c) = ?, νI(k) = 2 is illustrated in the following table:

η0 η1 η2 η3 η4 η5 η6
loc 2 3 2 3 2 5 exit
s ab? ab? ab? ab? ab? ab? ab?
c ? ? ? ? ? ? ?
k 2 2 2 2 2 2 2
j nd 0 0 1 1 2 nd
o nd nd nd nd nd nd false

We thus have JFindCBuggyK(ab?, ?, 2) = false.

3.2 Test Sets as Specifications

A test t is a pair (νI , res), where νI : I 7→ U is a valuation over the input
variables, and res ∈ U is the expected output value. A program P satisfies a test
t if JP K(νI) = res. A program P satisfies a test set T if it satisfies all the tests
t ∈ T .

We use π̇(t), read as “execution of a program on a test t”, to refer to π(ν+I ).

Example 2. Consider the test set and the program FindCBuggy in Fig. 1.
Clearly, FindCBuggy does not satisfy the test set. In particular, on the first
test from Ex. 1 we have JFindCBuggyK(ab?, ?, 2) 6= true.

3.3 The Program Repair Problem

In our repair model we permit program expressions to be changed, but not
program statements. For example, we permit replacement of loop guards and
right-hand sides of assignments and disallow replacement of an assignment with
a return statement. Formally, a permissible program edit applied to a labeled
statement ` : stmt in program P is any modification of stmt that replaces an
expression in stmt with another expression over the same domain, and leaves
the label ` unchanged.

Given program P and a subset of locations loc ⊆ L of P , let Rloc(P ) be
the set of all programs that can be obtained by applying permissible program
edits to labeled statements with labels in loc. The following proposition holds
trivially.



Proposition 1. Given programs P , P ′, with locations L, L′, the following state-
ments are equivalent:

(i) there exists unique loc ⊆ L such that P ′ ∈ Rloc(P )
(ii) there exists unique loc′ ⊆ L′ such that P ∈ Rloc′(P ′)
(iii) L = L′ and there exists unique loc ⊆ L such that P ′ ∈ Rloc(P ) and

P ∈ Rloc(P
′).

Example 3. In Fig. 1, FindCBadFix ∈ R{3}(FindCBuggy) as FindCBadFix
replaces the guard s[j] == c in location 3 of FindCBuggy with the guard
c ==?. Similarly, FindCGoodFix ∈ R{2}(FindCBuggy) as FindCGoodFix
replaces the loop guard j < k in location 2 of FindCBuggy with the guard
j ≤ k6.

Given a program P and a test set T such that P does not satisfy T , the goal
of program repair is to compute P ′ such that: (1) P ′ satisfies T , and (2) there
exists loc ⊆ L such that P ′ ∈ Rloc(P ).

Example 4. Consider the programs in Fig. 1. The programs FindCBadFix and
FindCGoodFix are possible repairs of the program FindCBuggy with re-
spect to the test set shown in the figure. They are both correct on the test set
and, from Ex. 3, FindCBadFix ∈ R{3}(FindCBuggy) and FindCGoodFix ∈
R{2}(FindCBuggy).

4 Quantitative Program Repair

In this section, we define program distances and the quantitative program repair
problem. Given two programs P , P ′ and a test set T , a program distance7 is
a function over P , P ′ and T that quantifies how close are P and P ′ w.r.t. T .
We classify program distances as syntactic and semantic distances. A syntactic
program distance simply tracks the syntactic change between P and P ′, inde-
pendent of the test set T . Hence, a syntactic program distance is a function over
P and P ′. A semantic program distance tracks the semantic differences between
P and P ′ with respect to executions on the test set T . In particular, a semantic
program distance tracks the differences in the executions of P and P ′ on all tests
t such that both P and P ′ satisfy t. In what follows, we define several syntactic
and semantic distances. One could easily define more sophisticated distances and
we invite the reader to do so. The following distances sufficed for our “proof of
concept” experiments with quantitative program repair.

6 In our implementation, each location is associated with a single expression. To
keep our presentation simple, we associate all 3 expressions in the for loop in
FindCBuggy with location 2, instead of mapping each expression to a different
location.

7 Our program distances are not necessarily distance metrics. In particular, some of
them are not symmetric in P and P ′.



4.1 Syntactic Distances

A syntactic distance between programs P and P ′ is defined modulo an expression
distance ε. An expression distance tracks the syntactic difference between two
expressions. In this work, we use two simple expression distances, defined below.

Boolean expression distance, εbool, is a Boolean-valued distance that simply
tracks if two expressions are equal or not:

εbool(expr, expr
′) =

{
0 if expr = expr′

1 otherwise.

Expression-size distance, εsize, tracks the size of the repaired expression:

εsize(expr, expr
′) =

{
0 if expr = expr′

size(expr′) otherwise,

where size(expr′) can be defined in different ways. For example, size(expr′)
could be the total number of symbols and operators in expr′. In Section 5,
we present the definition of size(expr′) used in our implementation. Note that
εsize(expr, expr

′) is not a symmetric function.
A syntactic program distance between programs P and P ′ is finite only if

P and P ′ can be obtained from each other by applying a set of permissible
program edits. Given an expression distance ε, a syntactic program distance
accumulates the expression distance across all expression changes between P
and P ′. Formally:

dεsyn(P, P
′) =

∞ if ∀loc : P ′ 6∈ Rloc(P )∑
`∈loc:P ′∈Rloc(P )

ε(expr`, expr
′
`) otherwise.

Note that Prop. 1 ensures the uniqueness of loc in the second case. Here,
expr`, expr

′
` denote expressions in `-labeled statements of P , P ′, respectively.

Thus, if ε = εbool, dεsyn(P, P ′) equals the number of permissible program edits
required to transform P to P ′. Similarly, if ε = εsize, dεsyn(P, P ′) equals the total
size of all new expressions in P ′.

Example 5. Consider the programs in Figure 1. For ε = εbool, one can see that
dεsyn(FindCBuggy, FindCBadFix) and dεsyn(FindCBuggy,FindCGoodFix)
both equal 1, as there is exactly one permissible program edit in each case. For
ε = εsize, if expression size is given by the total number of symbols and operators,
dεsyn(FindCBuggy,FindCBadFix) and dεsyn(FindCBuggy,FindCGoodFix)
both equal 3. Neither syntactic distance can distinguish between FindCBadFix
and FindCGoodFix.



4.2 Semantic Distances

The semantic distance between programs P and P ′ with respect to a test set
T is defined modulo an execution distance ζ. An execution distance tracks the
differences between two executions. In this paper, we consider three types of
execution distances, defined on terminating executions.

Let Tsat ⊆ T consist of all tests t such that P and P ′ both satisfy t. Given
a test t in Tsat, let π̇(t), π̇′(t) denote executions of P , P ′, respectively on t. In
what follows, we fix π̇(t) = η0, η1, . . . , ηM and π̇′(t) = η′0, η′1, . . ., η′K . Recall that
a configuration ηh is a tuple of the form (`h, νh).

Our execution distances essentially compute the Hamming distance between
two executions, using different abstractions of configurations. For executions of
equal lengths, this distance equals the minimum number of configuration sub-
stitutions required to transform one execution into another. For executions of
differing lengths, this distance additionally includes the difference in the execu-
tion lengths. All three execution distances can be defined as follows:

ζ(π̇(t), π̇′(t)) =

{
|M −K| +

∑min(M,K)
h=0 diff(ηh, η

′
h) if M,K <∞

∞ otherwise,

where the definition of diff(ηh, η′h) varies for each execution distance.

Concrete execution distance, ζconc, compares both locations and variable values
in two executions: diffconc(ηh, η′h) = 0 if ηh = η′h and 1 otherwise.

Value execution distance, ζval, only compares the variable values in two execu-
tions: diffval(ηh, η′h) = 0 if νh = ν′h and 1 otherwise.

Location execution distance, ζlocs, only compares the locations in two execu-
tions: diffloc(ηh, η′h) = 0 if `h = `′h and 1 otherwise.

A semantic program distance between programs P , P ′ w.r.t. test set T is
finite only if P and P ′ can be obtained from each other by applying a set of
permissible program edits and Tsat is not empty. Given an execution distance ζ
and the set Tsat, a semantic program distance accumulates the execution distance
between executions of P and P ′ on tests in Tsat. Formally:

dζsem(P, P ′, T ) =

∞ if ∀loc : P ′ 6∈ Rloc(P ) or Tsat is empty∑
t∈Tsat

ζ(π̇(t), π̇′(t)) otherwise.

Example 6. The executions of FindCBuggy and FindCBadFix from Figure 1
on ν such that νI(s) = aba?gc, νI(c) = ?, νI(k) = 5 are shown in Fig. 2. The last
3 rows of the table show diff(ηh, η

′
h) for h = 0, 1, 2, 3. Note that diffval doesn’t

distinguish between η2 and η′2 as these configurations share the same variable



step 0 1 2 3 4 5 6 7 8 9

loc 2 3 2 3 2 3 2 3 4 exit
FindCBuggy j nd 0 0 1 1 2 2 3 3 exit

o nd nd nd nd nd nd nd nd nd true
loc 2 3 4 exit

FindCBadFix j nd 0 0 exit
o nd nd nd true

diffconc 0 0 1 1
diff diffval 0 0 0 1

diffloc 0 0 1 1

Fig. 2: Semantic distances between executions. We do not show the input vari-
ables s, c, and k as their values are never modified.

values. The difference in lengths of the given two executions is 6. Thus, for these
executions, ζconc = ζlocs = 6 + 2 = 8, and ζval = 6 + 1 = 7.

The execution of FindCGoodFix on the same ν with νI(s) = aba?gc, νI(c) =
?, νI(k) = 5 is exactly the same as the execution of FindCBuggy shown in
Fig. 2. Hence, ζconc = ζlocs = ζval = 0 for the executions of FindCBuggy
and FindCGoodFix. Our semantic program distances can distinguish between
FindCBadFix and FindCGoodFix.

4.3 The Quantitative Program Repair Problem

Given a program P and a test set T such that P does not satisfy T , syntac-
tic distance functions d1syn, . . . , dxsyn, semantic distance functions d1sem, . . . , dysem,
and objective functions f1, . . . , fz over d1syn, . . . , dxsyn, d1sem, . . . , dysem, the goal of
quantitative program repair is to compute P ′ such that:

(1) P ′ satisfies T ,
(2) there exists loc ⊆ L such that P ′ ∈ Rloc(P ), and
(3) P ′ = argmin

∃l̂oc⊆L:P̂∈Rl̂oc(P )

aggregate
1≤i≤z

{fi(d1syn(P, P̂ ), . . . , dysem(P, P̂ , T ))}.

Here aggregate allows multiple objective functions to be combined. For exam-
ple, aggregate could enforce Pareto optimality.

Example 7. Consider the programs in Fig. 1. In Ex. 4, we showed that both
FindCBadFix and FindCGoodFix satisfy conditions (1) and (2) of the quan-
titative program repair problem for program FindCBuggy and the test set
shown in Fig. 1.

In Ex. 5, we showed that both dεsyn(FindCBuggy, FindCBadFix) and
dεsyn(FindCBuggy,FindCGoodFix) equal 1 for ε = εbool. For ε = εsize,
dεsyn(FindCBuggy,FindCBadFix) and dεsyn(FindCBuggy,FindCGoodFix)
both equal 3.



The set Tsat consists of the last two tests in the test set T in Fig. 1. Let the
test with s = aba?gc be denoted t1 and the test with s = ?aba be denoted t2. Let
π̇(t1) and π̇(t2) denote the executions of FindCBuggy on t1 and t2, respectively.
Let π̇′(t1), π̇′(t2) and π̇′′(t1), π̇′′(t2) denote the executions of FindCBadFix and
FindCGoodFix on t1, t2, respectively.

We have seen in Ex. 6 that ζconc(π̇(t1), π̇
′(t1)) = 8 and ζconc(π̇(t1), π̇

′′(t1)) =
0. It’s not hard to see that ζconc(π̇(t2), π̇

′(t2)) = 0 and ζconc(π̇(t2), π̇
′′(t2)) =

0. Thus, we can compute dζconcsem (FindCBuggy, FindCBadFix, T ) = 8 and
dζconcsem (FindCBuggy,FindCGoodFix, T ) = 0.

If we choose dεboolsyn , dεsizesyn as our syntactic distances, dζconcsem as our semantic
distance and our objective function f to simply be the sum of dεboolsyn , dεsizesyn and
dζconcsem , the value of f is 4 for FindCGoodFix and is 12 for FindCBadFix.
Hence, this instance of the quantitative program repair problem will prefer the
program FindCGoodFix as a repair candidate.

5 Quantitative Program Repair using Sketch

In this section, we describe the formulation of the quantitative program repair
problem as an instance of the MAX-SMT problem. We encode the program
semantics using a symbolic Boolean encoding and specify the functional cor-
rectness of the program w.r.t the given test set T as a hard constraint. The
syntactic and semantic distances are encoded using soft constraints. The repair
generated by the MAX-SMT solver maximizes the number of soft constraints
that can be satisfied while ensuring the satisfaction of the hard constraints.
We perform a syntax-directed translation from the source imperative language
to Sketch [36], and use the minimization algorithm in Sketch to solve the
MAX-SMT constraints. Instead of using a general MAX-SMT solver, we use
the Sketch solver because of the ease in translation of the buggy programs
into constraints. The Sketch solver allows for optimization constraints similar
to MAX-SMT, but uses several algorithmic optimizations before encoding the
problem into low-level SMT constraints. We now describe the key ideas in the
formulation and translation of the quantitative program repair problem using
the Sketch system.

5.1 Background on Sketch

Sketch is a synthesis system for writing partial programs (with holes) together
with some high-level specifications of the programs. The synthesis algorithm
fills the holes automatically using a constraint-based, counterexample-guided
inductive synthesis (CEGIS) algorithm such that the completed program satisfies
the given specifications. For example, consider the Sketch program shown in
Fig. 3(a). One possible completion synthesized by the Sketch system is shown
in Fig. 3(b). The hole expressions ?? can take any constant integer value, and
they can further be composed to construct more complex unknown expressions.



harness int triple(int x){
int y = ?? * x;
if(x==10) assert y == 30;
return y;

}

harness int triple(int x){
int y = 3 * x;
if(x==10) assert y == 30;
return y;

}

(a) (b)

Fig. 3: (a) A simple Sketch program and (b) a possible completion.

bit FindCBuggySketch(str s, ch c, int k){
for(int j= f1(s,c,k); f2(j,s,c,k);

j=f3(j,s,c,k))
if(f4(j,s,c,k))

return f5(j,s,c,k);
return f6(j,s,c,k);

}

int f1(str s, ch c, int k){
if (bf1 == 0)

return 0;
else

return ??1,1*s[??] +
??1,2 ∗ c+??1,3*k + ??1,4;

}

(a) (b)

Fig. 4: The Sketch translation for the FindCBuggy program from Fig. 1(a).

5.2 Space of Expression Edits

For our quantitative program repair encoding, we restrict the class of expres-
sions that can potentially be modified by the solver to (i) the set of conditional
expressions and (ii) the right hand side expressions of assignment statements.
Furthermore, to restrict the space of possible repairs, we use an expression tem-
plate corresponding to a linear combination of constants and all program vari-
ables in scope at the program location. In Sketch, the modifiable expressions
are replaced by functions that either allow for returning the original unmodified
expression in the program or some instantiation of the expression template.

For example, the Sketch translation for the buggy program in Fig. 1(a) is
shown in Fig. 4(a). The conditional expressions and the right hand side expres-
sions of the assignment statements are translated to change functions fi. An
example change function f1 is shown in Fig. 4(b). Each change function fi is
associated with a Boolean variable bfi that indicates if the original expression is
selected (bfi = 0) or some new expression is selected for the completion of the
function fi (bfi = 1). Each set of possible new expressions is represented as a
linear combination of program variables of appropriate types where the coeffi-
cients of the variables are denoted using unknown values ??i,j . For expressions
involving strings, the change function restricts the edit expression to consist of
only 1 character from that string. The characters are then interpreted as integers
in Sketch.

5.3 Encoding Distances

We now describe how the syntactic and semantic distances are encoded as con-
straints in the Sketch system.



m2 = 0; m3 = 0; m4 = 0;
for(int j= f1(s,c,k); f2(j,s,c,k); j=f3(j,s,c,k)){

St
2[m2++] = [j,s,c,k];

if(f4(j,s,c,k)){

St
3[m3++] = [j,s,c,k]; return f5(j,s,c,k);}

}

St
4[m4++] = [j,s,c,k];

return f6(j,s,c,k);

int semDistance(S, Sorig, Tsat){
d` = 0;
foreach(test t ∈ Tsat)

foreach(loc ` ∈ |S|)
d`+ = φ(St

` , S
orig,t
` );

return d`;
}

(a) (b)

Fig. 5: Encoding semantic distance in Sketch.

Syntactic distances. We encode our syntactic distances modulo our two ex-
pression distances in Sketch as follows.

– Boolean expression distance: The syntactic distance dεsyn for ε = εbool com-
putes the number of expression changes that are performed by the solver and
is computed as Σibfi . The Boolean variable bfi is set to 0 if the expression
corresponding to function fi remains unchanged in the final solution and is
set to 1 otherwise.

– Expression-size distance: The syntactic distance dεsyn for ε = εsize computes
the total size of modified expressions, where the size of a modified linear
arithmetic expression corresponding to fi is computed as the sum of all of
its coefficients |??i,j |. Thus, dεsizesyn is defined as ΣiΣj |??i,j |.

Semantic distances. We encode our semantic distance modulo the concrete
execution distance. The Sketch translation is instrumented to capture program
states at different program locations as shown in Fig. 5(a), where St`[j] denotes
the program state for jth loop iteration at program location ` for a test case
t. The concrete execution distance ζconc between the original program and the
modified program on a test case t in Tsat is computed as Σ`,jφ(St`[j], S

orig,t
` [j]),

where the function φ counts the number of variables that do not have equal
values across two states St`[j] and S

orig,t
` [j], as shown in Fig. 5(b). Our encoding

enforces a bound on the length of program executions by unrolling loops a fixed
number of times.

Quantitative Objective. The final quantitative objective in the Sketch
translation is encoded as the following constraint:

assert dεboolsyn < N ∧ minimize (dεsizesyn + dζconcsem )

We use a linear search to first find the minimum number of expression changes
N that are needed to repair the buggy program using a linear iterative search.
After computing the value n, we then add the minimization constraint to find a
repair with minimum semantic distance dζconcsem and simpler expression modifica-
tions dεsizesyn . The Sketch solver uses an incremental search methodology to com-
pute the repair that corresponds to the minimum objective function value [34].



The hard constraints specifying functional correctness w.r.t a test set T is en-
coded in a standard way using assert statements in Sketch. If we refer back to
the definition of quantitative program repair in Section 4.3, the resulting repaired
program is

P ′ = argmin
∃l̂oc⊆L:P̂∈Rl̂oc(P )

〈dεboolsyn (P, P̂ ), dεsizesyn (P, P̂ ) + dζconcsem (P, P̂ )〉.

In this case, the aggregation operator is the one that first minimizes the left
element of the pair and then the right one.

6 Evaluation

We implemented a prototype tool Qlose that given a (simplified) C# program,
a set of test cases, and the desired types of distances, constructs a Sketch
program with the corresponding constraints to encode the quantitative program
repair problem. We evaluated Qlose on 11 representative benchmark programs
using the distances presented in Sec. 5. Our preliminary results suggest that
Qlose is practically feasible for small student solutions and generates more
desirable repairs while using a combination of syntactic and semantic distances.8

6.1 Benchmarks

Our benchmark set consists of 11 representative buggy programs taken from
student submissions to introductory programming courses and recent program
repair literature. The LargestGap problem is taken from the Microsoft Code-
Hunt platform [39] and asks students to write a program to compute the largest
difference amongst any two values in a given input array of integers. The FindC
program is the same as FindCBuggy in Fig. 1. The tcas-semfix benchmark is
taken from the SemFix [29] system and corresponds to a code excerpt from the
Tcas benchmark9. The max3 problem asks students to compute the maximum of
3 integers. The iterPower, epoly, and multIA problems are taken from the In-
troduction to Programming course taught on the edX platform. The iterPower
problem asks students to write an iterative program that, given two integers m
and n, computes the value mn. The epoly problem evaluates a polynomial (de-
fined using an array of integer coefficients) on an integer value, and the multIA
problem requires students to write a program to compute multiplication of two
integers using successive additions.

The number of lines of code (LOC), the number of variables (|Vars|), and
the number of test input-output pairs (|Tsat|) for each benchmark problem10

8 The experiments were performed on a 40-core 2.4GHz Intel Xeon CPU with 100GB
RAM, with a timeout of 20 minutes. Although this is powerful hardware, we point
out that Sketch only uses a single core and in our experiments the maximum
memory usage was less than 500MB RAM.

9 http://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:tcas
10 The benchmark problems and the translated Sketch files are available at:

bit.ly/cav16-qlose



Problem LOC |Vars| |Tsat| Syntactic Semantic
Syntactic

+
Semantic

FindC 4 4 4 1.5s 7 2.5s 3 2.2s 3

LargestGap-1 10 4 4 9.8s 3 184.9s 7 13.4s 3

LargestGap-2 7 4 4 6.9s 7 TO - 18.2s 3

LargestGap-3 8 4 4 7.3s 3 15.7s 3 14.4s 3

tcas-semfix 10 4 5 12.6s 3 27.8s 3 18.4s 3

max3 5 3 4 1.1s 3 1.7s 7 1.9s 3

iterPower-1 7 3 4 2.3s 7 10.3s 3 3.4s 3

iterPower-2 7 3 4 2.1s 3 15.2s 7 2.7s 3

ePoly-1 8 4 3 1.8s 7 3.6s 3 2.5s 3

ePoly-2 10 4 3 2.4s 3 4.6s 3 2.8s 3

multIA 5 4 4 1.8s 7 21.5s 7 2.4s 3

Fig. 6: Solving times and the desiredness of the generated repairs for different
distances. TO denotes that the solver timed out (> 20 minutes), The symbol
3 (resp. 7) denotes that the generated repair was (resp. wasn’t) the desired one.

is shown in Fig. 6. The number of lines in the benchmarks varied from 4 to
10 lines, whereas the number of variables and the number of test cases varied
from 3 to 5. For the CodeHunt benchmarks, we reused the test input-output
pairs automatically generated by the CodeHunt engine. For the tcas-semfix
benchmark, we use the tests from the SemFix paper [29]. For the benchmarks
obtained from the edX class, we manually selected the relevant test cases that
exposed different corner case behaviors.

6.2 Desired Repairs

The experimental results obtained by running Qlose on different benchmarks
using different distances are shown in Fig. 6. We manually inspected the repairs
generated using different distance metrics and classified them into desired (3) or
not (7). For performing this classification, we did not inspect the reference code
for the problem, but instead inspected the original buggy program and manually
inferred the algorithm the student (or programmer) likely intended to implement.
We then checked whether the repaired program matched the intended algorithm.

We can observe that using only syntactic or semantic distance sometimes
leads to undesired repairs whereas combining the two distances always leads
to the desired fixes in our benchmark set. For example, for the LargestGap-2
program shown in Fig. 7(a), the syntactic distance encoding causes the solver to
come up with a fix that sets the loop initialization variable i to 0 instead of 1.
Although, this repair is correct on the test cases, it is less desirable than the repair
that assigns a[0] to the low variable l, which corresponds to the solution that
student had in mind. Qlose generates this repair when it uses both syntactic
and semantic distances. A similar example of a desirable repair generated by



Qlose using both syntactic and semantic distances is illustrated in Fig. 7 for
the ePoly-1 benchmark.

int LargestGap(int[] a){
int h = a[0], l=0;
int N = a.Length;
for(int i=1; i<N;++i){

h = max(h,a[i]);
l = min(l,a[i]);

}
return h - l;

}

int LargestGap(int[] a){
int h = a[0], l=0;
int N = a.Length;
for(int i=0; i<N;++i){

h = max(h,a[i]);
l = min(l,a[i]);

}
return h - l;

}

int LargestGap(int[] a){
int h = a[0], l=a[0];
int N = a.Length;
for(int i=1; i<N;++i){

h = max(h,a[i]);
l = min(l,a[i]);

}
return h - l;

}

int ePoly -1(int[]p,int
x){

int n = p[0];
int i = p.Length -1;
while(i >= 0){

n += p[i]*pow(x,i);
i--;

}
return n;

}

int ePoly -1(int[]p,int
x){

int n = 0;
int i = p.Length -1;
while(i >= 0){

n += p[i]*pow(x,i);
i--;

}
return n;

}

int ePoly -1(int[]p,int
x){

int n = p[0];
int i = p.Length -1;
while(i > 0){

n += p[i]*pow(x,i);
i--;

}
return n;

}

(a) Original (b) Syntactic (c) Syntactic+Semantic

Fig. 7: (a) The original LargestGap-2 and ePoly-1 programs, (b) the repair gen-
erated by the syntactic distance, and (c) the repair generated by the combination
of syntactic and semantic distances that corresponds to the desired repair.

6.3 Solving Time

The solving times for different combinations of syntactic and semantic distances
are shown in Fig. 6. As expected, the syntactic distances take the smallest
amount of time to resolve the sketches. For some problems, the semantic dis-
tances also resolve within a few seconds, but there are some cases where the
solver takes much longer (including a case where the solver times out at 20 min-
utes). Our hypothesis for this phenomenon is that the semantic constraints by
themselves under-constrain the space of repairs, which causes the solver to search
a larger space for finding the optimal solution for the minimization objective.
On the other hand, by combining syntactic and semantic distances, Qlose can
solve the sketches with minimization constraints within 20s for each benchmark.

6.4 Repairs with Different Test Sets

In this experiment, we evaluate the effect of using different sets of tests on the
repairs generated by Qlose. We empirically observe that the combination of
syntactic and semantic distances is more robust with respect to changes in the
test set as compared to individual distances. For example, if we look at Fig. 8,



Tests over variables s, c, and k Syntactic Fix
(adb?,?,3),(bgc?cg,?,5),(?aba,?,3),(abcdd?,g,4) for(i=0;i<k;i++) if(c==’?’)
(adb?,?,3),(bgc?cg,?,5),(gaba,?,3),(abcdd?,g,4) for(i=0;s[i]!=’e’;i++) . . .

(ab?,?,2),(aba?cg,?,5), (?aba,?,3),(abcdd?,?,4) for(i=0;s[i]!=’d’;i++) . . .

Fig. 8: Repairs obtained for FindC with syntactic distance for different test sets.

we can see that when we vary the test set for the FindC benchmark, using only
syntactic distances yields different and undesired repairs. On the contrary, we
obtain the same desired repair using the combined distance for these test sets.

7 Related Work

We review relevant work focussing on sequential, imperative software programs.
The authors in [42] were the first to emphasize the need to look for repaired

programs that are semantically close to the original program. But they did not
develop a quantitative formulation of the problem and relied on choosing sets of
traces of the original program to be preserved exactly. There are several program
repair approaches that aim to find repairs that are syntactically close to the
original program [25, 33, 28, 34]. As we have discussed in the paper, focussing
just on syntactic changes can lead to non-intuitive repairs. The AutoProf
system [34] uses the Sketch solver to compute the minimum number of syntactic
changes to incorrect student solutions based on a manual error model. Qlose, on
the other hand, uses additional syntactic and semantic distances, and generalizes
the set of expression modifications using linear combinations of constants with
program variables.

There is also a growing and interesting body of work on quantitative notions
for verification and synthesis [7, 8, 19], which formalize distances between speci-
fications and systems or between systems themselves. However, these distances
mostly apply to reactive systems and temporal logic specifications. There have
also been many proposals for scaling program repair and synthesis to large pro-
grams. These are based on techniques ranging from constraint-solving [37, 29,
38], winning strategies in games [22], abstractions [27, 15, 32], mutations [11],
genetic algorithms [2, 13], using contracts [43], and focusing on data structure
manipulations [35, 44]. As we develop Qlose further, we hope to leverage some
of these techniques and improve the scope of our approach.

Many fault localization algorithms are based on analyzing error traces [45, 3,
24, 9]. Some of these techniques can be used as a preprocessing step to improve
the efficiency of our algorithm. A recent paper [26] finds the root cause of an
equivalence failure in binaries using a notion of semantic similarity between
programs. The problem setting is quite different from ours and the notions of
similarity mostly refer to the program abstract semantics rather than to concrete
executions. We wish to explore whether the distances proposed in [26] can be
instantiated in our framework.



A more general question is whether the notions of program distances ap-
pearing in quantitative program analysis and program repair can be modeled in
Qlose. While simple limits on the number of syntactic edits clearly fall in our
framework [28], some complex distances could take into account features that we
currently do not model. For example [33] uses location-specific costs that cannot
be captured using our current definitions. Extending Qlose to more complex
distances is an interesting research direction.

In this paper we use manual code inspection to decide which repair is most
natural. Recently, many data-driven driven techniques have been proposed to
reason about code naturalness[20, 30]. These techniques learn language models
of source code from a large code corpus and then use these models for several
applications such as learning natural coding conventions, code suggestions and
auto-completion, improving code style, suggesting variable and method names
etc. Using such automatic techniques to classify repairs is an interesting direc-
tion.

8 Limitations and Conclusion

We introduce the quantitative program repair problem informally described as
follows: given a set D of syntactic and semantic distances, a program P , and a
set of test cases T , find the closest program P ′ (with respect to some function over
the distances in D) such that P ′ is correct on all the tests in T . We differentiated
ourselves from previous approaches by showing that, to find “natural” program
repairs, both semantic and syntactic distances are necessary. Our techniques
have been implemented in a prototype tool Qlose, but some limitations need
to be addressed. The most important ones are that the distances are tailored
to specifications given as test sets and that Qlose only handles programs with
tens of lines of code. Addressing these limitations is part of our research agenda.
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