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Abstract. We present a framework that takes unsynchronized sequen-
tial processes along with a temporal specification of their global concur-
rent behaviour, and automatically generates a concurrent program with
synchronization code ensuring correct global behaviour. The synthesized
synchronization code is based on monitors with wait and notify oper-
ations on condition variables, and mutual-exclusion locks. Novel aspects
of our framework include realistic low-level synchronization implementa-
tions, synthesis of both simple coarse-grained synchronization and more
complex fine-grained synchronization, and accommodation of both safety
and liveness in global correctness properties. The method is fully auto-
matic as well as sound and complete.

1 Introduction

We postulate design and employment of automated synthesis engines
for the most precarious component of a concurrent program - the syn-
chronization code. Given unsynchronized skeletons of sequential processes
P1, . . . , Pn, and a temporal specification φ of their global concurrent be-
haviour, our framework automatically generates synchronized skeletons,
P 1, . . . , Pn, such that the resulting concurrent program P 1 � . . . � Pn is
guaranteed to exhibit the desired behaviour. This is effected in two steps.
The first step involves computer-aided construction of a model M for the
specified behaviour of the concurrent program based on P1, . . . , Pn, and
extraction of synchronization skeletons P s

1 , . . . , P
s
n, with high-level syn-

chronization actions (guarded commands), such that P s
1 � . . . � P s

n |= φ.
The second step comprises a correctness-preserving mechanical compila-
tion of the high-level synchronization actions into synchronization code
based on lower-level primitives such as monitors and mutual-exclusion
(mutex) locks.

The first step in our framework could be completed by manually con-
structing a high-level solution, and then verifying its correctness using a
model checker (cf. [15]). However, the lack of automation in constructing



the high-level solution is a potentially serious drawback as it may neces-
sitate multiple iterations of manual (re-)design, verification, and manual
debugging and correction. We propose a substantial improvement to this
approach that results in a fully algorithmic framework. By specifying
the system temporally, we can apply the method of [7, 6] to algorithmi-
cally synthesize the high-level solution guaranteed to meet the temporal
specification. We alleviate the user’s burden of specification-writing by
automatically inferring local temporal constraints, describing process be-
haviour, from a state-machine based representation of the unsynchronized
processes.

We provide the ability to synthesize coarse-grained synchronization
code with a single monitor (and no mutex locks), or fine-grained synchro-
nization code with multiple monitors and mutex locks. It is up to the user
to choose an appropriate granularity of atomicity that suitably balances
the trade-off between concurrency and overhead for a particular applica-
tion/system architecture. This is an important feature of our framework
as programmers often restrict themselves to using coarse-grained syn-
chronization for its inherent simplicity. In fact, manual implementations
of synchronization code using wait/notify operations on condition vari-
ables are particularly hard to get right in the presence of multiple locks.
We establish the correctness of both translations - guarded commands
to coarse-grained synchronization and guarded commands to fine-grained
synchronization - with respect to typical concurrency properties that in-
clude both safety properties (e.g., mutual exclusion) and liveness proper-
ties (e.g., starvation-freedom).

We further establish soundness and completeness of the overall pro-
posed methodology. Thus, our generated concurrent programs are correct-
by-construction, with no further verification effort required. Moreover, if
the specification as a whole is consistent, a correct concurrent program
will be generated. We have developed a tool for the compilation of syn-
chronization skeletons into concurrent Java programs with both coarse-
grained and fine-grained synchronization. We used the tool successfully
to synthesize synchronization code for an airport ground traffic simulator
program, and some well-known synchronization problems such as readers-
writers and dining philosophers. We emphasize that the synchronization
code generated by our framework can be translated into programs written
using PThreads or in C# as well.

The most important contribution of our work is the combination of
an algorithmic front end for synthesizing a high-level synchronization so-
lution, with an algorithmic back end that yields a readily-implementable
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low-level synchronization solution. We use the CTL-based decision pro-
cedure from [7, 6] because it is handy and available. But an algorithmic
front end could be supplied in many alternative ways; for instance, any
linear temporal logic (LTL) decision procedure could be used. Other
novel ingredients of our fully algorithmic framework include provably
correct translations of high-level to low-level synchronization, synthesis
of both coarse-grained and fine-grained solutions, and accommodation of
both safety and liveness in global correctness properties. Moreover, our
method is sound and complete.

The paper is structured as follows. We explain our algorithmic frame-
work using an example concurrent program in Sec. 2. We discuss exten-
sions and experimental results in Sec. 3 and conclude with a review of
related work in Sec. 4.

2 Algorithmic Framework

In this section, we present an overview of our approach for concurrent
programs based on two processes, using a single-reader-single-writer (RW)
example. We refer the reader to [8] for a more detailed treatment of our
formal framework and algorithms.

P1() {
while(true) {

Execute code region ncs1;

Execute code region try1;

Execute code region cs1;

}}
P2() {

while(true) {
Execute code region ncs2;

Execute code region try2;

Execute code region cs2;

}}

(a)

ncs1 try1 cs1

ncs2 try2 cs2

(b)

Fig. 1: Synchronization-free skeletons of two processes: reader P1 and writer P2

Table 1: Specification of synchronization for single-reader-single-writer problem

Mutual exclusion: AG(¬(cs1 ∧ cs2)).
Absence of starvation for reader P1, provided writer P2 remains in its non-critical
region: AG(try1 ⇒ AF(cs1 ∨ ¬ncs2)).
Absence of starvation for writer: AG(try2 ⇒ AFcs2).
Priority of writer over reader for outstanding requests to enter the critical region:
AG((try1 ∧ try2) ⇒ A[try1 Ucs2]).

We assume that we are given the synchronization-free skeletons of
sequential processes P1 and P2 and a temporal specification φ of their de-
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sired global behaviour. The synchronization-free skeletons of the reader
process P1 and the writer process P2 are as shown in Fig. 1a. Both pro-
cesses have three code regions - ‘non-critical’ (ncs), ‘trying’ (try) and
‘critical’ (cs); the control-flow between these code regions can be encoded
as state-machines, as shown in Fig. 1b. Each code region may represent a
terminating sequential block of code, which is irrelevant for the synthesis
of synchronization, and hence suppressed within a single state. The set
of properties that the concurrent program composed of P1 and P2 must
guarantee are shown in Table 1. It is easy to see that in the absence
of synchronization P1 � P2 6|= φ, where φ represents the conjunction of
the properties in Table 1. Our goal is to modify P1 and P2 by inserting
synchronization code, to obtain P 1 and P 2, such that P 1 � P 2 |= φ.

We propose an automated framework to do this in two steps. The
first step entails computer-aided construction of a high-level solution with
synchronization actions based on guarded commands. The second step
comprises a correctness-preserving, mechanical translation into a low-level
solution based on monitors (along with wait and notify operations on
condition variables) and mutex locks.

ncs1 try1 cs1

ncs2 try2 cs2

ncs2?

ncs1 ∨ try1?

Fig. 2: Synchronization skeletons P s
1 and P s

2 for reader P1 and writer P2

For the first step, we mechanically translate the state-machine repre-
sentations of P1 and P2 into equivalent CTL formulae. We then use the
methodology presented in [7] to: (1) synthesize a global model M for the
specified behaviour of the concurrent program based on P1 and P2, such
that M |= φ, and (2) derive the synchronization skeletons, P s

1 and P s
2

(see Fig. 2) from M. We refer the interested reader to [8, 7] for details
about the synthesis of M and P s

1 , P s
2 . For our current purpose, it suffices

to note that each transition between two sequential code regions in the
synchronization skeleton of a process is labeled with a guarded command
of the form G? → A, consisting of an enabling condition G, evaluated
atomically, and a corresponding set of actions A to be performed atomi-
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cally if G evaluates to true. A guard is a predicate on the current state
(code region) of all processes and the values of shared synchronization
variables, x1, . . . , xm (this tuple is often denoted as x̄), which may be
introduced during the synthesis of M. An action is a parallel assignment
statement that updates the values of the x̄ variables. All guards with the
same action are merged into one transition label. An omitted guard is
interpreted as true in general. In the RW example (Fig. 2), there are no
actions as no x̄ variables were introduced during the synthesis of M.

In the second step of our approach, we mechanically compile the
guarded commands of P s

1 and P s
2 into either coarse-grained or fine-grained

synchronization code for P1 and P2, as desired. The resulting processes
are denoted as P c

1 , P c
2 (coarse-grained) or P f

1 , P f
2 (fine-grained). In both

cases, we introduce Boolean shared variables, ncs1, try2 etc., to repre-
sent the code regions ncs1, try2 etc., of each sequential process. We also
introduce mutex locks and monitors along with conditions variables for
synchronization. For the program P c

1 � P c
2 , which has a coarser level of

lock granularity, we declare a single lock l for controlling access to shared
variables and condition variables. For the program P f

1 � P f
2 with a finer

level of lock granularity, we allow more concurrency by declaring sepa-
rate mutex locks lncs1 , ltry2 etc., for controlling access to each Boolean
shared variable ncs1, try2 etc. (and each shared synchronization variable,
when necessary). We further define separate monitor locks lcvcs1

, lcvcs2

for the condition variables cvcs1 , cvcs2 to allow simultaneous processing
of different condition variables.

The modifications to each process are restricted to insertion of syn-
chronization regions between the sequential code regions of the process.
We refer the reader to Fig. 3a for an example coarse-grained synchro-
nization region (between code regions try1 and cs1 in P1). Note that we
find it convenient to express locks, as lock(l){. . .} (in a manner sim-
ilar to Java’s synchronized keyword), wherein l is a lock variable, ‘{’
denotes lock acquisition and ‘}’ denotes lock release. The implementation
of a coarse-grained synchronization region for the RW example involves
acquiring the monitor lock l and checking, within the monitor, if the
guard G (ncs2 in Fig. 3a) for entering the next code region is enabled.
While the guard is false, P c

1 waits for P c
2 to be in an enabling code re-

gion. This is implemented by associating a condition variable cv (cvcs1 in
Fig. 3a) with the guard for the next code region. Thus while G is false,
P c

1 waits till P c
2 notifies it that G could be true. If the guard G is true,

P c
1 updates the values of (the x̄ variables, when present, and) the shared

Boolean variables in parallel to indicate that it is effectively in the next
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Execute try1;

/* Synch. region */

lock(l) {
while (!ncs2)

wait(cvcs1,l);
try1, cs1 := 0,1;

}
Execute cs1;

(a) Coarse-grained

Execute try1;

/* Synch. region */

lock(lcvcs1) {
while (!Guardcs1())

wait(cvcs1,lcvcs1);

}
Execute cs1;

boolean Guardcs1() {
lock((ltry1 , lcs1 , lncs2) {
if (ncs2) {
try1, cs1 := 0,1;
return(true);

}
else return(false);

}}
(b) Fine-grained

Fig. 3: Coarse and fine-grained synchronization regions between code regions try1 and
cs1 of reader process P1

code region and releases the monitor lock. Before the lock release, P c
1 ,

in general, sends a notification signal corresponding to every guard (i.e.
condition variable) of P c

2 which may be changed to true by P c
1 ’s shared

variables update - there is no such notification in Fig. 3a as the update
does not change any guard of P c

2 to true. If the guard for a code region
is always true, e.g., code region try1, then we do not need to check its
guard, and hence, do not need a condition variable corresponding to the
guard of the code region.

While fine-grained locking can typically be achieved by careful defini-
tion and nesting of multiple locks, one needs to be especially cautious in
the presence of monitor locks for various reasons. For instance, upon ex-
ecution of wait(cv,l) in a nested locking scheme, a process only releases
the lock l before going to sleep, while still holding all outer locks. This
can potentially lead to a deadlock. A fine-grained synchronization region
synthesized in our approach (see Fig. 3b for an example fine-grained syn-
chronization region preceding code region cs1 in P1), circumvents these
issues by utilizing a separate subroutine to evaluate the guard G. In this
subroutine, P f

1 first acquires all necessary mutex locks, corresponding to
all shared variables accessed in the subroutine. These locks are acquired
in a strictly nested fashion in a predecided fixed order to prevent dead-
locks. We use lock(l1, l2, . . .){. . .} to denote the nested locks lock(l1){
lock(l2){ . . .}}, with l1 being the outermost lock variable. The subrou-
tine then evaluates G and returns its value to the main body of P f

1 . If
found true, the subroutine also performs an appropriate parallel update
to the shared variables similar to the coarse-grained case. The synchro-
nization region in the main body of P f

1 acquires the relevant monitor lock
(lcvcs1

in Fig. 3b) and calls its guard-computing subroutine within a while
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loop till it returns true, after which it releases the monitor lock. If the
subroutine returns false, the process waits on the associated condition
variable (cvcs1 in Fig. 3b). Each notification signal for a condition vari-
able, on which the other process may be waiting, is sent out by acquiring
the corresponding monitor lock.

2.1 Correctness of Synthesis

Let Mc and Mf , be the global models corresponding to P c
1 � P c

2 and
P f

1 � P f
2 , respectively. We have the following Correspondence Lemmas:

Lemma 1. [Coarse-grained Correspondence] Given an ACTL \ X for-
mula φ, M |= φ⇒Mc |= φ.

Lemma 2. [Fine-grained Correspondence] Given an ACTL \X formula
φ, M |= φ⇒Mf |= φ.

The proofs are based on establishing stuttering simulations between
the models (cf. [8]1). Note that the models are not stuttering bisimilar,
and hence our compilations do not preserve arbitrary CTL\X properties.
This is not a problem, as most global concurrency properties of interest
(see Table 1) are expressible in ACTL \X.

Theorem 1. [Soundness]: Given unsynchronized skeletons P1, P2, and
an ACTL\X formula φ, if our method generates P c

1 , P c
2 (resp., P f

1 , P f
2 ),

then P c
1 � P c

2 |= φ (resp., P f
1 � P f

2 |= φ).

Theorem 2. [Completeness]: Given unsynchronized skeletons P1, P2, and
an ACTL \X formula φ, if the temporal specifications describing P1, P2

and their global behaviour φ are consistent as a whole, then our method
constructs P c

1 , P c
2 (resp., P f

1 , P f
2 ) such that P c

1 �P c
2 |= φ(resp., P f

1 �P f
2 |=

φ).

The soundness follows directly from the soundness of the synthesis of
synchronization skeletons [7, 6], and from the above Correspondence Lem-
mas. The completeness follows from the completeness of the synthesis of
synchronization skeletons for overall consistent specifications and from the
completeness of the compilation of guarded commands to coarse-grained
and fine-grained synchronization.
1 While we choose to restrict our attention to the preservation of ACTL \X formulas

here, we can show that the translations from M to Mc and Mf actually preserve
all ACTL∗ \X properties, as well as CTL∗ properties of the form Ah or Eh, where
h is an LTL \X formula.
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3 Extensions and Experiments

The synthesis of synchronization skeletons in the first step in our frame-
work can be extended directly to handle an arbitrary number n of sequen-
tial processes. While the direct extension based on [7] can be exponential
in the length of φ and in n, the decision procedure in [6], corresponding
to the subset of CTL used in this paper, is polynomial in the length of
φ. Moreover, we can use the approaches of [2, 1] which avoid building the
entire global model (exponential in n), and instead compose interacting
process pairs to synthesize the synchronization skeletons. The compila-
tion of guarded commands into coarse-grained and fine-grained synchro-
nization code can be extended in a straight-forward manner to n > 2
processes. We emphasize that this compilation acts on individual skele-
tons directly, without construction or manipulation of the global model,
and hence circumvents the state-explosion problem for arbitrary n.

We have implemented a prototype synthesis tool [8] in Perl, which
automatically compiles synchronization skeletons into concurrent Java
programs based on both coarse-grained and fine-grained synchronization.
We used the tool successfully to synthesize synchronization code for an
example airport ground traffic simulator (AGTS) program (cf. [8]), and
for several configurations of n-process mutual exclusion, readers-writers,
dining philosophers, etc..

Table 2: Experimental Results
Program Granularity Norm. Run. Time

2-plane AGTS
Coarse 1
Fine 0.92

1-Reader, 1-Writer
Coarse 1
Fine 0.79

2-process Mutex
Coarse 1
Fine 1.08

2-Readers, 3-Writers
Coarse 1
Fine 1.14

Our experiments were
run on a quad-core 3.4GHz
machine with 4GB of RAM.
The time taken by the tool
to generate these small ex-
amples was a few millisec-
onds. We present the normal-
ized running times of some
of the generated examples in

Table 2. As expected, the fine-grained synchronization version does not
always outperform the coarse-grained synchronization version. In particu-
lar, it suffers in the 2-Readers, 3-Writers example due to excessive locking
overhead.

4 Concluding Remarks

Our framework for concurrent program synthesis: (a) caters for both
safety and liveness, (b) is fully algorithmic, (c) constructs a high-level
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synchronization solution, (c) yields a low level solution based on widely
used synchronization primitives, (d) can generate both coarse-grained and
fine-grained low-level solutions, and (e) is provably sound and complete.

Early work on synthesis of high-level concurrent programs from tem-
poral specifications [7] utilized decision procedures but had little practical
impact due to unrealistic synchronization primitives. Other work infer-
ring high level synchronization using guarded commands [13] or atomic
sections [14], is limited to safety specifications. Moreover, it can be shown
that such synthesis methods that rely on pruning a global product graph
[10, 13, 14] cannot work in general for liveness.

On the other end of the spectrum, the important papers [5, 15] de-
scribe a needed mapping of a high-level system into a low-level, coarse-
grained system, akin to ours. But these frameworks are less flexible.
They do not yield low-level fine-grained solutions; they do not treat live-
ness properties; and, because they are not fully algorithmic, they fail
to ensure correctness-by-design. Instead, these papers are verification-
driven, and involve verifying either the synthesized implementation [5]
or the manually-written high-level implementation [15]. In contrast, our
approach is the first to provably translate a high-level system into cor-
rect low-level systems for both coarse- and fine-grained solutions, thereby
eliminating the need for verification. The low-level global models are guar-
anteed correct by our Correspondence Lemmas.

Among papers that do address refinement of locking granularity, are
[3], which translates guarded commands, into synchronization based on
atomic reads and atomic writes, and papers on compiler-based lock infer-
ence for atomic sections ([9], [4] etc.). Unlike in [3], our framework does
not manipulate or generate the global model corresponding to either the
coarse-grained or fine-grained solutions. The lock-inference papers [9],
[4] rely on the availability of high-level synchronization in the form of
atomic sections, and do not, in general, support monitors and condition
variables. Sketching [12], a search-based program synthesis technique, is
also a verification-driven approach, which can be used to synthesize opti-
mized implementations of synchronization primitives, e.g. barriers, from
partial program sketches.

We remark that these approaches and ours are oriented towards closed
systems2, which include classical synchronization problems and have been
used to capture many real-world software systems.
2 In contrast, another active thread of foundational research [11] investigates synthesis

of open systems.
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