Text

Lipschitz Robustness of Finite-state Transducers

Roopsha Samanta

IST Austria

Joint work with Tom Henzinger and Jan Otop

December 16, 2014

Problem Overview

Computational systems in physical environments \Rightarrow uncertain data

Problem Overview

- Corrupt data from sensors in avionics software or medical devices
- Incomplete DNA strings in computational biology
- Wrongly spelled inputs to text processors

Problem Overview

- Functional correctness not enough
- System behaviour must degrade smoothly given input perturbation
- We need continuity or robustness

Informal definition

- Focus on finite-state transducers
- Robustness of transducers ~ Lipschitz continuity
- Transducer \mathcal{T} is *K*-Lipschitz robust if for all inputs *s*, *t*: $d(s,t) < \infty \Rightarrow d(\mathcal{T}(s), \mathcal{T}(t)) \le Kd(s,t)$

Example

• Undecidability of K-robustness of deterministic transducers

- Characterization of *functional* transducers with decidable K-robustness
 - Consider distances computable by weighted automata
 - Reduce K-robustness to emptiness problem for weighted automata
 - Polynomial-time decision procedure
- Formalization/study of K-robustness of nondeterministic transducers
- All results hold for transducers over finite or infinite words

- Undecidability of K-robustness of deterministic transducers
- Characterization of *functional* transducers with decidable K-robustness
 - Consider distances computable by weighted automata
 - Reduce K-robustness to emptiness problem for weighted automata
 - Polynomial-time decision procedure
- Formalization/study of K-robustness of nondeterministic transducers
- All results hold for transducers over finite or infinite words

- Undecidability of K-robustness of deterministic transducers
- Characterization of *functional* transducers with decidable K-robustness
 - Consider distances computable by weighted automata
 - Reduce K-robustness to emptiness problem for weighted automata
 - Polynomial-time decision procedure
- Formalization/study of K-robustness of nondeterministic transducers
- All results hold for transducers over finite or infinite words

- Undecidability of K-robustness of deterministic transducers
- Characterization of *functional* transducers with decidable K-robustness
 - Consider distances computable by weighted automata
 - Reduce K-robustness to emptiness problem for weighted automata
 - Polynomial-time decision procedure
- Formalization/study of *K*-robustness of *nondeterministic* transducers
- All results hold for transducers over finite or infinite words

- Undecidability of K-robustness of deterministic transducers
- Characterization of *functional* transducers with decidable K-robustness
 - Consider distances computable by weighted automata
 - Reduce K-robustness to emptiness problem for weighted automata
 - Polynomial-time decision procedure
- Formalization/study of K-robustness of nondeterministic transducers
- All results hold for transducers over finite or infinite words

Transducers (T)

Finite-state device with two tapes

- In each step, a transducer au
 - reads an input letter (alphabet Σ)
 - writes a finite word (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $dom(T) \subseteq \Sigma^*$
 - Transduction $\llbracket T \rrbracket \subseteq dom(T) \times \Gamma^*$
- Functional: at most one output word for every input word

• $s' = \llbracket T \rrbracket(s)$

Mealy machines: deterministic, letter-to-letter, all states accepting

Transducers (\mathcal{T})

- Finite-state device with two tapes
- In each step, a transducer T
 - reads an input letter (alphabet Σ)
 - writes a finite word (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $dom(\mathcal{T}) \subseteq \Sigma$
 - Transduction $\llbracket T \rrbracket \subseteq dom(T) \times \Gamma^{*}$
- Functional: at most one output word for every input word.

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, letter-to-letter, all states accepting

Transducers (\mathcal{T})

- Finite-state device with two tapes
- In each step, a transducer T
 - reads an input letter (alphabet Σ)
 - writes a finite word (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $dom(\mathcal{T}) \subseteq \Sigma^*$
 - Transduction $\llbracket T \rrbracket \subseteq dom(T) \times \Gamma^*$
- Functional: at most one output word for every input word

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, letter-to-letter, all states accepting

Transducers (\mathcal{T})

- Finite-state device with two tapes
- In each step, a transducer T
 - reads an input letter (alphabet Σ)
 - writes a finite word (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $dom(\mathcal{T}) \subseteq \Sigma^*$
 - Transduction $\llbracket T \rrbracket \subseteq dom(T) \times \Gamma^*$
- Functional: at most one output word for every input word

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, letter-to-letter, all states accepting

Transducers (T)

- Finite-state device with two tapes
- In each step, a transducer T
 - reads an input letter (alphabet Σ)
 - writes a finite word (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $dom(\mathcal{T}) \subseteq \Sigma^*$
 - Transduction $\llbracket T \rrbracket \subseteq dom(T) \times \Gamma^*$
- Functional: at most one output word for every input word

• $s' = \llbracket T \rrbracket (s)$

• Mealy machines: deterministic, letter-to-letter, all states accepting

• Finite automaton A with weighted transitions (weights $\in \mathbb{Q}$)

- A (weighted) run π is a sequence c(π) of weights
- Given value-function f, value of a run π : $f(\pi) = f(c(\pi))$
 - Examples for value-functions: sum, discounted sum, limit-average
 - Notation: SUM-WA, DISC_δ-WA, LIMAVG-WA
- Value of a word s: L_A(s) = inf_{π∈Acc(s)} f(π)

- Finite automaton \mathcal{A} with weighted transitions (weights $\in \mathbb{Q}$)
- A (weighted) run π is a sequence $c(\pi)$ of weights
- Given value-function f, value of a run π : $f(\pi) = f(c(\pi))$
 - Examples for value-functions: sum, discounted sum, limit-average
 - Notation: SUM-WA, DISC_δ-WA, LIMAVG-WA
- Value of a word s: $\mathcal{L}_{\mathcal{A}}(s) = \inf_{\pi \in Acc(s)} f(\pi)$

- Finite automaton A with weighted transitions (weights $\in \mathbb{Q}$)
- A (weighted) run π is a sequence $c(\pi)$ of weights
- Given value-function *f*, value of a run π : $f(\pi) = f(c(\pi))$
 - Examples for value-functions: sum, discounted sum, limit-average
 - Notation: SUM-WA, DISC_δ-WA, LIMAVG-WA
- Value of a word s: $\mathcal{L}_{\mathcal{A}}(s) = \inf_{\pi \in Acc(s)} f(\pi)$

- Finite automaton A with weighted transitions (weights $\in \mathbb{Q}$)
- A (weighted) run π is a sequence $c(\pi)$ of weights
- Given value-function *f*, value of a run π : $f(\pi) = f(c(\pi))$
 - Examples for value-functions: sum, discounted sum, limit-average
 - Notation: SUM-WA, DISC_δ-WA, LIMAVG-WA
- Value of a word s: $\mathcal{L}_{\mathcal{A}}(s) = \inf_{\pi \in Acc(s)} f(\pi)$

Given an *f*-wA \mathcal{A} and a threshold λ :

- Emptiness: ∃ *s* : *L*_A(*s*) < λ?</p>
- Universality: $\forall s : \mathcal{L}_{\mathcal{A}}(s) < \lambda$?

Emptiness is decidable in polynomial time for SUM-, DISC_δ-, LIMAVG-WA

Universality is undecidable for SUM-WA.

イロト イヨト イヨト イヨト

- $d: S \times S \rightarrow \mathbb{Q} \cup \infty$ such that $\forall x, y \in S$:
 - $d(x, y) \geq 0$
 - d(x, y) = d(y, x)

Example: Manhattan distance $d(s, t) = |\{s[i] \neq t[i]\}|$

Pairing: $ab \otimes bcaa = \binom{a}{b}\binom{b}{c}\binom{\#}{a}\binom{\#}{a}$

Roopsha Samanta

Lipschitz Robustness of Finite-state Transducers

9/18

Pairing: $ab \otimes bcaa = \binom{a}{b}\binom{b}{c}\binom{\#}{a}\binom{\#}{a}$

 $d: S \times S \rightarrow \mathbb{Q}^{\infty}$ is computed by a weighted automaton \mathcal{A} if: $\forall s, t \in S: d(s, t) = \mathcal{L}_{\mathcal{A}}(s \otimes t)$

Pairing: $ab \otimes bcaa = \binom{a}{b}\binom{b}{c}\binom{\#}{a}\binom{\#}{a}$

 $d: S \times S \to \mathbb{Q}^{\infty}$ is computed by a weighted automaton \mathcal{A} if: $\forall s, t \in S: d(s, t) = \mathcal{L}_{\mathcal{A}}(s \otimes t)$

Example: Manhattan distance

SUM-WA \mathcal{A} :

$$\begin{pmatrix} a \\ a \end{pmatrix}, \begin{pmatrix} b \\ b \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix}$$

 $\mathcal{L}_{\mathcal{A}}({s[1] \choose t[1]} {s[2] \choose t[2]} \dots) = |\{\boldsymbol{s}[i] \neq t[i]\}|$

Robust transducers

Given:

- a functional transducer \mathcal{T} , with $\llbracket \mathcal{T} \rrbracket \subseteq \Sigma^* \times \Gamma^*$
- similarity function $d_{\Sigma}: \Sigma^* \times \Sigma^* \to \mathbb{Q}^{\infty}$
- similarity function $d_{\Gamma} : \Gamma^* \times \Gamma^* \to \mathbb{Q}^{\infty}$
- constant $K \in \mathbb{Q}$ with K > 0

 \mathcal{T} is defined to be K-Lipschitz robust w.r.t d_{Σ} , d_{Γ} if:

 $\forall s,t \in \operatorname{dom}(\mathcal{T}): \ d_{\Sigma}(s,t) < \infty \ \Rightarrow \ d_{\Gamma}(\llbracket \mathcal{T} \rrbracket(s), \llbracket \mathcal{T} \rrbracket(t)) \leq \mathsf{Kd}_{\Sigma}(s,t).$

Robust transducers

Given:

- a functional transducer \mathcal{T} , with $\llbracket \mathcal{T} \rrbracket \subseteq \Sigma^* \times \Gamma^*$
- similarity function $d_{\Sigma}: \Sigma^* \times \Sigma^* \to \mathbb{Q}^{\infty}$
- similarity function $d_{\Gamma} : \Gamma^* \times \Gamma^* \to \mathbb{Q}^{\infty}$
- constant $K \in \mathbb{Q}$ with K > 0

T is defined to be *K*-Lipschitz robust w.r.t d_{Σ} , d_{Γ} if:

 $\forall s,t \in \operatorname{dom}(\mathcal{T}): \ d_{\Sigma}(s,t) < \infty \ \Rightarrow \ d_{\Gamma}(\llbracket \mathcal{T} \rrbracket(s), \llbracket \mathcal{T} \rrbracket(t)) \leq K d_{\Sigma}(s,t).$

Problem definition

Given:

- a functional transducer \mathcal{T} , with $\llbracket \mathcal{T} \rrbracket \subseteq \Sigma^* \times \Gamma^*$
- similarity function $d_{\Sigma} : \Sigma^* \times \Sigma^* \to \mathbb{Q}^{\infty}$
- similarity function $d_{\Gamma} : \Gamma^* \times \Gamma^* \to \mathbb{Q}^{\infty}$
- constant $K \in \mathbb{Q}$ with K > 0

Check if T is *K*-Lipschitz robust w.r.t d_{Σ} , d_{Γ} .

Undecidability

K-robustness of functional transducers is undecidable.

1-robustness of deterministic transducers w.r.t. generalized Manhattan distances is undecidable.

Proof hint: Reduction from PCP.

From *K*-robustness to robustness

 \mathcal{T} is *robust* w.r.t. d_{Σ} , d_{Γ} if $\exists K : \mathcal{T}$ is *K*-robust w.r.t. d_{Σ} , d_{Γ} .

Let d_{Σ} , d_{Γ} be generalized Manhattan distances.

- 1 Robustness of T is decidable in CO-NP.
- 2 One can compute K_T such that T is robust iff T is K_T -robust.

Synchronized transducers

 $\begin{array}{l} \mathcal{T} \text{ with } \llbracket \mathcal{T} \rrbracket \subseteq \Sigma^{\omega} \times \Gamma^{\omega} \text{ is synchronized iff:} \\ \exists \text{ automaton } \mathcal{A}_{\mathcal{T}} \text{ over } \Sigma \otimes \Gamma \text{ recognizing } \{ s \otimes \llbracket \mathcal{T} \rrbracket(s) : s \in \operatorname{dom}(\mathcal{T}) \}. \end{array}$

Synchronicity of a functional transducer can be decided in polynomial time

Example: Mealy machines are synchronized transducers. $q \xrightarrow{a \otimes a'} q' \in \mathcal{A}_T$ iff $(q, a, a', q') \in T$

Robustness of synchronized transducers

If d_{Σ} , d_{Γ} are similarity functions computed by functional *f*-war $\mathcal{A}_{d_{\Sigma}}$, $\mathcal{A}_{d_{\Gamma}}$, *K*-robustness of synchronized \mathcal{T} w.r.t. d_{Σ} , d_{Γ} is decidable in PTIME.

< D > < P > < B > < B > < B</p>

Example

Recall:

- Mealy machines are synchronized transducers
- Manhattan distances are computable by functional SUM-WA

K-robustness of Mealy machines w.r.t. Manhattan distances is decidable.

For a nondeterministic transducer T, $|[T](s)| \ge 1$

Roopsha Samanta

Lipschitz Robustness of Finite-state Transducers

17/18

Given:

- a transducer \mathcal{T} , with $\llbracket \mathcal{T} \rrbracket \subseteq \Sigma^* \times \Gamma^*$,
- similarity function $d_{\Sigma} : \Sigma^* \times \Sigma^* \to \mathbb{Q}^{\infty}$
- set-similarity function $D_{\Gamma}: 2^{\Gamma^* \times \Gamma^*} \to \mathbb{Q}^{\infty}$
- constant $K \in \mathbb{Q}$ with K > 0

T is defined to be *K*-robust w.r.t d_{Σ} , D_{Γ} if:

 $\forall s,t \in \operatorname{dom}(\mathcal{T}): \ d_{\Sigma}(s,t) < \infty \ \Rightarrow \ D_{\Gamma}(\llbracket \mathcal{T} \rrbracket(s), \llbracket \mathcal{T} \rrbracket(t)) \leq \mathsf{Kd}_{\Sigma}(s,t).$

Set-similarity functions $D(A, B)$ induced by d	K-robustness
Hausdorff: $max\{\sup_{s\in A} \inf_{t\in B} d(s,t), \sup_{s\in B} \inf_{t\in A} d(s,t)\}$	Undecidable
Inf-inf: $\inf_{s \in A} \inf_{t \in B} d(s, t)$	Undecidable
Sup-sup: $\sup_{s \in A} \sup_{t \in B} d(s, t)$	Decidable

Roopsha Samanta

э

イロト イポト イヨト イヨト

Thank you.

Roopsha Samanta

Lipschitz Robustness of Finite-state Transducers

18/18

æ

イロト イヨト イヨト イヨト