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Abstract. Distributed systems are hard to get right. Efforts in rea-
soning about distributed systems have primarily focused on verification
and language design, with some limited efforts in synthesis for systems
with a fixed number of processes. In this paper, we target parameterized
synthesis of distributed systems that use consensus protocols, such as
Paxos, as a building block to provide higher-level functionality. This pa-
per makes several contributions. First, to enable scalability of reasoning
about such complex distributed systems, we propose encapsulating the
details of consensus into a simple abstraction, choose. Second, we prove
that parameterized verification of safety properties for such systems with
choose is decidable. We then show that many interesting classes of sys-
tems with choose have tractable cutoffs for parameterized verification,
yielding a decision procedure for parameterized synthesis. Finally, we use
our tool to demonstrate feasibility of synthesis for several examples of
distributed applications that build on consensus, including a model of
the Small Aircraft Tracking System (SATS) and a Distributed Mobile
Robotics (DMR) problem.

1 Introduction

Distributed systems, and especially distributed systems that require some form
of consensus, are hard to build, and hard to get right. Consequently, verification
of distributed systems is a long-standing and fruitful research area [3, 4, 2, 68, 16,
17, 71, 18, 61, 14, 19, 59], with substantial efforts [58, 9, 49, 12, 22, 21, 54, 52, 72] in
verifying intricate consensus protocols, such as Paxos [48] and Raft [56]. These
efforts, however, do not directly simplify design and analysis of distributed ap-
plications that use consensus as merely a step in ensuring global properties. For
instance, consider a distributed smoke detector (Fig. 1 shows a constituent pro-
cess) whose intended behavior is as follows. Upon detecting smoke, the processes
coordinate using a consensus protocol to choose at most two processes to report
the smoke to the fire department. More precisely, the safety specification is: (1)
at most two processes report to the fire department and (2) processes that do not
detect smoke do not report to the fire department. The liveness specification is:
if smoke was detected by some process, then the application eventually reports
to the fire department. Thus, the application uses consensus as a building block
to provide interesting higher-level behavior.
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This paper exploits the fact that numerous consensus protocols already have
verified implementations [52, 58, 72], and targets parameterized synthesis of dis-
tributed applications built on top of such verified consensus implementations.
Our overall approach is based on abstracting consensus into a primitive building
block and reasoning about the behavior of the rest of the application around it.

As our first contribution, we introduce a simple abstraction for consensus
protocols that can be integrated into models of distributed systems. In this ab-
straction, the processes trying to reach consensus simply move from a global
state where consensus would naturally start to a global state where consensus is
achieved, using a special atomic global transition, denoted choose. Such choose

transitions encapsulate the implementation details of how consensus is achieved
and simply provide a consistency guarantee: all processes that participate in the
consensus round agree on the participating and the “chosen” processes. Addition-
ally, we define the choose model: an expressive model of distributed protocols
that permits choose transitions to abstract consensus rounds, accommodates
broadcast and rendezvous communication, and lends itself to symmetry-based
reductions for verification.

To synthesize distributed applications described in the choose model, this
paper makes further contributions: parameterized verification and synthesis for
systems in the choose model with an arbitrary number of processes. We note that
parameterized verification is only decidable for restricted classes of distributed
systems. For example, Esparza et al. [34] showed that for (instantaneous) broad-
cast communication in a clique, safety properties are decidable, while liveness
properties are not. Unfortunately, neither this decidability result, nor any other
result we are aware of, is applicable to systems in the choose model.

Our second contribution, then, is a decidability result for parameterized veri-
fication w.r.t. safety properties in an extension of the broadcast model of Esparza
et al. [34]. This extended model, called the guarded broadcast model, is obtained
by augmenting broadcast protocols with additional global conditions necessary
for modeling consensus. We show that we can map systems in our choose model,
that satisfy some conditions, to the guarded broadcast model, while preserving
safety properties. All these results can be integrated to yield a semi-decision
procedure for parameterized synthesis of systems in the choose model, based on
a parameterized verifier.

To avoid the practical challenges of parameterized verification, we make our
third contribution: we derive cutoffs for parameterized verification for many in-
teresting classes of systems in the guarded broadcast model and characterize the
conditions under which the cutoffs hold for parameterized verification of systems
in the choose model. These cutoffs enable reduction of parameterized verifica-
tion to verification using a standard, non-parameterized verification engine.

All these contributions put together yield an algorithm for parameterized
synthesis of systems in the choose model (under certain conditions) based on a
standard, non-parameterized CEGIS (counterexample-guided inductive synthe-
sis) loop [64].
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Fig. 1. A smoke detector process.

We build our abstractions and procedures on top of Kinara, a recent veri-
fication and synthesis engine for distributed systems [3, 4, 2]. We demonstrate
the utility of our choose abstraction and cutoffs by first showing that several
sensor network-like applications can be verified and synthesized by our tool.
We then turn to two larger case studies: (i) the Small Aircraft Tracking Sys-
tem (SATS), a protocol for managing air traffic that requires several rounds of
consensus between distributed processes (planes), and (ii) Distributed Mobile
Robotics (DMR) that requires several rounds of synchronization to ensure that
a set of distributed mobile robots generate action plans that do not interfere.
We show that given a skeleton of the system we can synthesize guards that use
multiple rounds of consensus to guarantee the correct operation of these systems.

Example. Fig. 1 shows a finite-state input-output machine describing a smoke
detector process from our distributed smoke detector example from before. If
there are n smoke detectors, there will be n instances of this state machine.
The state machine refers to the current instance using the variable self . Each
smoke detector starts in state Env. If any detector receives the message Smoke?
from the environment, it moves to Ask, and broadcasts DetectSmoke!! to
all other processes. Any process still in Env when it receives the broadcast
(DetectSmoke??) moves to No, where it responds to any messages saying it
did not see smoke (Replyno!). At this point, all processes that have detected
smoke collaborate to determine who will report the incident. The loop between
Collect and Yes involves receiving Reply messages from other processes and
responding to other DetectSmoke messages (with Replyyes!) such that each
detector builds a set participants that captures all detectors that saw smoke
(those that did not see smoke respond from the No state and will not be in
participants).

Once a process has built its participant set and has responded to all other
detectors that saw smoke (i.e. totalReplies = n−1∧myReplies = yesReplies), the
detectors that detected smoke move to Pick to choose at most two detectors
to contact the fire department. This is the step that abstracts consensus: all
detectors in Pick will receive a consistent view of which detectors were chosen,
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reflecting the results of a consensus protocol. Hence, two detectors will contact
the fire department, and all the others move to the Idle state.

Systems of this type can be verified using our framework, and also synthesized
to ensure the safety properties mentioned earlier. In our experiments, we omitted
the guards and updates in the dashed red boxes and were able to synthesize the
correct completions to satisfy the specification. The omitted parts correspond to
interesting questions the developer of such a system might have. For example,
what should a detector do upon receiving a message from another detector?
After exchanging the messages, should the detector attempt to contact the fire
department?

2 Preliminaries: Distributed Protocol Completion

We present an adaptation of the formal model of distributed protocols and the
counterexample-guided inductive synthesis (CEGIS) procedure for protocol com-
pletion from [3, 4].

2.1 Formal Model

Basic Model of Distributed Systems. We consider distributed systems con-
sisting of a set of n identical system processes and an environment process, all
communicating asynchronously. We fix a collection of finite types, including the
type bool of Boolean values and the special type I = {1, 2, . . . , n} of process
indices. We also permit enumerated types, arrays and records. Processes com-
municate by synchronizing on input and output actions. We support two types
of communication: pairwise rendezvous and broadcast. In (pairwise) rendezvous
communication, two processes synchronize to communicate a value and in broad-
cast communication, one process synchronizes with all other processes to com-
municate a value3.
Processes. Formally, a process P is a finite-state, input-output machine described
by the tuple 〈I,O, L, `0, V, T 〉 where I and O are disjoint, finite sets of input and
output actions, respectively, L is a finite set of locations, `0 ∈ L is the initial
location, V is a set of (typed) process-local variables and T is a set of transitions.

Each transition in T is denoted by `
a, g→u−−−−→ `′ such that:

1. `, `′ ∈ L are the source and target locations, respectively,
2. a ∈ I ∪O ∪ {ε} is the (communicating) action
3. 〈g, u〉 (or, g → u) is a guarded command where the guard g is a Boolean ex-

pression and the command u is a sequence of updates of the form lhs:=rhs.
In general, lhs is a local variable and g, rhs are expressions over local vari-
ables. If a is an input action, g and rhs may include a. If a is an output
action, lhs may update a.

3 Note that our current model supports asynchronous operation (non-communicating
processes can take steps independent of one another and different processes can
communicate at different times), but not non-blocking communication (sending and
receiving processes must block until they can exchange the message).
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An action a ∈ O (a ∈ I, resp.) is either a broadcast output (input) message
msg!!v (msg??v, resp.) or a rendezvous output (input) message msg!v (msg?v,
resp.), where msg is the message label and v is the value communicated for some
associated variable var. A transition with a = ε is called an internal transition
and is not observable by other processes.

A state s of process P is a pair (`, σ) where ` ∈ L and σ is a valuation of the
local variables in V . Let S be the set of all states of process P . Let σ0 denote the
initial valuation and s = (`0, σ0) denote the initial state of P . An execution/run
τ of process P is a possibly infinite sequence (`0, σ0), (`1, σ1), . . . of states in S
obtained by executing enabled transitions: for each j ≥ 0, there is a transition

`j
a, g→u−−−−→ `j+1 ∈ T such that σj satisfies the guard g and σj+1 is obtained by

applying the update u to σj .

A system process is required to satisfy the following conditions.

1. T is deterministic: at most one transition is enabled at every state along any
execution.

2. There is no race between input and output transitions: the set of locations
L is partitioned into the set LI of input locations and the set LO of output
locations. All outgoing transitions from LI and LO are input/internal and
output/internal transitions, respectively.

Unless necessary, we refer to a system process simply as a process. Note that an
environment process is not required to satisfy any of the above conditions. In
particular, it can be non-deterministic.

Composition of Processes. We define the asynchronous (interleaving-based) com-
position P1 ‖ . . . ‖Pn of n identical 4 processes P1, . . . , Pn as a global transition
system5, M = 〈Q, q0, R〉, where

1. Q = Sn is the set of global states,
2. q0 = (s0,1, . . . , s0,n) is the initial global state, and,
3. R ⊆ Q × Q is the set of global transitions (corresponding to two processes

synchronizing via rendezvous communication, or, all processes synchroniz-
ing via broadcast communication, or, a single process making an internal
transition). For rendezvous communication, this can be formalized as fol-

lows. If there exist processes Pi, Pj with local transitions `i
msg!v, gi→ui−−−−−−−−→ `′i

and `j
msg?v, gj→uj−−−−−−−−→ `′j , respectively, such that gi ∧ gj evaluates to true in

global state q, and global state q′ is obtained from q by updating the loca-
tions of Pi, Pj to `′i, `

′
j , respectively and applying the sequence of updates

ui; var:=v; uj , then there exists a corresponding global transition (q, q′) in
R. Global transitions corresponding to broadcast communication and inter-
nal transitions can be formalized similarly.

An execution/run of the global transition system M is a (possibly infinite) se-
quence of states, q0, q1, . . ., in Q such that for each j ≥ 0, (qj , qj+1) ∈ R. A state

4 We compose with the environment process, too, but elide this for simplicity.
5 Ideally, the composition should be defined as an input-output process to ensure

associativity of the composition operator. We choose to keep the presentation simple
by instead defining the composition as an (unlabeled) transition system.
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q is reachable if there exists a finite execution of M that reaches q. A state q is
a deadlock state if no transition is enabled at q. A global transition system that
does not contain any deadlock states is called deadlock-free.
Specifications. The expected behavior of (executions of) the global transition
system M is specified using safety and liveness requirements in linear temporal
logic (LTL) [53]. The global transition system can be augmented with error
states E ⊆ Q and accepting states A ⊆ Q to capture violations of safety and
liveness specifications, respectively. An infinite execution of M is accepting if it
visits accepting states in A infinitely often. The system M is safe if it has no
reachable error states and live if it has no accepting infinite execution. Given a
safety (liveness) specification, the notationM |= φ denotes thatM is safe (live).
Symmetry-based Reduction. Since M is constructed by composing identi-
cal processes, it is possible to greatly improve its verification time complexity
by collapsing symmetric behaviors in M. We say M is fully symmetric if its
transition relation R is invariant under permutations over the set of process in-
dices I: ∀π ∈ G, π(R) = R, where G is the set of all permutations over I and
π(R) = {(π(q1), π(q2)) : (q1, q2) ∈ R}. Appendix A.1 formalizes the notion of
permuting global states (i.e., defines π(q)) and presents syntactic conditions on
the guarded commands in M that entail full symmetry. It has been shown in
[29] that, under full symmetry, one can “reduce” M into a quotient structure
M such that for any specification φ: M |= φ ⇐⇒ M |= φ.

2.2 Distributed Protocol Completion

Problem Definition. A process sketch P ?? is a partial process with incomplete
guarded commands. In particular, expressions in guarded commands in a process
sketch may also include function symbols with unknown interpretations, along
with local variables, actions and function symbols with known interpretations.
We assume that each known or unknown function symbol is equipped with a
signature d1 × . . . × dk → r identifying the types of its arguments and return
values. Given an interpretation A that assigns an appropriate interpretation to
each uninterpreted function symbol in P ??, we obtain a process P that we call
a completion of P ?? under A.

Definition 1 (Distributed Protocol Completion). Given an environment
process E with no uninterpreted functions and a set of identical process sketches
P ??
1 , . . . , P ??

n with sets of uninterpreted functions U1, . . . , Un, find an interpreta-
tion A of U = U1 ∪ . . . ∪ Un that yields completions P1, . . . , Pn such that:
1. P1, . . . , Pn satisfy the conditions for system processes and
2. the global transition system M = P1 ‖ . . . ‖ Pn ‖ E is safe, live, deadlock-

free and fully symmetric.

Synthesis algorithm. We present a simplified version of the distributed pro-
tocol completion algorithm from [3]. The CEGIS algorithm iteratively invokes
a synthesizer and a verifier. The synthesizer attempts to generate an interpre-
tation A for all uninterpreted functions while enforcing conditions (1) and (2)
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from Def. 1. If the synthesizer succeeds, then the verifier attempts to check if the
completed protocol is safe, live and deadlock-free. If verification succeeds, the
algorithm terminates. Otherwise, the verifier returns a set of counterexamples
that are used to generate further constraints on the uninterpreted functions.

The synthesizer is based on an SMT solver and the verifier is a model checker
that uses symmetry reduction.

3 Parameterized Completion of Distributed Applications
with Consensus

We extend the formal model in Sec. 2.1 to enable us to effectively reason about
distributed applications based on consensus protocols and present the parame-
terized completion problem for such systems.

3.1 The choose Model for Distributed Applications with Consensus

Many distributed applications are built on top of complex consensus protocols.
An explicit encoding of such consensus protocols within a larger application can
lead to state space explosion and prevent reasoning about higher-level properties
of the application. To address this problem, we assume correctness of the consen-
sus protocol and extend the basic model to allow encapsulation of such protocols
into an abstraction that comes with precondition obligations and postcondition
guarantees. Then, to prove correctness of distributed applications with consen-
sus protocols it is sufficient to show correctness of their simpler counterparts in
this extended model, called the choose model.

Consensus protocols enable their participants to reach agreement on a set
of values in a distributed setting. Many different strategies exist to implement
this [48, 10, 56, 62]. However, at its core, consensus boils down to choosing a
subset of winners (or winning proposals) from the set of participants in a way
that is globally consistent. Breaking this down further, any correct consensus
protocol implementation satisfies the following precondition and postcondition.
C1 Consistent Participants Precondition. The consensus round starts when all

participating processes agree on who to reach consensus with.
C2 Consistent Winners Postcondition. When the consensus round ends, each

participant’s local result is globally consistent with all other participants.
Thus, to encapsulate consensus rounds, the choose model extends the basic
model with a special atomic global transition, denoted choose, that comes with
a guarantee of expected behavior, expressed as the precondition-postcondition
pair (C1, C2). We make this more precise in what follows.

Let us fix a round of consensus with participants6 S ⊆ I and cardinality
k that chooses some set of k winners from S. Let W∗ denote the set of all
possible winner sets. We model this consensus round with a nondeterministic,

6 While consensus protocols naturally agree on values, we abstract this using process
identifiers without loss of generality.
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atomic global choose transition from a GlobalConsensusStart state qstart that
satisfies precondition C1 to GlobalConsensusEnd states qWend (corresponding to
winner setsW ∈ W∗) that satisfy postcondition C2. Let C denote the local state
of each participant in which the consensus protocol is invoked. Let Si denote the
local set of consensus participants constructed by process Pi before it transitions
into C7. Finally, let CW (CL) denote the local state into which each winning
(losing) participant transitions after the consensus round ends.

The GlobalConsensusStart state, qstart, is defined as a global state where
all the participants of a consensus round are in C and have consistent Si sets:
(1) ∃i ∈ I : qstart[i] = C,
(2) ∀i, j ∈ I : qstart[i] = C ∧ 1Si(j) ⇐⇒ qstart[j] = C ∧ 1Sj (i), and
(3) ∀i, j ∈ I : (qstart[i] = C ∧ qstart[j] = C) =⇒ (Si = Sj)
where q[i] denotes the local state of process Pi in global state q and 1A(x) is
an indicator function that evaluates to true if x ∈ A and false otherwise.
Since each process maintains the set of participants locally, these conditions
enforce consistency between those sets. Condition (1) checks that at least one
process is in C. This filters out all the states where no process is attempting to
invoke consensus, and helps trigger conditions (2) and (3) on the right states.
Condition (2) ensures that if two processes are in C, each process is in the other’s
local set of participants. Condition (3) ensures that if two processes are in C,
they must agree on their sets of participants. Note that if a process is done
constructing its set of participants and is now in C, it must wait until every
other process (in its set of participants) has transitioned to C.

The GlobalConsensusEnd state qWend for winner set W ∈ W∗ is defined as a
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Fig. 2. Part of the global transition sys-
tem in the choose model encapsulating one
round of consensus.

global state satisfying the following:
(1) ∀i ∈ W : qWend[i] = CW ,
(2) ∀i ∈ S −W : qWend[i] = CL, and
(3) ∀i ∈ I − S : qWend[i] = qstart[i].
This definition ensures that all pro-
cesses locally transition into states
that consistenly reflect the results of
the consensus round.

Example. Consider a consensus round
in a distributed system with 4 pro-
cesses, where processes 1, 2, and 4
participate to choose two winners and
process 3 is not interested. Thus, the
set S of participants is {1, 2, 4} and
the set W∗ of all possible winner sets
is {{1, 2}, {1, 4}, {2, 4}}. The behav-
ior of the global transition system in

7 We place no restrictions on how these sets are constructed. In some situations, con-
structing the set may require exchanging messages with other processes to determine
which ones are involved in consensus (e.g. Fig. 1); in others, such sets can be prede-
fined or locally inferred with no need to exchange messages to construct them.
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the choose model, relevant to this consensus round, is shown in Fig. 2.
The choose transition abstracting this consensus round originates in the
GlobalConsensusStart state C1C2X3C4; here, process 3 is in a don’t care local
state X. The choose transition nondeterministically ends in one of three pos-
sible GlobalConsensusEnd states, each encoding one of the winner sets. Note
that the choose transition cannot originate in the state X1C2X3C4 as it does
not satisfy the Consistent Participants precondition.
Symmetry-based Reduction. In Appendix A.2, we show that a global tran-
sition system M in the choose model is fully symmetric. Specifically, we show
that a choose transition (and hence, the transition relation R) is invariant under
a set of permutations G over the process indices I, i.e., ∀qstart, qend ∈ Q, π ∈ G :
(qstart, qend) ∈ R ⇐⇒ (π(qstart), π(qend)) ∈ R, where qstart and qend are the
start and end states of some choose transition. Intuitively, the proof is based on
the observation that choose transitions are oblivious to the actual identities of
the participants.
Remarks. Note that a global, atomic choose transition encapsulates a bunch of
interleaved messages and states within a consensus protocol and hence has no
clear mapping to process-local transitions. Also, to keep the presentation simple,
we assumed one consensus round. Our framework and tool support multiple
consensus rounds, each encapsulated in its own global choose transition(s).

3.2 Parameterized Completion of Distributed Applications

Problem Definition. The parameterized completion problem for distributed
applications with consensus differs from the distributed protocol completion
problem in Def. 1 in two respects. First, our global transition systems are now
defined in the choose model. Second, we target correctness of distributed sys-
tems with an arbitrary number of processes, i.e., an arbitrarily-sized set I of
process indices. Thus, we effectively aim to synthesize a family of correct dis-
tributed systems, parameterized by I, also referred to as a parameterized system.
In contrast, distributed protocol completion targets synthesis of a single, correct
distributed system with a fixed number of processes.

To be able to define the parameterized completion problem, we need to extend
some of our existing definitions with their parameterized versions.

A parameterized uninterpreted function is an uninterpreted function that is
parameterized by I. An interpretation AI for a parameterized uninterpreted
function is defined over I and is called a parameterized interpretation. Given a
specific set of process indices, J , and a parameterized interpretation AI for the
parameterized uninterpreted functions of a process sketch P ??, we can obtain
completed processes P1, . . . , P|J | under the instantiated interpretation AI(J ).

Definition 2 (Parameterized Completion of Distributed Applications).
Given an environment process E with no uninterpreted functions, and a process
sketch P ?? with a set UI of parameterized uninterpreted functions, find a param-
eterized interpretation AI of UI such that: for any given set of process indices
J if P1, . . . , P|J | are the completed processes under AI(J ), then
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1. P1, . . . , P|J | satisfy the condition for system processes and
2. the global transition system M = P1 ‖ . . . ‖ P|J | ‖ E in the choose model

is safe, live, deadlock-free and fully symmetric.

4 Solution Sketch

In this section, we describe our solution to the problem of parameterized comple-
tion of distributed applications, combining an algorithm for distributed protocol
completion with techniques for obtaining parameterized safety guarantees.

The first ingredient of our solution is an algorithm for synthesis of distributed
applications in the choose model, for a fixed number of processes. To this end,
we have extended the CEGIS algorithm of [3, 4] to support choose transitions.

To lift this synthesis technique to parameterized systems, we need a way to
reason about the parameterized verification problem that checks correctness of a
parameterized system. Since none of the existing decidability results for param-
eterized verification support the choose model, we extend an existing model to
support choose while still admitting decidable parameterized verification.

Guarded Broadcast Model. The model of broadcast protocols of Esparza et
al. [34], which supports broadcasts, internal transitions and rendezvous, admits
decidable parameterized verification of safety properties. However, the transi-
tions cannot communicate values, in particular process indices, and the model
does not support processes with a state space that grows with the number of pro-
cesses (as is the case in the choose model). Moreover, it assumes that broadcasts
are always enabled, whereas both the basic and choose models have blocking
broadcasts that are only enabled if all other processes are ready to receive. There-
fore, this model cannot be used for paramaterized verification of systems in the
basic model, much less the choose model.

Our extension of the model, which we call the guarded broadcast (GBC)
model, also cannot communicate values and requires a fixed state space of pro-
cesses, but it supports global guards on transitions that require every pro-
cess to be in a certain subset of its local state space. Thus, it directly sup-
ports blocking broadcasts, and also allows us to capture the conditions of a
GlobalConsensusStart state and the effect of a choose transition at a slightly
more abstract level: the guard allows us to check the Consistent Participants
precondition (by implicitly encoding that all processes have common knowledge
of the participants), and a choose transition is modeled as a GBC transition that
moves one of the participants to the winning state CW and all other processes
to the losing state CL.

Formally, a process in the GBC model, referred to as a GBC protocol, is
defined as a tuple 〈A,S, s0, T 〉, where A is a finite set of action names that
gives rise to the input actions In = {a?? | a ∈ A} and output actions Out =
{a!! | a ∈ A}, S is a finite set of local states, s0 ∈ S is the initial state, and
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T ⊆ S × In ∪ Out × P(S) × S is the transition relation.8 Given a transition
(s, l, G, s′), we call l the label and G the guard of the transition. Semantically, a
local transition (s, a!!, G, s′) can only be taken if all processes are currently in a
state in G; if the transition is taken, all other processes have to take a transition
labeled with a??. We assume that exactly one such transition exists for all states
in G, and its guard is S, i.e., it can always be taken. As further extensions, we also
allow k-broadcasts, i.e., transitions with k broadcast senders, for k ∈ N, which
allows us to directly model choose transitions with cardinality k. Finally, we
introduce negotiations, a communication primitive involving matching broadcast
transitions (s, a!!, G, s′) and (s, a??, S, s′). Thus, a negotiation can be initiated
by any participating process, a beneficial property that general broadcasts do
not enjoy. A global state is represented as a vector q ∈ N|S|. It stores, for every
local state s, the number of processes currently in s, denoted q(s).

To prove decidability of parameterized verification for this model, we use
similar machinery as Esparza et al. [34]. One main difference is that we need a
more fine-grained well-quasi-ordering (wqo) on global states in order to ensure
that only states that satisfy the same guards are related by the ordering. Similar
to their proof, we can show that in most cases a transition in a small system can
be simulated by a single corresponding transition in any system that is bigger
(in the wqo). However, there is one special case in which multiple transitions in
the bigger system may be required to simulate a single transition in the small
system. To ensure that a repetition of transitions is possible, we require the
following well-behavedness property.

Definition 3 (Well-behaved GBC protocol). A GBC protocol is defined to
be well-behaved if: for every pair of transitions (s, a!!, G, s′) with s′ 6= s and
(s, a??, S, s) in the system, and for any state sr ∈ G with a receiving transition
(sr, a??, S, s′r), the post-state s′r is in G and has a self-loop (s′r, a??, S, s′r).

Note that the well-behavedness requirement is quite natural: it essentially re-
quires processes to be insensitive to repetitions of the same broadcast action.
Since processes have a finite state-space, unbounded counting of the number of
identical actions is impossible anyway. Moreover, note that GBC protocols that
correspond to a system in the choose model (as described later in this section)
are always well-behaved, since separation between input and output locations
implies that pairs of transitions as defined above cannot exist.

We can now state our key result about decidability of parameterized verifi-
cation in the GBC model (see Appendix B.3 for the proof):

Theorem 1. For well-behaved GBC protocols, the parameterized verification
problem for safety properties is decidable.

The decidability result is constructive, i.e., it yields an algorithm for param-
eterized verification. Furthermore, an analysis of this parameterized verification
algorithm enables computation of cutoffs for different classes of GBC protocols.

8 Without loss of generality, we assume that all actions are broadcasts, since this
allows us to simulate internal transitions and rendezvous.
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Formally, a cutoff for a class of parameterized systems and a class of specifica-
tions is a number c ∈ N such that for every process P and specification ϕ from
the respective classes,

∀n ≥ c : (P1 ‖ . . . ‖Pc |= ϕ ⇐⇒ P1 ‖ . . . ‖Pn |= ϕ) .

Thus, cutoffs directly reduce parameterized verification to verification of a
c-process system, where c is the cutoff for the system and specification under
consideration.

While one can show that, in general, cutoffs for GBC protocols can grow im-
practically large, we determine sufficient conditions that guarantee small cutoffs.
We define a local transition to be free if it is an internal transition, a broadcast
send transition, or a negotiation. A path from one state to another is free if all
transitions on the path are free. Suppose we want to check reachability of an
error state q with q(s) = m. A sufficient condition for obtaining small cutoffs,
abbreviated as condsfree, is that all paths from s0 to s in the GBC protocol must
be free.

Lemma 1. Given a well-behaved GBC protocol that satisfies condsfree, c = m is
a cutoff for reachability of an error state q with q(s) = m.

While the condition may seem restrictive, it directly applies to four out of
our five example benchmarks, and with slight modifications also to the fifth ex-
ample. For more details on cutoffs, we refer the reader to Appendix B.4.

Relation between choose model and GBC model. To support an abstrac-
tion into the GBC model, a systemMchoose in the choose model needs to satisfy
certain conditions. For this work, we assume that (i) any communication of pro-
cess indexes in Mchoose is confined to a substructure of the state-space that is
only used for establishing common knowledge about distributed state, e.g., to
ensure the Consistent Participants precondition; (ii) the values of variables that
store process indexes have no further effect after leaving the substructure; and
(iii) our safety properties do not refer to the internals of such a substructure. We
abbreviate these three conditions as condabs and obtain the following lemma.

Lemma 2. Under condabs, one can map an arbitrary-sized system Mchoose in
the choose model to a GBC protocolMGBC such that for any condabs-compliant
safety property φ:

∀n. (MGBC(n) |= φ ⇐⇒ Mchoose(n) |= φ) .

To support this abstraction in our synthesis approach, we need to guarantee
that the synthesized solution will satisfy condabs. This is, in part, enforced by the
process sketches we consider, and by preventing the completion from re-using
process indexes outside of the substructure. For more details on the relation be-
tween the two models, we refer to Appendix B.5.
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Parameterized completion of distributed applications in the choose

model. The parameterized verifier obtained as a result of Theorem 1 can be
used in conjunction with the distributed protocol completion algorithm from
Sec. 2, to yield a semi-decision procedure for parameterized completion of sys-
tems in the choose model for ensuring safety. To avoid the practical challenge of
implementing a parameterized verifier, we present an alternative solution based
on cutoff results for the GBC model.

The main requirements that we need to guarantee are that (i) condition
condabs holds, enabling the abstraction of a completed systemMchoose to a GBC
protocol MGBC for which we know how to compute cutoffs, and (ii) condition
condsfree holds for any state s that appears in an error state q, enabling the use
of Lemma 6 to compute a cutoff to ensure safety. Since the abstraction preserves
safety properties for systems of arbitrary size (Lemma 2), satisfaction of these
two conditions implies that we can synthesize a solution of the cutoff size in the
choose model, and directly get parameterized correctness.

5 Implementation

We implemented our approach in Kinara [3, 4, 2], a finite-state model checking
and synthesis framework. We briefly highlight some details of how we extend Ki-
nara to support systems in the choose model; we call this new system Kinarach .

Kinarach ensures that the given process sketch is completed in a way that
respects condabs and condsfree (see Sec. 4). Kinarach encodes these conditions as
constraints to the SMT solver that exclude possible completions if they result in
a violation of the conditions.

Kinarach models the participant set used in GlobalConsensusStart as an
array that is indexed by the index set I with values true or false to indicate
membership. For example, in a system of 4 processes, the input set {1, 3} is
represented by the array [false,true,false,true].

To ensure that we generate truly parameterized completions that work for
an arbitrary number of processes, we impose additional syntactic constraints on
the generated guards and updates. For example, we do not allow uninterpreted
functions to evaluate to integer constants. Instead, the completions have to use
terms that depend on the size of the index set, typically |I| or |I|− 1 to refer to
all (other) processes in the system. Similarly, completions can check for equality
of two indices, but cannot compare individual indices against constant numbers.

As discussed in Sec. 3.1, each choose transition encodes a possible winning
set by annotating the participants as winners and losers (CL and CW ). Kinarach
stores that annotation in a variable, ChDes, which can be 0, 1, or 2, represent-
ing unknown result, losing process, or winning process, respectively. A choose

transition sets ChDes on each participating process in a globally-consistent way.
Kinarach creates a variant of this transition for each possible outcome of choose.

Example. Assume we have 4 smoke detectors modeled as shown in Fig. 1. A
global state where only 3 detectors (say 1, 2, and 4) have detected fire, communi-
cated the information among each other, and reached their Pick local state is a
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valid GlobalConsensusStart state. With a cardinality of 2, a choose transition
that encodes the winning set {1, 4} would have the following updates:
global transition { true -> Detector[1].ChDes := 2 ;

Detector[2].ChDes := 1 ; Detector[4].ChDes := 2}
Similar commands are added and executed for alternative winning sets {1, 2}
and {2, 4}. From a process-local perspective, the local guard cons (S, 2) (shown
in Fig. 1) is implemented as ChDes = 2? while the local guard ¬cons (S, 2) is
implemented as ChDes = 1?. Both transitions also set ChDes back to 0.

Note that a process participating in consensus round cannot advance be-
yond a local choose state if its ChDes is set to 0. And since ChDes can only be
set to 1 or 2 by a choose transition, which is only triggered out of a proper
GlobalConsensusStart state, all participating processes will block until they
have the results on consensus, and then they can proceed in an interleaving
semantics style—this captures the atomic nature of our consensus abstraction.

6 Evaluation

This section evaluates Kinarach , on several case studies. First, we study whether
Kinarach can model, verify, and complete (synthesize) different distributed appli-
cations in the choose model. Second, we use the cutoffs established in Lemma 1
to perform synthesis for these applications and evaluate Kinarach ’s performance.

6.1 Case Study Descriptions

We use the choose model to build and verify five case studies: the example from
the introduction, as well as four more, which we describe here. For each case
study, we describe the application and delegate the safety and liveness properties
for the problem and its state machine description to Appendix C.
Chubby Application. Chubby [7] is a distributed lock service. Applications
can interface with Chubby as a file system where they send reads and writes
to the Chubby system, and the data is replicated safely on different servers.
The Chubby system starts by picking a leader server which is responsible for
receiving clients’ requests. The leader can safely serve read requests directly
and is responsible for committing writes to all the replicas before sending an
acknowledgment to the client. The leader periodically times out, and a new
round of election should happen to pick a new leader. Chubby’s use of consensus
is quite simple, but it demonstrates our broader point, which is that consensus
is not an application in and of itself. Rather, it is a building block that can be
leveraged for more complex applications (serving files, in this case).
Smoke Detectors with Reset. We next examine a variant of the smoke detec-
tor example that uses a “reset” environment signal to move all detectors back to
the initial state to start new rounds of detection. The presence of the reset signal
makes the problem more interesting as it simulates infinite rounds of consensus.
Distributed Mobile Robotics (DMRs). As a larger case study, we model the
system presented in [19] where a set of robots share a workspace with obstacles,
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Benchmark #Local Vars #Locations Cutoff #Iterations Time(s)

Chubby application 3 9 2 106 4.6

Smoke detector (SD) 9 9 3 57 406.4

SD with reset 9 9 3 53 380.2

DMR 9 11 3 52 358.4

SATS 17 14 5 6 306.1
Table 1. Performance numbers for the benchmarks.

and need to coordinate their movements. The robots coordinate to create a
motion plan by successively choosing each robot to make a motion plan taking
into account the previous robots’ plans. We model this system in our choose

model: the robots choose one robot to make a plan, then the remaining robots
re-enter consensus to choose a second robot and so on.
Small Aircraft Transportation System (SATS). Our final case study ad-
dresses the landing operation of the Small Aircraft Transportation System (SATS) [1],
a frequent target for verification [42, 8, 55]. The idea is that the aircraft should
coordinate with each other to figure out how to land safely and avoid collisions.
The planes use consensus to choose successive subsets of planes to progress to
the next phase of landing, until just one plane at a time is chosen to land.

6.2 Quantitative Evaluation of Kinarach

Table 1 quantitatively evaluates Kinarach ’s synthesis performance. For each
benchmark, we give the number of local variables in the process definition, the
number of locations, the cutoff (number of processes) used in synthesis, the num-
ber of CEGIS iterations before the loop terminated with the correct completions,
and finally the total execution time. We conducted the experiments on an Intel
core i7 machine with 4GB RAM. The “Smoke detector” row in the table is for
the case study in Fig. 1. We see in all cases that Kinarach is able to perform
synthesis quite quickly—taking less than seven minutes to perform synthesis
for any example. Note that synthesis time is dependent on how complex the
holes are, the size of the local state space, and the number of constraints that
must be solved in each iteration. In all cases, we leverage the cutoffs provided
by Appendix B.4, which allow us to perform synthesis only for a small number
of processes while providing guarantees for unbounded numbers.

7 Related Work

Non-parameterized verification and synthesis. There is a tremendous amount of
work on checking whether a distributed system with a fixed number of processes
meets a given set of correctness specifications [4, 3, 2, 68, 16–18, 14, 19, 52, 73, 13].
Fundamentally, these approaches are not sufficient since they only provide guar-
antees for fixed size systems.

Parameterized Verification. The Parameterized Model Checking Problem (PMCP)
instead tries to solve the verification problem for systems of any size. Works that
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tackle PMCP (which is undecidable in the most general case [66, 27]) take a va-
riety of different approaches.

One main approach to tackle the undecidability of the PMCP and the state
space explosion is to include the user in the loop with interactive theorem provers.
Such tools describe the distributed system is either logic [71, 61, 70, 20, 72, 59] or
a DSL [60]. Typically, the user needs to specify an inductive invariant that is used
to make an argument about the correctness of the system for any size. Disel [61]
leverages the same observation we do—that many distributed applications build
on lower-level primitives like consensus—and builds abstractions of distributed
primitives to provide compositional verification using Coq. However, such ap-
proaches require a non-trivial knowledge of the system and the underlying logic
to provide the inductive invariant and use the tools properly.

Another attempt to address the PMCP problem with user help is using de-
ductive reasoning. For example [58, 57, 67] use deductive techniques like rewire
rules and quantifier elimination in order to map the distributed systems written
in uninterpreted first-order logic (FOL) into a decidable fragment of FOL. Most
reasoning in this track depends heavily on the specific distributed system being
addressed (e.g. [22, 54, 58] for consensus and [51] for key-value stores). Hence, is
hard to generalize and automate.

Several works attempt to identify cutoff bounds for different classes of dis-
tributed systems. For example, cutoffs were obtained for cache coherence pro-
tocols [24], guarded protocols [40, 25, 23], consensus protocols [54], and self-
stabilizing systems [5]. PSync [22] is a specialized programming language for
the development of verifiable consensus algorithms, but the user has to provide
invariants and ranking functions. Maric et al. [54] show cutoffs directly for con-
sensus problems. However, their results are restricted to the consensus problem
itself, and do not extend to applications that use consensus to obtain other goals.

A final class of solutions attempts to find decidability results by restrict-
ing the generality of the problem in various ways. Most results consider a fully
connected network (a clique), either with rendezvous communication [37], broad-
casts [34], local updates with global guards [23], or several variants or combina-
tions thereof [26, 24]. Some communication primitives have also been considered
in more complex networks, for example token-passing [28, 11], or broadcasts [15].
Decidability results for systems that are composed of identical components have
recently been surveyed by Bloem et al. [6] as well as Esparza [32]. Works based
on Threshold Automata [45, 43, 41, 47, 44, 50, 65, 46] build on the intuition that
most fault-tolerance strategies depend on some form of counting replies and
checking if they are above some threshold.

Parameterized Synthesis. There has recently also been an increased interest in
synthesizing parameterized systems. Jacobs and Bloem [39] introduced a general
approach based on cutoff results, which allows to use any underlying synthesis
algorithm for the given class of systems. Other approaches are more specialized,
such the approach of Lazic et al. [50] for synthesis of fault-tolerant algorithms
that takes a sketch of the algorithm and generates parameter valuations that
guarantee correctness by solving a set of arithmetic constraints.
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Verifying Consensus Protocols. Due to their importance, several works have
targeted reasoning about consensus protocols like Paxos [48, 10] and Raft [56].
Some implemented DSLs to reason about consensus [22, 54, 52], others mapped
consensus protocols to decidable logic fragments [21, 58], while others used in-
teractive tools to reason about consensus [72]. This reinforces the need to move
from reasoning about the correctness of consensus protocols, and instead focus
on applications that use consensus as a black-box component.
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A Symmetry Reduction

In order to improve scalability of verification and synthesis of systems with many
similar processes, symmetry reductions are used to reduce a global transition sys-
temM into a smaller transition systemM that preserves relevant behavior [29,
38, 3, 63, 30, 69, 31]. In this section, we first formalize the notion of symmetry
and identify conditions for enabling symmetry reduction in the basic model of
Sec. 2.1. We then show that the choose model of Sec. 3.1 also lends itself to
symmetry reduction.

A.1 Symmetry Reduction in the Basic Model

Full Symmetry. Let π : {1, . . . , n} → {1, . . . , n} be a permutation acting on
the set I of process indices. Let G denote the set of all permutations over I.
A permutation of a global state q = (s0, s1, . . . , sn) can then be defined as:
π(q) = (π(s0), π(s1), . . . , π(sn)), where π(si) = (`π(i), π(σi)). Note that π(σi)
depends on the type of the local variable being permuted: if it is of type I, then
π(σi) = σπ(i), otherwise π(σi) = σi

9.

Definition 4 ([30, 69, 31]). A global transition system M composed of identi-
cal processes with index set I is fully symmetric if its transition relation R is
invariant to permutations: ∀π ∈ G : π(R) = R, where π(R) = {(π(q1), π(q2)) :
(q1, q2) ∈ R}.

To enable the use of symmetry reduction in the verification of our dis-
tributed systems, we require the guarded commands of processes to be index-
independent [29, 30]: the value of the guard and the effect of the update should
not depend on the specific values of process indices, i.e., should be invariant to
permutation of process indices.

Definition 5. Given a distributed system consisting of identical processes with
index set I, a guard or an update f in a process is index-independent if ∀π ∈
G : π(f) ⇐⇒ f .

Lemma 3 ([29, 30, 38]). For a distributed system consisting of identical pro-
cesses with index set I, if the guards and updates in all processes are index-
independent, then the global transition system M is fully symmetric.

Sufficient syntactic constraints for index-independence. While guards and up-
dates over variables independent of I are naturally index-independent (since
permutations only affect I), those over variables of type I must be proven to
be invariant under permutations. Prior approaches [29, 30, 38] propose easy-to-
check syntactic constraints on expressions over variables of type I that suffice
for index-independence. These constraints restrict guards/updates over variables

9 In case the variable was of an enumerated type (e.g. set, array, or record) containing
values of type I, then the permutation is applied recursively to all the elements. If
the array has an index type I, then we permute the array elements themselves, too.
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of type I to expressions checking equality (or disequality). For example, given
local variables i1, i2 ∈ V of type I, these syntactic constraints permit guards
that check if ii = i2 or i1 6= i2, but do not permit guards that check i1 < i2. In
the latter case, the guard values will differ if the values of i1 and i2 are permuted.

Symmetry Reduction via Quotient Structures. As proposed by Emerson
and Sistla [29], it is possible to exploit the symmetries present in a global transi-
tion system M in model checking by constructing a compressed quotient struc-
ture M such that M |= φ ⇐⇒ M |= φ, where φ is any (CTL∗) specification.
It follows from their result that such a quotient structure can be constructed for
any M that is fully symmetric and can enable symmetry reduction for model
checking w.r.t. any LTL specification. We refer the interested reader to [29] for
further details.

A.2 Symmetry Reduction in the choose Model

Let M = (Q, q0, R) be a global transition system in the basic model, model-
ing a distributed application with (possibly multiple rounds of) consensus. Let
Mchoose = (Q, q0, R

′) be the global transition system in the choose model corre-
sponding toM, obtained by abstracting away multiple interleaved paths between
GlobalConsensusStart and GlobalConsensusEnd states in Q with (nondeter-
ministic and atomic) choose transitions. Thus, R′ \ R, denoted Rch, is a set of
choose transitions of the form (qstart, q

W
end), where qstart is a GlobalConsensusStart

state and qWend is a possible GlobalConsensusEnd state where W ∈ W∗.
Further, let us assume that all guards and updates of process-local transitions

involved in the global transitions in R ∩ Rchoose are index-independent. It then
follows from the definitions and lemmas outlined in Appendix A.1 that if Rchoose

is invariant under permutations over I, Mchoose is fully symmetric and thereby
enables symmetry reduction.

Lemma 4. Rchoose is invariant under permutations over I:

∀π ∈ G, (qstart, qWend) ∈ Rchoose : (qstart, q
W
end) ∈ Rchoose ⇐⇒ (π(qstart), π(qWend)) ∈ Rchoose

Proof. Let q1, q2, . . . , qstart be a path in Mchoose with no choose transitions.
By constraints placed on such transitions (ref. Lemma 3) we know that if state
qstart is reachable, then all states {π(qstart)|π ∈ G} are reachable, too.

Let us examine one qstart and its possible qend states, then generalize to
other qstart states. Recall that we characterize such qstart state by the set of
participants it encodes, say S, and the cardinality of the intended winning sets,
say k. For each of the resulting winning set W ∈ W∗, we create a qWend state.

We distinguish two disjoint subsets of permutations in G:
– Gm = {π | π(S) = S}10 (i.e. permutations preserving the membership of S).
– Gn = {π | π(S) 6= S}.

10 The permutation of a set A is the set of the permuted elements: π(A) = {π(m) | m ∈
A}.
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By the construction process of choose transitions (ref. Sec. 3.1), we know
that W∗ contains all subsets of S of size k. Hence, W∗ is invariant to permu-
tations in Gm (i.e. ∀πm ∈ Gm, πm(W∗) = W∗). Since S is also invariant to
permutations in Gm, we can lift those observations to states:

∀πm ∈ Gm, (qstart, q
W
end) ∈ Rchoose ⇐⇒ (πm(qstart), πm(qWend)) ∈ Rchoose

For any permutation πn ∈ Gn we obtain a new global state q′start = πn(qstart)
encoding the set S ′ = πn(S). However, since any such q′start is reachable, and
by the above reasoning, we conclude that:

∀πn ∈ Gn, (qstart, q
W
end) ∈ Rchoose ⇐⇒ (πn(qstart), πn(qWend)) ∈ Rchoose

Since G = Gm ∪Gn, we obtain:

∀π ∈ G, (qstart, qWend) ∈ Rchoose ⇐⇒ (π(qstart), π(qWend)) ∈ Rchoose

Paths to qstart with choose transitions. Above, we assumed that no choose

transitions is on the path to qstart. Recall that we choose transitions are atomic.
So one can inductively argue that the above reasoning holds as we, effectively,
just showed that choose transitions are symmetry-compliant.

B Parameterized Correctness Arguments and Cutoffs

In this section, we show how to obtain parameterized correctness arguments
for our systems. To this end, we provide a model-checking procedure based on
a counter representation, as well as a way to obtain cutoffs. We use a system
model that is at a slightly higher level than the one in the previous sections, and
is based on the model for broadcast protocols by Esparza [34]. After introducing
this basic model, we extend it such that we can model the essential properties of
choose and certain kinds of transition guards. Then, we provide conditions for
decidability of the PMCP of these systems, as well as a model-checking procedure
and a way to derive cutoffs.

B.1 Basic System Model: Broadcast Protocols

We consider processes P = 〈A,S, s0, T 〉, where A is a finite set of action names
that gives rise to the input actions In = {a?? | a ∈ A} and output actions
Out = {a!! | a ∈ A}, S is a finite set of states, s0 ∈ S is the initial state, and
T ⊆ S × In ∪ Out × S is the transition relation11. Without loss of generality,
we assume that all actions are broadcasts, since this allows us to simulate local

11 In contrast to Sec. 2.1, we do not separate a state into a location and a valuation of
variables in this model, and processes do not have identifiers.
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transitions, pairwise rendezvous and global synchronization. The semantics of
broadcasts is: if some process takes a transition with a!!, then all other processes
have to take a transition with a?? (if they have one in the current state; we
can assume wlog that this is always the case, by adding self-loops). This part is
exactly the model from Esparza et al. [34].

Formally, the parameterized model of Esparza et al. is the following:

– the state space of the parameterized system is q = N|S|, i.e., a state is a
vector of natural numbers, representing the number of processes that are in
any given state s ∈ S.

– in a broadcast transition, one process makes a transition si
a!!−→ sj and all

other processes make a transition sk
a??−−→ sl, depending on their current

state sk. Thus, the successor configuration q′ ∈ N|S| of a given configuration
q ∈ N|S| can be computed in the following way (where ui is the unit vector
with ui(si) = 1):

p = q− ui
p′(sl) =

∑
{sk | sk

a??−−→sl}
p(sk)

q′ = p′ + uj .

As noted by Esparza et al., the computation of q′ can be denoted more
succinctly as q′ = Ma · q + va, where Ma is a broadcast matrix that models
the second line above and va is a broadcast vector that models the effect of
the other two lines. Under the assumption of deterministic transitions, in a
broadcast matrix each column is a unit vector.

Our goal is to use broadcasts to model choose transitions on a slightly more
abstract level. While the effect of a choose(1) transition can be modeled by a
broadcast (where the chosen process is the sender and all other processes are
receivers), we face two problems: (i) choose transitions are only enabled when
all processes have decided whether they want to participate, and (ii) broadcasts
do not allow us to model the effect of a choose(k) with k > 1. Therefore, we need
to significantly extend the broadcast model in order to capture the semantics of
the systems we consider.

B.2 Extended Model: Guarded Broadcast Protocols

In the basic model, a broadcast transition a is enabled whenever there is a process
that can take a local transition labeled with a!! for sending the broadcast. I.e.,
this model implicitly assumes that all processes are always ready to receive the
broadcast. To model choose transitions that are only enabled when all processes
have made the decision whether they want to participate, we extend this model
by adding support for guarded transitions that are only enabled if all processes
are ready, i.e., they are in a specified subset G ⊆ S of their local statespace. G
is also called the guard of the transition. Moreover, to model choose transitions
that select k > 1 winners, we extend the model with transitions that are similar
to a broadcast, but have up to k processes execute the sending transition at the
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same time. Finally, we also consider negotiations, which are essentially broadcasts
without a distinguished sender, i.e., transitions where all processes (that are in
a state where the transition is enabled) synchronize and take the same action.12

Formally, our systems are now given by 〈A,S, s0, T 〉, where all components
are as before, except that now we have T ⊆ S×In∪Out×P(S)×S. The update
of global state q by a transition is defined as before, except that

– a transition is only enabled if q satisfies the guard G, i.e., if q(s) = 0 for all

s /∈ G. We write such a transition as q
G−→ p.

– a broadcast transition may allow a fixed number k ∈ N of processes to take
the sending transition simultaneously. We call such a transition a k-broadcast.
In this case, the global successor configuration is computed by subtracting
k ·ui (instead of ui) in the first step, and adding k ·uj (instead of uj) in the
last step. If there are only k′ < k processes in the sending state, then the
transition fires with k′ senders instead of k.

– a negotiation step is computed simply by applying a broadcast matrix Ma,
without an additional broadcast vector.

B.3 Model Checking for Guarded Broadcast Protocols

Finkel [35] introduced the notion of a well-structured transition system (WSTS):
an infinite-state transition system that is equipped with a well-quasi order (WQO)
on its state space and that has some additional properties. We will use Finkel
and Schnoebelen [36] as a main reference, which gives a survey of existing results
and puts them into a common framework. In particular, these results show how
we can effectively represent systems with infinite sets of states in order to decide
safety/reachability properties.

In this section we show that, under some additional conditions, guarded
broadcast protocols are WSTSs, and we can decide the parameterized model
checking problem (PMCP) for safety properties.

Compatibility and Effective Computability of Predecessors To prove decidability
of the PMCP, we need some additional definitions.

Definition 6. A WQO � is compatible with a transition relation→ if for every
q � q′ and q → p there exists p′ with p � p′ and q′ →∗ p′, and strongly
compatible if q′ → p′.

A transition system equipped with a WQO that is compatible with its tran-
sition relation is called a well-structured transition system (WSTS).

Fix an infinite set of states Q and a transition relation →. For a (possibly
infinite) subset U ⊆ Q, let Pred(U) denote the predecessor states of U with
respect to →. Furthermore, let ↑ U denote the upwards closure of U , i.e., the
set of all states p such that there exists q ∈ U with q � p. A set U is upwards
closed if ↑ U = U . Every upwards closed set U has a finite basis: a finite set
B ⊆ U such that ↑ B = U .

12 Systems that only communicate through negotiation have been investigated by Es-
parza and Desel [33].
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Definition 7. For a given transition relation → and WQO �, we say that we
can effectively compute Pred if there exists an algorithm that computes a finite
basis of Pred(U) from any finite basis of any upwards-closed U ⊆ Q.

Finkel and Schnoebelen [36] have shown that we can decide reachability of
any upwards-closed set in a WSTS if we can effectively compute Pred.

Deciding Safety Properties for Guarded Broadcast Protocols. Esparza et al. [34]
have defined the following WQO on the (global) states of the basic model of
broadcast protocols:

q � q′ iff q(s) ≤ q′(s) for all s ∈ S.

Based on this, they have shown:

Theorem 2 ([34]). For the model of broadcast protocols and the WQO above,
the following hold:

– Broadcast transitions are strongly compatible with the WQO, i.e., if q � q′

and q→ p, then ∃p′ with p � p′ and q′ → p′. This implies that for a given
upward-closed set of states C, the set of predecessor states Pred(C) is also
upward-closed.13

– For broadcast transition systems we can effectively compute Pred.

We quickly recapitulate their proof idea, because it will inform our proof for
guarded broadcast protocols.

Proof. For both items, it is sufficient to show them for every action a ∈ A
separately. With our formulation, the first item is easy to show based on the
matrix notation of broadcast transitions. For the second, observe that for a

transition based on sk
a!!−→ sl, any element q of Pred(C) must satisfy q(sk) ≥ 1

and Ma · q + va = q′, for some q′ ∈ C. The basis of Pred(C) consists of the
minimal elements that satisfy these conditions, and thus is computable.

In the following, we consider the extended model of guarded broadcast pro-
tocols and introduce conditions under which we can obtain a similar result.

To this end, for a global state q let supp(q) = {s ∈ S | q(s) > 0}, i.e., the
set of local states that appear at least once in q. Then we consider the following
WQO:14

13 In fact, Esparza et al. have only proven the latter, but one can show that the two
statements are equivalent.

14 To see that this is really a WQO, we need to show that every infinite sequence
q1,q2, . . . of global states contains contains qi,qj with i < j and qi E qj . To see this,
consider an arbitrary infinite sequence q = q1,q2, . . .. Then there is at least one set
S of local states such that there are infinitely many qi with supp(qi) = S. Then let q′

be the infinite subsequence of conf where all elements have supp(q′
i) = S. Since� is a

WQO, there exist q′
i,q

′
j with i < j and q′

i � q′
j , and since supp(q′

i) = supp(q′
j) = S,

we also get q′
i E q′j. Since q′

i = qk and q′
j = ql for some k < l, we get qk E ql for

k < l, and thus E is a WQO.
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q E q′ iff q � q′ ∧ supp(q) = supp(q′).

Furthermore, we require the following restriction on guarded broadcast pro-
tocols. We call a guarded broadcast protocol well-behaved if every broadcast

transition q
G−→ p based on a local transition sk

a!!−→ sl of the sender and a
matrix Ma for the receivers satisfies at least one of the following:

1. the sender remains in its state, i.e., sk = sl,
2. receivers that are in sk leave the state, i.e., Ma(sk) 6= sk, or
3. for all states in G, Ma is idempotent, i.e., Ma(s) = Ma(Ma(s)), and all states

are mapped into G by the transition.

Note that these are not strong restrictions, and these conditions are naturally
satisfied by many classes of transitions. E.g., the second condition is satisfied by
choose transitions, the third condition is necessary (and sufficient) to model in-
ternal transitions as guarded broadcasts, and a negotiation transition will always
satisfy one of the first two conditions.

Then, we get the following:

Theorem 3. For well-behaved guarded broadcast protocols and the WQO E, the
following hold:

– transitions are compatible with E, i.e., if q E q′ and q → p, then ∃p′ with
p E p′ and q′ →∗ p′. They are strongly compatible if they satisfy the first
or the second condition of well-behavedness.

– we can effectively compute Pred.

Proof. As above, it is sufficient to prove the statements for every action a ∈ A
separately.

For the first item, we start by considering a broadcast transition with exactly

one sender. Let q E q′ and q
a,G−−→ p based on the local transition sk

a!!−→ sl of
the sender. Note that this local transition is also enabled in q′, and distinguish
two cases: (1) if sk = sl or Ma(sk) 6= sk, then by the argument from the proof

of Theorem 2 we get p � p′ for q′
a,G−−→ p′. Furthermore, we also get supp(p) =

supp(p′), and therefore p E p′. (2) if sk 6= sl and Ma(sk) = sk, the second part
of the argument above does not hold: if q(sk) = 1 and q′(sk) > 1, then we can
have sk ∈ supp(p′) while sk /∈ supp(p). However, in this case we know that the
third condition of well-behavedness must hold. Since the same transition is still
enabled for other processes remaining in sk, we can repeat it a often as needed
to arrive in a state with supp(p) = supp(p′). For negotiation transitions, note
that the argument is even simpler: we know that either the first or the second
condition of well-behavedness applies. Finally, for k-broadcasts the argument is
essentially the same as above, noting that if fewer than k processes remain in
the state after repeated application, then the k-broadcast can still be executed.

For the second item, observe that for a transition based on sk
a!!,G−−−→ sl, any

element q of Pred(C) must satisfy (i) q(sk) ≥ 1, (ii) q(s) = 0 for s /∈ G, and



30 Nouraldin Jaber, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

(iii) Ma · q + va = q′, for some q′ ∈ C. The basis of Pred(C) consists of the
minimal elements (wrt. E) that satisfy these conditions, and thus is computable.
Again, a similar argument applies for negotiations and k-broadcasts.

B.4 Cutoffs for (Guarded) Broadcast Protocols

Finally, we want to investigate the connection between the decidability result in
Theorem 3 and cutoff results for parameterized systems. While Theorem 3 allows
us to decide parameterized model checking problems and can be integrated into
a semi-procedure for parameterized synthesis, a cutoff result is more general and
directly reduces both parameterized verification and synthesis to a problem over
a given, fixed number of processes.

Basic Observations. Formally, a cutoff for a class of parameterized systems
and a class of specifications is a number c ∈ N such that for every system
component P and specification ϕ from the respective classes,

∀n ≥ c : (P c |= ϕ ⇐⇒ Pn |= ϕ) .

The basic idea is that, based on the proofs of the second items of Theorems 2
and 3, we can determine a number c of processes in our system that is sufficient
to reach a set of error states (that we assume to be upwards-closed in our WQO),
i.e., an error state is reachable with any number n ≥ c of processes if and only
if it is reachable with c processes.

To this end, consider the conditions on the basis of Pred(C) that are given in
the proof: the only case in which these conditions require us to increase the num-
ber of processes is if we want to reach one or more states through a broadcast-
receive (and there is no or there are not enough processes in the state from
which the corresponding broadcast-send can be fired). If we look at the special
case of choose, we can see that the transition on choose(k), for arbitrary k,
can be seen as a broadcast-send, while the transition on ¬choose(k) has to be
considered a broadcast-receive with k senders. On the other hand, the special
case of negotiations never requires us to add processes, as the whole transition
can be described only by a broadcast matrix Ma.

Note that this means that in general the cutoff can grow very big. Consider
the example shown in Fig. 3, where we want to reach state E: to reach E from
s0 with a single process, we need 2 other processes that can fire the necessary
broadcast-sends a1!! and a2!!. To reach E with m processes, we need to take m
rounds through the cycle s0 → s1 → s2 → s0, and in each round need 2 other
processes to fire the broadcast-sends. Thus, we need m · 2 additional processes.
Finally, consider the case were we increase the size of the cycle: if we have k
states in the cycle (plus sink and E) and want to reach E with m processes,
then we will need m · (k − 1) additional processes. In all of these cases, this
observation gives us a lower bound on the cutoff for the respective properties.
In particular, a cutoff for reachability properties in broadcast systems in general
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Fig. 3. Example for a linear lower bound on cutoffs

is at least in the order of m · k, where m is the number of processes that should
reach the state, and k is the number of states in the process.

Since cutoffs that grow with the size of the state-space make synthesis (and
verification) very difficult in practice, in the following we identify local conditions
on processes that allow us to compute small cutoffs.

Conditions for Small Cutoffs. We begin with a very simple case, where
systems are restricted to only internal transitions and negotiation transitions.

Lemma 5. For systems that only have internal transitions and negotiations, the
cutoff for reachability of any state s by m processes is m.

Proof. To see this, first consider a system with n > m processes, where eventually
m of them reach s. We can simulate this run in a system with m processes by
simply keeping the m processes that reach s, and remove all others. Similarly, if
all processes in a system of size m eventually reach s, then we can simulate this
run in a bigger system by adding processes (that need to take negotiation steps
when the other processes do so, and otherwise can behave arbitrarily).

While we will in general not be interested in systems that can only communi-
cate through internal transitions and negotiations, we can refine this observation
based on the states that we are interested in, and allow some different kinds of
communication in our system.

To this end, define a transition of a process P to be free if it does not depend
on other processes, i.e., it is an internal transition, a sending transition, or a
negotiation. A path from one state to another is free if all transitions on the
path are free.

Lemma 6. Given a well-behaved guarded broadcast protocol, if all paths from s0
to s are free, then c = m is a cutoff for reachability of a state q with q(s) = m.

Proof. The argument follows the same line as the one above for systems with
only internal transitions and negotiations, noting that transitions along a free
path can also be taken regardless of the other processes in the system.
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B.5 Connection between the Models

In this section, we show how to map a system description in the choose model
(as introduced in Sec. 3.1) to a system in the GBC model (as introduced in
Appendix B.2). The goal is to obtain parameterized safety guarantees for systems
in the choose model, and ultimately to use cutoff results for the GBC model in
the synthesis of systems in the choose model.

Mapping the choose model to the GBC model. The choose model is very
similar to the GBC model in many aspects: both models support finite-state
processes, and many of the communication primitives are shared, and have the
same semantics. When mapping a system from the choose model to the GBC
model, the main obstacle is that the choose model supports communication
based on process ids, e.g., a process can pass its id in a broadcast, or answer to a
process with a specific id from which it has received a message before. Moreover,
processes can store id values as well as sets of id values in local variables. None
of this is supported in the GBC model, where the local state space has to be
fixed and cannot depend on the number of processes in the system.

Therefore, in general we will lose information when mapping a process in the
choose model to the GBC model. However, we can show that for certain use
cases, which include the accumulation of information that is necessary to execute
choose transitions, substructures of a process that use id-based communication
can be mapped to structures in the GBC model such that safety/reachability
properties are preserved.

Abstracting the collection of id-based information. In order to perform a consen-
sus round, the system needs to reach a GlobalConsensusStart state. To this
end, processes can use id-based communication to exchange information about
who wants to participate. However, if we assume that we are not interested in
how this happens, then any structure that ensures that GlobalConsensusStart
will be reached can be modeled in the GBC model: we simply let participants
and non-participants move to different states, and block the execution of choose
transitions unless all participants have reached these states, see Fig. 4.

Based on these observations, we assume that the systems we are interested in
only use id-based communication in order to ensure that GlobalConsensusStart
is reached, and that this information will not affect the behavior of the system
after the corresponding choose transitions are executed. I.e., whenever id-based
communication is used, it happens in a clearly separated part of the local state
space that is entered and left by all processes at the same time.

As an example, consider Fig. 1, and note that the structure in the figure
naturally satisfies the conditions: with all processes starting from Env, we will
eventually reach a GlobalConsensusStart state. Before that, executing choose

transitions is not possible, and after that the collected information will not be
used anymore.
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Initial Ask Participant

Non-
Participant

α?

AskAll

AskAll

Fig. 4. A construct to abstract (possibly multiple) communications in choose model.
Processes start at the Initial state, and are partitioned into two groups according to
an event α (e.g. an environment signal). The two groups of processes (in Initial and
Ask states) take a negotiation step, AskAll which moves the processes to Participant
and Non-Participant states.

Our assumptions on substructures that use id-based communication then
allow us to map a system description from the choose model to the GBC model
in the following way:

– a substructure of the state space with entry state Init, positive exit state
Participant and negative exit state Non-Participant is mapped to the
component displayed in Fig. 4, and the choose transition that leaves Par-
ticipant is guarded with the set G = {Participant,Non-Participant}

– every state and transition outside of such substructures is mapped without
change to the GBC model.

Remark. The idea of substructures can be generalized to, for example, have more
exit states. The substructure in Fig. 4 is one instantiation that is sufficient for
our benchmarks.

Properties of the Mapping and Correctness Argument. We claim that
the mapping introduced above preserves reachability properties in parameterized
systems.

Target Specifications. We consider specifications that express the reachability
of a combination of locations by a fixed number of processes, while all other
processes can be in arbitrary states (e.g. no more than two smoke detectors can
be in Report state). More precisely, specifications can refer to any state in the
choose model that is not abstracted away by the mapping.

Simulation Equivalence. If φ is such a specification, then we get the property

∀n. (MGBC(n) |= φ ⇐⇒ Mchoose(n) |= φ) .
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This can easily be seen since (i) entry to and exit from the substructures that
are abstracted happen under the same conditions, (ii) within the substructures,
all states that are not abstracted away are reachable for all processes (regardless
of the size of the system), and (iii) outside of these substructures the systems
are identical.

As a consequence of this property, we know that for our target specifications,
cutoffs from the GBC model can also be used in the choose model. In particular,
if we can guarantee that the synthesized system will satisfy the properties defined
above, then we can use the cutoffs also in synthesis of process implementations
in the choose model.

Preserving cutoffs in choose model. Recall that the cutoffs depend on the notion
of free paths discussed in Appendix B.4, hence, in order to use the same cutoffs
in the choose model, we need to ensure that the synthesized solution has free
paths equivalent to those in the GBC model. We achieve this by encoding the
notion of free paths as constraints to the synthesis engine.

C Evaluation Benchmarks

In this section, we provide specifications, completions, and figures for out bench-
marks from Sec. 6. Kinarach can successfully verify all of our case studies. The
transition diagrams demonstrate the complete implementation, with the holes
we synthesize marked in dashed red boxes.

C.1 Chubby Application

Specifications. The safety properties for this system are: (1) there is at most
one leader at a time; and (2) each write is committed to all replicas before it is
acknowledged. The liveness (progress) properties are: (1) client reads and writes
must eventually be acknowledged; and (2) on a timeout, all servers must go back
to the Candidate state where a new server is elected.

Synthesis Completions. Since there are no guards and updates for Chubby, the
completion here had a different style: for the actions in the dashed red boxes
(Fig. 5), the next state is left unspecified. The job of the synthesis to answer
questions like: in the case of a timeout, where should the leader transition to,
and how should the replicas react? Also, how should the leader server react to a
read or write? How should the replicas react to a write?. In addition to that, we
also allow the synthesis procedure here to figure out the right number of winners
for consensus. Note that he cutoff is 2 according to Lemma 6.

C.2 Smoke Detector with Reset

Specifications The safety and liveness properties are the same as those of the
example from Fig. 1. With the presence of a reset signal, the verifier must make
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Fig. 5. A description of an application using Chubby lock service to simulate a dis-
tributed consistent file system. The set here trivially contains all the servers since, all
servers try to become leaders. All servers start at the Candidate state where they are
eventually partitioned into one leader and n− 1 replicas.

sure the the specifications are met for each round of the system: before the
detectors go back to the detecting a new fire, they must correctly handle the
current one.

Completions. We omitted the guards and updates in the dashed red boxes and
were able to synthesize the correct completions to satisfy the specification. The
omitted parts correspond to interesting questions the developer of such system
might have. For example, should the detector attempt to build a participant
set of detectors that sensed a fire? what should a detector do upon receiving a
message from another detector? After the message exchange is done, should the
detector attempt to contact the fire department or is other processes going to do
so?. Since all detectors go back to the initial state at the same time, this system
is around-based and the cutoff is 3 according to Lemma 6.

C.3 Distributed Mobile Robotics(DMRs)

Specifications. The safety property of this system, is that exactly one robot
can be planning at a given time, hence no collision will happen15. The live-
ness properties enforce that any submitted task should eventually be executed.
Completions. As shown in Fig. 6, the holes are similar to those of the smoke

15 We abstract away from the mechanics of creating the plan itself.
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detector. Additionally, a hole corresponding to how should the robot handle a
message from another robot that is done planning. The cutoff for this example
is 3, according to Lemma 616.
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Fig. 6. A process description for a robot. A reset signal from the environment that
sends all robots from execute and Idle back to the Wait state, is not shown in the
figure.

C.4 Small Aircraft Transportation System (SATS)

Protocol Description. As shown in Fig. 7, an aircraft starts in Fly state. The
aircraft then approaches the airport and head to a holding zone that can be
either on the left or the right, represented by HoldLeft and HoldRight,
respectively. Each holding zone can accommodate two aircraft. From either the
left or the right, an aircraft may try to approach a Base where it attempts to
approach the runway and land. In that Base zone, only one aircraft may move
to the Final Approach zone where it can safely attempt to land, entering the
Landed state. However, due to unforeseen reasons (e.g. ice on the runway), the
pilot may decide to abort landing. At that point, the aircraft needs to head to a
miss zone either on the left or the right, MissLeft and MissRight, respectively.
From there, the aircraft goes back to the assigned holding zone and attempts
the landing again.

This is an instance where it is useful to allow the choose transitions to also
return the winner and loser sets to the participants. For example, set2 is the

16 With some relaxation of the free path requirement: we allow broadcast-receive tran-
sitions that lead to a state with a free path.



Parameterized Synthesis for Distributed Applications with Consensus 37

Fly Enter

Hold
Left

Hold
Right

Base Final
App

Miss
Left

Miss
Right

RunwayLand

cons(set1, 4)

¬cons(set1, 4)

di
r
=
l

co
ns
(s
et 2
, 2
)

dir
=
r

¬
cons(set2 , 2)

¬cons(set3, 1)

cons(set3 , 1)

cons(set5, 1)

¬cons(set5, 1)

¬cons(set4, 1)

co
ns
(s
et 4
, 1
)

m
is
s?
, d
ir
=
r

m
iss?, dir =

l

land?

true

true

true

true

Fig. 7. SATS protocol description. If a transition has updates, they show up under the
arrow.

winning set of cons (set1, 4) and set3 and set4 are the winning and losing sets of
cons (set2, 2), respectively. Building set5 requires the processes to communicate
as in the smoke detector examples, we omit the communication states to keep
the presentation simpler. Note that Table 1 includes the four states necessary to
build set5, but not shown here, in its characterization of SATS.

Specifications The safety properties, given by NASA, are as follows:

– While any number of aircraft can be in the Fly and Landed states, no more
than four aircraft total can be in any of the other states.

– Only one aircraft is allowed on the FinalApproach state.
– No more than two aircraft allowed in HoldLeft (HoldRight) state.
– No more than two aircraft allowed in MissLeft (MissRight) state.
– At most two aircraft are assigned to miss left (right) at any time.

For liveness, the protocol description states that all aircraft land in order of
sequence number. However, enforcing this property breaks symmetry. Instead,
we relax this property to “an airplane entering the airport will land”, and leave
enforcing sequential ordering to the non-deterministic results of consensus, out-
side of our verification scope.

Completions. The completions in this system were to synthesize the actions of the
pilot attempting to land. In particular, which direction should the pilot take in
case of an abnormal condition. The cutoff value for this example, is 5, according
to Lemma 6.


