
Parameterized Verification of Systems
with Global Synchronization and Guards?

Nouraldin Jaber1??, Swen Jacobs2??, Christopher Wagner1, Milind Kulkarni1,
and Roopsha Samanta1

1 Purdue University, West Lafayette, USA
{njaber,wagne279,milind,roopsha}@purdue.edu

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
jacobs@cispa.saarland

Abstract. Inspired by distributed applications that use consensus or
other agreement protocols for global coordination, we define a new com-
putational model for parameterized systems that is based on a general
global synchronization primitive and allows for global transition guards.
Our model generalizes many existing models in the literature, including
broadcast protocols and guarded protocols. We show that reachability
properties are decidable for systems without guards, and give sufficient
conditions under which they remain decidable in the presence of guards.
Furthermore, we investigate cutoffs for reachability properties and pro-
vide sufficient conditions for small cutoffs in a number of cases that are
inspired by our target applications.

1 Introduction

Distributed applications are notoriously difficult to implement and reason about,
primarily due to the combinatorial explosion of behaviors resulting from the
interleaving of computation and communication. Naturally, they have received
a lot of attention from the formal methods community to facilitate reasoning
about correctness properties that are too complex to reason about informally or
manually [3,55,52,46,14,42,36,50,34,7,15].

One of the main challenges in fully automated reasoning about a distributed
system is scalability in a critical system parameter—the number of processes—
with the epitome of success being parameterized verification of correctness—
correctness that holds regardless of this parameter. Unfortunately, the param-
eterized verification problem is known to be undecidable even in very simple
cases, for example, finite-state processes that pass a 2-valued token in a ring [54].
Hence, approaches for parameterized verification are divided into two groups: (i)

? This research was partially supported by the National Science Foundation under
Grant Nos. 1846327, 1908504, and 1919197 and by a grant from the Purdue Research
Foundation. Any opinions, findings, and conclusions in this paper are those of the
authors only and do not necessarily reflect the views of our sponsors.

?? Joint first-authors.

2 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

ones that support a large class of systems, but only provide semi-decision proce-
dures [1,41] and (ii) ones that provide fully automatic decision procedures for a
well-defined class of systems, but need to carefully restrict this class of systems
to obtain such a strong result. While the former cannot provide any guarantee of
success, the latter are often not sufficiently general to model practical examples.

In this work, we target fully-automated parameterized verification for a sig-
nificantly more general class of systems than addressed in prior work (cf. the
surveys [21,9,26]). Inspired by distributed applications that use consensus or
other agreement protocols for global coordination, we introduce global synchro-
nization protocols, a new computational model for distributed systems that gen-
eralizes most of the existing models based on process synchronization, including
models based on pairwise rendezvous [32], asynchronous rendezvous [16], nego-
tiation [27] and broadcasts [28]. We show that despite this generality, we can
still decide parameterized verification for safety properties. Going beyond that,
we show that under certain conditions, our model can be augmented with global
transition guards—which allow to model semaphore-based access control as well
as preconditions for global consensus-like coordination—while retaining decid-
ability. This makes our model one of the most expressive models for which the
parameterized verification problem is still decidable. Furthermore, we present
several results on cutoffs for our model, i.e., the number of processes sufficient
to prove or disprove properties of a parameterized system. Inspired both by
the decision procedure and by negative examples that require large cutoffs, we
define sufficient conditions on systems in our computational model that make
small, practical cutoffs possible. Finally, we evaluate our approach on several
distributed applications, showing that they can indeed be modeled as global
synchronization protocols, and we illustrate the significance of our cutoff results
in the verification of these benchmarks.

Motivating Example. Our system model is inspired by applications that use
agreement protocols, like leader election or consensus, as building blocks to
achieve a more complex overall functionality. We are interested in a compo-
sitional verification setting where we assume that the agreement protocols have
been verified separately and want to guarantee the overall correctness of an
application without having to explicitly model and verify the agreement proto-
cols within the application; in particular, we focus on a setting where verified
agreement protocols are encapsulated into an abstraction with precondition obli-
gations and postcondition guarantees.

Thus, our system model needs to be able to incorporate such pre- and post-
conditions of agreement protocols. As a simple example, consider the smoke
detector application in Fig. 1 whose intended behavior is as follows. Upon de-
tecting smoke, the processes coordinate to choose (up to) 2 processes to report
the smoke to the fire department. It uses different types of transitions, several
of which are popular in the literature and are supported by existing decidabil-
ity results: an internal transition (from state Env to state Ask), a broadcast
(on action Smoke), and a negotiation, i.e., a synchronous transition of all pro-
cesses with no distinguished sender (on action Reset). However, additionally

Parameterized Verification of Systems with Global Synchr. & Guards 3

Env Ask Pick Report

Idle

G1

Smoke??

Smoke!!, G1

Smoke??

Choose??

Choose1!!, G2

Choose2!!, G2

Reset, G3

Reset, G
3

G1 = {Env,Ask}
G2 = {Pick, Idle}
G3 = {Report, Idle}

Fig. 1: A smoke detector process. The internal transition from initial state Env
to Ask models that a process detects smoke (an environment signal). A process
that detected smoke can initiate a broadcast Smoke, moving all processes from
Env to Idle and from Ask to Pick, where the transition Choose moves (up
to) 2 processes to Report, and the rest from Pick to Idle. Finally, all processes
from Report and Idle may move back to Env in a synchronous transition with
no dedicated sender. Transitions labeled with a set Gi can only be taken if all
processes are in this set. The safety property for a distributed smoke detector
based on this process is that at most 2 processes should report the fire.

our application requires that some transitions can only happen under certain
conditions, given by guards Gi in transition labels. For example, action Reset
should only be possible if all processes are in G3, i.e., in states Report or Idle.
And most importantly, in state Pick we want the system to agree on (up to) 2
processes that move into state Report . This requires a novel type of transition
that we have not found in existing literature, allowing two processes to take a
distinguished role while all other processes are treated uniformly. To faithfully
model agreement of processes, we also require a guard on this transition, since
any agreement protocol is based on the assumption that all processes are ready
(i.e., their local state satisfies some condition) before invocation of the protocol.

2 System Model: Global Synchronization Protocols

We present global synchronization protocols (GSPs), a formal system model
that generalizes most of the existing synchronization-based models in the lit-
erature [28,32,16,27], including models based on rendezvous and broadcasts. In
this model, each global transition synchronizes all processes, where an arbitrary
number k of processes act as the senders of the transitions, while the remain-
ing processes react uniformly as receivers. The model supports two basic types
of transitions: (i) a k-sender transition, which can fire only if at least k pro-
cesses are ready to act as senders, and is fired with exactly k processes acting as
senders, and (ii) a k-maximal transition, which can fire if the number m of pro-
cesses that are ready to act as senders is at least 1, and is fired with min(m, k)

4 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

processes acting as senders. Additionally, each transition can be equipped with
a global guard that identifies a subset of the local state space. Then, a transition
is enabled whenever it can fire and the local states of all processes are in the set
identified by the transition guard.

We formalize these notions in the following, starting with the case without
transition guards.

2.1 Global Synchronization without Guards

Unguarded Processes. An unguarded process is a labeled transition system
P = 〈A,S, s0, T 〉, where A is a set of local actions, S is a finite set of states,
s0 ∈ S is the initial state, and T ⊆ S × A × S is the transition relation. A is
based on a set A of global actions, where each a ∈ A has an arity k ≥ 1 and is
either a k-sender action or a k-maximal action. For every global action a ∈ A
with arity k, A contains local actions a1!!, . . . , ak!!, a??. Actions a1!!, . . . , ak!! are
called sending actions and a?? is called a receiving action.

A local transition from state s to state s′ on sending action α ∈ A denoted
s
α−→ s′ is called a sending transition (resp., receiving transition) if α is a sending

action (resp., receiving action). We assume that receives are deterministic: for
each state s and each receiving action a??, there is exactly one state s′ with
s
a??−−→ s′, and that sends are unique: for each sending action ai there is exactly

one pair of states s, s′ with s ai!!−−→ s′. 3

Example 1. If we ignore guards on transitions, the process in Fig. 1 is an un-
guarded process. Global action Choose has arity 2, and local sending transi-
tions Pick Choosei!!−−−−−−→ Report for i ∈ {1, 2}. One local receiving transition is
Pick Choose??−−−−−−→ Idle, and all other receiving transitions on Choose are self-
loops (not depicted).

Unguarded Systems. Given an unguarded process P = 〈A,S, s0, T 〉, we con-
sider systems composed of n identical processes, and use a counter abstraction
to efficiently represent global states, without loss of precision [25].4

That is, the parameterized global transition system is defined as M(n) =
〈A, Q,q0,→〉, where Q = {0, . . . , n}S , i.e., a global state is a function q : S →
{0, . . . , n}. Assuming a fixed order on S, we will also use q as a vector of natural
numbers. The initial state q0 is the state with q0(s0) = n and q0(s) = 0 for all
s 6= s0. Finally, we define the global transition relation →, separated into the
two different types of actions:
3 Processes that do not satisfy the assumptions can easily be rewritten to satisfy them,
e.g. by adding self-loops on any missing receive actions, and by renaming the actions
of duplicate sending transitions (and adding corresponding receiving transitions).

4 For presentation clarity, we do not explicitly consider an environment process in our
model. All of our results extend to the case with an explicit environment process;
see the extended version [38] for a justification.

Parameterized Verification of Systems with Global Synchr. & Guards 5

k-sender actions. A k-sender action a ∈ A with local sending transitions si
ai!!−−→

s′i for i ∈ {1, . . . , k} can be fired from a global state q if there are k processes
that can take these local transitions. Upon firing the action, each of the local
transitions on actions ai!! is taken by exactly one process, and all other processes
take a transition on action a?? to arrive in the new global state q′. Formally, we
assign to each k-sender action a ∈ A (i) a vector va ∈ Q containing the number
of expected senders for each state t ∈ S: va(t) = |{s

ai!!−−→ s′ | s = t}|, (ii) a vector
v′a containing the number of senders that will be in each state t ∈ S after the
transition: v′a(t) = |{s

ai!!−−→ s′ | s′ = t}|, and (iii) a functionMa : S×S → {0, 1},
where Ma(s, s

′) = 1 if there is a local transition s
a??−−→ s′, and Ma(s, s

′) = 0
otherwise. We also useMa as a |S|×|S|matrix, called the synchronization matrix
of action a.

Then, a transition from global state q on action a is possible if q(si) ≥ va(si)
for all i ∈ {1, . . . , k}, and the resulting global state can be computed as

q′ =Ma · (q− va) + v′a,

and we write q a−→ q′. Intuitively, q′ is obtained from q by “removing” the senders
from their local start states, moving all the remaining (receiving) processes to
their respective local destination states, and then adding the senders to their
appropriate local destination states. Note that this representation relies on the
assumption that sends are unique and receives are deterministic, which also
implies that each column of a synchronization matrix Ma is a unit vector.

Example 2. Consider the process in Fig. 1. The synchronization matrix and vec-
tors for action Smoke are shown below, with global states given in the order
〈Env, Ask, Idle, Pick, Report〉 (and abbreviated as 〈E, A, I, P, R〉).
Notice, for instance, that the first column in MSmoke encodes the local receive
transition Env Smoke??−−−−−−→ Idle. The vector-pair vSmoke and v′Smoke encode the
local send transition Ask Smoke!!−−−−−→ Pick. In particular, vSmoke indicates that
the sender starts in Ask and v′Smoke indicates that the sender moves to Pick.

E
A
I
P
R

MSmoke

E A I P R
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

E
A
I
P
R

vSmoke
0
1
0
0
0

E
A
I
P
R

v′Smoke
0
0
0
1
0

Now, consider a global state 〈3, 2, 0, 0, 0〉 with three processes in Env and two in
Ask. From this state, the transition 〈3, 2, 0, 0, 0〉 Smoke−−−−−→ 〈0, 0, 3, 2, 0〉 is enabled
(since there is at least 1 sender in Ask), where all three processes in Env act as
receivers to move to Idle (according to the synchronization matrix MSmoke),
one process in Ask acts as the sender to move to Pick, and the other process
in Ask acts as a receiver, also moving to Pick.

6 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

k-maximal actions. A k-maximal action a ∈ A with local sending transitions
si

ai!!−−→ s′i for i ∈ {1, . . . , k} can be fired from a global state q if there is at least
one process that can take one of these local transitions. Upon firing the action,
for each state si with at least one local transition si

ai!!−−→ s′i, (i) if q(si) ≥ va(si)
then each of the local transitions si

ai!!−−→ s′i is taken by exactly one process, or,
(ii) if q(si) < va(si) then a total of q(si) of the local transitions si

ai!!−−→ s′i are
taken, each by exactly one process. All other processes take a transition on the
receiving action a?? to arrive in the new global state q′. Formally, we again assign
to each action a vectors va,v′a and a synchronization matrix Ma, as above. If
q(si) ≥ va(si) for all i ∈ {1, . . . , k}, then these are used as defined above. For
cases where this does not hold, we assign to the action an additional set of
vector-pairs (ua,u′a) with different numbers of senders that actually participate,
and q′ is computed based on a vector-pair with the maximal number of senders
that is supported by q.

Example 3. The synchronization matrix and vectors for actionChoose are shown
below. Note that, ifChoose is a 2-maximal action, then the vector-pair (uChoose,
u′Choose) is used to model the case where only one sender is available to take
the sending transition.

E
A
I
P
R

MChoose

E A I P R
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1

E
A
I
P
R

uChoose
0
0
0
1
0

E
A
I
P
R

u′Choose
0
0
0
0
1

E
A
I
P
R

vChoose
0
0
0
2
0

E
A
I
P
R

v′Choose
0
0
0
0
2

Regardless of whether Choose is a 2-sender or a 2-maximal action, the global
transition 〈0, 0, 1, 4, 0〉 Choose−−−−−→ 〈0, 0, 3, 0, 2〉 is possible. In a state q = 〈0, 0, 4, 1, 0〉,
with 4 processes in Idle and 1 in Pick, the Choose action will not be enabled
if it is a 2-sender action because two sending processes are required (in Pick),
but only one sender is available. However, if Choose is a 2-maximal action, then
the global transition 〈0, 0, 4, 1, 0〉 Choose−−−−−→ 〈0, 0, 4, 0, 1〉 is possible.

Runs, Reachability Properties. A run of systemM(n) is a finite or infinite
sequence of global states q0q1 . . ., where q0 is the initial state and qi

a−→ qi+1

for all i. We say that a state q is reachable in M(n) if there is a run of M(n)
that ends in q. For a fixed m ∈ N and local state s ∈ S, let φm(s) be a property
denoting the reachability of a global state q with q(s) ≥ m. If such a state is
reachable inM(n), we writeM(n) |= φm(s).

Other Communication Primitives in the GSP Model. Note that most
of the synchronization-based communication primitives from the literature are
instances of k-sender transitions or k-maximal transitions: broadcasts [28] are

Parameterized Verification of Systems with Global Synchr. & Guards 7

simply 1-sender transitions, internal transitions are 1-sender transitions with
Ma = Id (the identity matrix), pairwise rendezvous transitions [32] are 2-sender
transitions (denoting the sender and receiver of the rendezvous transition) with
Ma = Id, asynchronous rendezvous transitions [16] are 2-maximal transitions
with Ma = Id. Negotiations [27], i.e., a synchronous transition of all processes
with no distinguished sender, can be modeled as a set of 1-sender transitions,
where every local receiving transition s a??−−→ s′ is paired with a sending transition
s
a!!−→ s′, allowing an arbitrary process to act as the sender. In addition to these,

GSPs allow us to express many other natural synchronization primitives, e.g.,
summarizing the election of (up to) k leaders in a single step.

Finally, disjunctive guards [19], i.e., guards G ⊆ S that require that there
exists a process that is in some state s ∈ G, can be modeled by adding an
auxiliary sending action aG!!, and transitions s aG!!−−→Ma(s) for every s ∈ G, i.e.,
a process in some state s ∈ G must exist to enable the transition, but apart
from that this process acts like a receiver. Note that this works without adding
a notion of guards to our model.

In what follows, we extend our model to allow conjunctive guards, i.e., guards
that require that all processes are in some subset of the local state space.

2.2 Global Synchronization with Guards

Guarded Processes. A guarded process is a tuple PGSP = 〈A,S, s0, T 〉, where
all components are as before, except that now we have T ⊆ S × A× P(S)× S,
i.e., transitions are additionally labeled with a subset of S, called a guard. A
local transition from state s to state s′ on action α with guard G will be denoted
s
α,G−−→ s′. We call a guard G non-trivial if G 6= S. Wlog, we assume that for any

global action a, all local transitions based on a have the same guard.

Guarded Systems. Let the support of a global state q be supp(q) = {s ∈ S |
q(s) > 0}, i.e., the set of local states that appear at least once in q. Then the
semantics of a global transition on action a with guard G, denoted q

a,G−−→ q′, is
as defined before, except that the transition is enabled only if supp(q) ⊆ G.
Example 4. Consider the global transitions introduced in Ex. 2, and recall that
global states are given in the order 〈Env, Ask, Idle, Pick, Report〉. While
the transition 〈0, 0, 1, 4, 0〉 Reset−−−−−→ 〈1, 0, 0, 4, 0〉 would be possible in the un-
guarded model, the guard G3 = {Report, Idle} on the Reset action dis-
ables this transition, as supp(〈0, 0, 1, 4, 0〉) = {Pick, Idle} 6⊆ G3. Similarly, from
q = 〈1, 0, 1, 2, 0〉, while a transition on action Choose is enabled for unguarded
processes, the guard G2 = {Pick, Idle} on action Choose disables this transi-
tion, since supp(〈1, 0, 1, 2, 0〉) 6⊆ G2.

3 Parameterized Verification for GSPs without Guards

In this section, instead of the parameterized system M(n), we consider an
infinite-state system M∞ that includes the behaviors of M(n) for every n: it

8 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

initializes to M(n) for arbitrary n ∈ N, and then behaves according to the se-
mantics of a GSP of that size. We are interested in reachability properties φm(s),
whereM∞ |= φm(s) is equivalent to ∃n.M(n) |= φm(s), i.e., we are considering
a parameterized reachability property over all instances ofM.

We use this slightly different model in order to make use of the notion of well-
structured transition systems (WSTS), as defined by Finkel [30]: an infinite-state
transition system that is equipped with a well-quasi-order (WQO) on its state
space and has some additional properties. Finkel and Schnoebelen [31] have
surveyed existing results on WSTSs and put them into a common framework.

We will show that, for a suitable WQO, M∞ is a WSTS, and that this
enables parameterized verification for reachability properties φm(s).

3.1 Compatibility and Effective Computability of Predecessors

For the following definitions, fix an infinite set of states Q and a transition
relation →. Moreover, let � be a WQO on Q, i.e., a reflexive and transitive
relation such that, for any infinite sequence q0,q1,q2, . . . of states from Q, there
exist indices i < j with qi � qj . In particular, � does not admit infinitely
decreasing sequences or infinite anti-chains.

Compatibility. We say that � is compatible with → if for every q,q′,p ∈ Q
with q � p and q → q′ there exists p′ ∈ Q with q′ � p′ and p →∗ p′. If
the property also holds after replacing p →∗ p′ with p → p′, then we say � is
strongly compatible with →.

Well-Structured Transition System. A transition system (Q,→) equipped
with a WQO that is compatible with → is called a well-structured transition
system (WSTS).

Upwards-Closed Sets. For a (possibly infinite) subset U ⊆ Q, the upwards
closure of U is the set ↑ U = {p ∈ Q | ∃q ∈ U : q � p}. A set U is upwards
closed if ↑ U = U . Every upwards closed set U has a finite basis: a finite set
B ⊆ U such that ↑ B = U .

Effectively Computable Predecessors. For U ⊆ Q, let Pred(U) denote the
predecessor states of U with respect to→. We say that we can effectively compute
Pred if there exists an algorithm that computes a finite basis of Pred(U) from
any finite basis of any upwards-closed U ⊆ Q.

Theorem 1 ([31]). In a WSTS with effectively computable Pred, reachability
of any upwards-closed set is decidable.

3.2 Decidability for Unguarded GSPs

We prove that any unguarded GSP is a WSTS with effectively computable Pred,
which implies that reachability properties are decidable for GSPs. To this end,
let � be the component-wise order on global state vectors q, p:

q � p iff q(s) ≤ p(s) for all s ∈ S.

Parameterized Verification of Systems with Global Synchr. & Guards 9

Note that with respect to this WQO, the set of global states q with q(s) ≥ m
is an upwards-closed set, i.e., if we can decide reachability of upwards-closed sets,
then we can decide reachability properties φm(s). Thus, decidability of checking
M∞ |= φm(s) follows from the following theorem.

Theorem 2. IfM∞ is based on an unguarded GSP process, thenM∞ equipped
with � is a WSTS and we can effectively compute Pred.

Proof. To prove thatM∞ is a WSTS, we show strong compatibility of transitions
w.r.t. �. We consider the following two cases separately: (i) k-sender transitions,
and (ii) k-maximal transitions.

(i) For k-sender transitions, let q � p and q
a−→ q′ for some k-sender action

a. Then q′ =Ma · (q−va)+v′a for some synchronization matrixMa and vectors
va,v′a associated with action a. First observe that since q � p, there is also a
transition p

a−→ p′ =Ma · (p−va)+v′a. Moreover, we have Ma ·q �Ma ·p, and
therefore Ma · (q− va) + v′a �Ma · (p− va) + v′a, i.e., q′ � p′.

(ii) For k-maximal transitions, consider again q � p and q
a−→ q′, where now a

is a k-maximal action. Then q′ =Ma ·(q−ua,q)+u′a,q for some vectors ua,q,u′a,q
with

∑
s∈S ua,q(s) =

∑
s∈S u

′
a,q(s) ≤ k. Again, first observe that since q � p, a

transition p
a−→ p′ is enabled, where p′ = Ma · (p − ua,p) + u′a,p and ua,p(s) ≥

ua,q(s), u′a,p(s) ≥ u′a,q(s) for all s ∈ S. Note that, for any s ∈ S, we can have
ua,p(s) > ua,q(s) only if q(s) − ua,q(s) ≤ 0 and p(s) > q(s). Furthermore,
ua,p(s) − ua,q(s) ≤ p(s) − q(s). Therefore, we get q − ua,q � p − ua,p, which
implies Ma · (q − ua,q) � Ma · (p − ua,p), and thus Ma · (q − ua,q) + u′a,q �
Ma · (p− ua,p) + u′a,p, i.e., q′ � p′.

Next, we prove that we can effectively compute the basis of Pred(C), where
Pred(C) is the set of states from which a transition exists to a state in an
upwards-closed set C, as follows:

(i) For a k-sender transition based on action a, any predecessor q in Pred(C)
must satisfy (i) va � q, and (ii) Ma · (q− va) + v′a = q′, for some q′ ∈ C. The
basis of Pred(C) consists of the minimal elements (w.r.t. �) that satisfy these
conditions, and thus is computable.

(ii) For k-maximal transitions, the proof works in the same way, except that
now we may have multiple possibilities of what a minimal predecessor could be,
based on different subsets of the senders being present or not. Since this is always
a finite case distinction, effective computability of Pred is still guaranteed. ut

4 Parameterized Verification for GSPs with Guards

For GSPs with guards, compatibility under � in general does not hold, since for
q � p, a transition on action a that is enabled in q may not be enabled in p.
Furthermore, note that even strong restrictions on processes are unlikely to yield
compatibility with respect to �, since whenever supp(q) ⊆ G for a non-trivial
G, one can always find a p with q � p and supp(p) * G, disabling the action.

10 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

Therefore, we introduce a refined WQO, denoted E, that is based on the
semantics of guards, as well as sufficient conditions on the guarded process P ,
such that the systemM∞ is a WSTS and we can effectively compute Pred.

Let G be the set of guards that appear on transitions in P , and recall that
supp(q) = {s ∈ S | q(s) > 0}. Then we consider the following WQO5:

q E p iff (q � p ∧ ∀G ∈ G : (supp(q) ⊆ G ⇐⇒ supp(p) ⊆ G)) .

Intuitively, a global state p is considered greater than a global state q if p
has at least as many processes as q in any given state, and for every transition
q

a−→ q′ that is enabled in q, a transition on action a is also enabled in p.
We will see that compatibility with respect to E can only be ensured under

additional conditions, as formalized in the following.

4.1 Guard-Compatibility and Well-Behaved Processes

Strong Guard-Compatibility for k-Sender Actions. For a k-sender action
a with local sending transitions si

ai!!,G−−−−→ s′i for i ∈ {1, . . . , k}, let ŝ be the set of
all states si, ŝ′ the set of states s′i, and Ma the synchronization matrix. We say
that action a is strongly guard-compatible if the following holds for all G′ ∈ G:

ŝ′ ⊆ G′ ⇒ ∀s ∈ G: Ma(s) ∈ G′ (C1)

Intuitively, if all senders move into a guard G′, then also all receivers need
to move into G′. This ensures that if G′ is satisfied after the transition in a
system of a given size, then it is satisfied after that transition in a system of any
bigger size, because any additional receivers must also move into G′. Note that
Condition (C1) always holds for trivial guards.

Strong Guard-Compatibility for k-Maximal Actions. For a k-maximal
action a, the idea of the condition is the same as before, but it must be extended
to allow different subsets of the potential senders to act as actual senders in a
given transition with action a. A simple approximation is that all senders must
agree, for every G ∈ G, on whether they enter G or not.

In the following, we formalize a notion that takes into account that transitions
that only use a subset of the potential senders are only possible from certain
global states, and that global states with different sets of actual senders may be
incomparable with respect to E, and therefore unproblematic for compatibility.

We write t / s if, for all guards G ∈ G, s ∈ G ⇒ t ∈ G. Similarly, we write
t / H for a set of states H if, for all guards G ∈ G, H ⊆ G⇒ t ∈ G.
5 We show that E is a WQO by proving that every infinite sequence of global states
q1,q2, . . . contains qi,qj with i < j and qi E qj . To this end, consider an arbitrary
infinite sequence q = q1,q2, Then there is at least one set S of local states such
that infinitely many qi have supp(qi) = S. Let q′ be the infinite subsequence of q
where all elements have supp(q′

i) = S. Since � is a WQO, there exist q′
i,q

′
j with

i < j and q′
i � q′

j , and since supp(q′
i) = supp(q′

j) = S, we also get q′
i E q′

j . Since
q′
i = qk and q′

j = ql for some k < l, we get qk E ql for k < l, and thus E is a WQO.

Parameterized Verification of Systems with Global Synchr. & Guards 11

Consider a k-maximal action a with local transitions si
ai!!,G−−−−→ s′i for i ∈

{1, . . . , k} and synchronization matrix Ma. Let R = G \ {s1, . . . , sk} and let G′
be the set of all guards GR ∈ G such that R ⊆ GR.

Then we say the action a is strongly guard-compatible if both of the following
hold for all G′ ∈ G: ∨

1≤i≤k

s′i ∈ G′
⇒ (∀s ∈ R :Ma(s) ∈ G′) (C2.1)

∧
i,j∈{1,...,k}

(
(si / sj ∧ s′j ∈ G′)⇒ (s′i ∈ G′ ∧Ma(si) ∈ G′)

)
(C2.2)

Intuitively, if one potential sender moves from a state sj into a guard G′, then
every receiver from R must do the same, so that G′ will be satisfied regardless
of the number of receivers. This is also required for other senders and receivers
from a state si /∈ R, unless there exists a guard that is satisfied if sj is occupied,
but not if si is occupied, since that means that a global state where only sj is
occupied is incomparable (w.r.t. E) to a state where also si is occupied, and
therefore we do not care about compatibility of the transitions.

Note that for k = 1, the first condition (C2.1) instantiates to condition (C1)
and the second condition (C2.2) is an empty conjunction, i.e., vacuously satisfied.
This is to be expected, since semantically there is no difference between a 1-
sender action and a 1-maximal action.

Example 5. We can see that actions Smoke, Choose, and Reset from our
motivating example in Fig. 1 are strongly guard-compatible:
– Smoke is a 1-sender action with sending transition Ask

Smoke!!,{Env, Ask}−−−−−−−−−−−−−→
Pick. The state Pick is only included in one non-trivial guard G2 = {Pick,
Idle}. Since receiving transitions from {Env, Ask} end in {Pick, Idle} ⊆
G2, condition (C1) holds, so Smoke is strongly guard-compatible.

– ConsiderChoose with sending transitions Pick
Choosei!!,{Pick,Idle}−−−−−−−−−−−−−−→ Report

for i ∈ {1, 2} as a 2-sender action. Report is only included in one non-trivial
guard G3 = {Report, Idle}. Since the receiving transition from {Pick} ends
in Idle ∈ G3 as well, (C1) holds, so Choose is strongly guard-compatible.

– Consider Choose as a 2-maximal action. Again, Report is only included in
one non-trivial guard G3 = {Report, Idle}. Since all senders and receivers
start from Pick and end up in a state in G3, conditions (C2.1) and (C2.2)
hold and Choose is, again, strongly guard-compatible.

– Reset is a negotiation action. Recall that negotiations are modeled as a
set of 1-sender actions, allowing for an arbitrary sender. Therefore, each of
these broadcasts must satisfy (C1) for the negotiation to be guard-compatible.
Reset is indeed strongly guard-compatible because all of its sending and re-
ceiving transitions end in Env, meaning that when the action fires, all pro-
cesses will move into a single state, ensuring that all guards will be uniformly
enabled or disabled, regardless of the number of processes, which of them is
the sender, or whether they begin in Report or Idle.

12 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

– Finally, as stated in Sec. 2.1, the internal transition Env G1−−→ Ask can be mod-
eled by a 1-sender action, say a, with a send transition Env

a!!,G1−−−−→ Ask and
self-loop receive transitions on all states. The sender ends up in one non-trivial
guard G1 = {Env,Ask}. Since receiving transitions from {Env, Ask} end in
{Env, Ask} ⊆ G1, condition (C1) holds, so a is strongly guard-compatible.

Refinement: Weak Guard-Compatibility. To support a larger class of sys-
tems, we show how one can relax the previous conditions, at the cost of making
them more complex. The idea is that, instead of requiring that if the sender
ends up in a guard then the receivers immediately end up in that guard after
the transition, it is enough if the receivers have a path to a state in that guard.
To avoid unnecessary complexity, we only consider paths of internal transitions.

If there exists a path of unguarded internal transitions from s to s′, we write
s s′. Then, condition (C1) can be relaxed to

ŝ′ ⊆ G′ ⇒ ∀s ∈ G: (Ma(s) ∈ G′ ∨ ∃s′ ∈ S : (s′ / ŝ′ ∧Ma(s) s′)) . (C1w)

Actions that satisfy condition (C1w) are called weakly guard-compatible.

Remark. In a similar way, we can relax conditions (C2.1) and (C2.2). Further-
more, the path of internal transitions can be guarded, as long as the guards
are sufficiently general to guarantee that these transitions can be taken. We refer
the interested reader to the extended version [38] for more details.

Well-Behavedness. Based on guard-compatibility, we can now define the class
of processes that will allow us to retain decidability of reachability properties in
the parameterized system: We say that a process P is well-behaved if every
action is (weakly) guard-compatible.

Note that unguarded processes are trivially well-behaved.

Example 6. Observing that all actions in the process depicted in Fig. 1 are
(strongly) guard-compatible, it is clear that the process is well-behaved.

Well-Behaved Systems in the Literature. We want to point out that many
systems studied in the literature are naturally well-behaved.

For example, Emerson and Kahlon [20] introduce a model for cache coherence
protocols that is based on broadcast communication and guards. They show that
many textbook protocols can be modeled under the following restrictions: (i)
every state is assumed to have an unguarded internal transition to the initial
state Init, and (ii) the only conjunctive guard is {Init}. Clearly, every action
in a process that satisfies these conditions will also satisfy condition (C1w), and
therefore well-behaved systems subsume and significantly generalize the types of
protocols considered by Emerson and Kahlon.

Moreover, there has recently been much research on the verification of round-
based distributed systems [34,14,37], where processes can move independently
to some extent, with the restriction that transitions between rounds can only
be done synchronously for all processes. When abstracting from certain features

Parameterized Verification of Systems with Global Synchr. & Guards 13

(e.g. fault-tolerance and process IDs), our model is well-suited to express such
systems: guards can be used to restrict transitions to happen only in a certain
round, and can furthermore model the “border” of a round that needs to be
reached by all processes, such that they can jointly move to the next round.

Our example from Fig. 1 can also be seen as a round-based system: the first
round includes states Env, Ask, and upon taking the transition on Smoke, all
processes move to the second round, which includes states Pick, Idle. From
there, on action Choose the system moves to the third round, which includes
states Report, Idle, and on actionReset back to the first round. Note that the
states in different rounds are exactly the guards that are used in the transitions—
or seen the other way around, guards induce a set of rounds on the local state
space, and the guard-compatibility conditions ensure that processes move be-
tween these rounds in a systematic way.

While the rounds are very simple in this example, the technique is much
more general and can be used to express many round-based systems, including
those described in Sec. 6.

4.2 Decidability for Well-Behaved Guarded Processes

Based on the notion of well-behavedness, we can now obtain a decidability result
that works in the presence of guards. The following theorem implies that param-
eterized verification for properties φm(s) is decidable for well-behaved processes.

Theorem 3. If M∞ is based on a well-behaved GSP process, then M∞ is a
WSTS and we can effectively compute Pred.

Proof. To prove thatM∞ is a WSTS, we show compatibility of transitions w.r.t.
E, i.e., if q E p and q → q′, then ∃p′ with q′ E p′ and p →∗ p′. We consider
two cases: (i) k-sender transitions, and (ii) k-maximal transitions.

(i) Suppose a is a k-sender action. Let q
a,G−−→ q′ be a transition and q E

p. Since q E p implies that supp(p) ⊆ G, we know that transition p
a,G−−→

p′ is possible, and by the proof of Thm. 2 we know that q′ � p′. To prove
compatibility with respect to E, it remains to show that ∀G′ ∈ G : (supp(q′) ⊆
G′ ⇒ supp(p′) ⊆ G′).

First assume that condition (C1) holds. Then, let G′ ∈ G be an arbitrary
guard. By (C1), we either have ŝ 6⊆ G′, in which case the desired condition is
satisfied for G′, or we have that ∀s ∈ G: Ma(s) ∈ G′, i.e., all potential receivers
move into G′. Thus, we get supp(q′) ⊆ G′ iff supp(p′) ⊆ G′, satisfying the desired
condition.

If instead of (C1) the action satisfies (C1w), the argument is the same, except
that if necessary we use the internal transitions that are guaranteed to exist by
the condition to arrive in a state p′ with q′ � p′.

(ii) Suppose a is a k-maximal action with local transitions si
ai!!,G−−−−→ s′i for

i ∈ {1, . . . , k} and synchronization matrix Ma. By the proof of Thm. 2 we know
that there exists a transition p

a,G−−→ p′ with q′ � p′, and it remains to show
that ∀G′ ∈ G : (supp(q′) ⊆ G′ ⇐⇒ supp(p′) ⊆ G′).

14 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

Let G′ ∈ G be an arbitrary guard, and assume the action is strongly guard-
compatible. By condition (C2.1) we know that if there is a single local sending
transition with s′i ∈ G′, then all receivers will move into G′. So first suppose
there is no such local transition: then G′ cannot be satisfied in q′ (since at least
one sender must be present), and the desired property holds. Inversely, suppose
there is such a local transition: then all processes that start in R will be mapped
into G′, so G′ will be satisfied iff all remaining processes are mapped into G′.
Now, suppose that all local transitions taken in q

a,G−−→ q′ are such that s′i ∈ G′
(for otherwise q′ does not satisfy G′). Since q � p, there exists a transition
p

a,G−−→ p′ such that the set of local transitions that are fired in q
a,G−−→ q′ is a

subset of the local transitions that are fired in p
a,G−−→ p′. If all sending transitions

taken in p
a,G−−→ p′ are also such that s′i ∈ G′, then by conditions (C2.1) and

(C2.2) the same will hold for all receiving transitions from p, and therefore,
supp(p′) ⊆ G′. Thus, suppose there is a local transition si

ai!!,G−−−−→ s′i that is taken

in p
a,G−−→ p′, but not in q

a,G−−→ q′, and s′i /∈ G′. Let sj
aj !!,G−−−−→ s′j be an arbitrary

local transition that is taken in q
a,G−−→ q′. Then by condition (C2.2), either there

must be a guard G′′ ∈ G′ with si /∈ G′′ ∧ sj ∈ G′′, contradicting the assumption
that q E p, or we have s′j ∈ G′ ⇒ s′i ∈ G′ ∧Ma(si) ∈ G′, contradicting the
assumption that s′i /∈ G′.

Again, if the action is weakly guard-compatible, the argument can be ex-
tended by using the paths of internal transitions, if necessary.

Effective computability of Pred follows from the proof of Thm. 2—the only
difference is that we must consider the guards, i.e., a predecessor is only valid if
it additionally satisfies the guard of the transition under consideration. ut

5 Cutoffs for GSPs

We investigate cutoff results for GSPs and their connection to the decidability
results in Thm. 2 and 3. While the proofs of these theorems yield a decision
procedure for parameterized verification, a cutoff result is more versatile as it
reduces parameterized verification to a problem over a fixed number of processes,
and under certain conditions can also be used for parameterized synthesis [39].

5.1 Definition and Basic Observations

A cutoff for a class of processes Π and a class of properties Φ is a number c ∈ N
such that for every P ∈ Π and φ ∈ Φ,

M∞ |= φ⇔M(c) |= φ

We show how to obtain cutoffs for well-behaved GSPs that satisfy additional
conditions, and for reachability properties of the form φm(s), based on observa-
tions from the proof of Thm. 2. While for any given parametrized system and any

Parameterized Verification of Systems with Global Synchr. & Guards 15

s0

s⊥

s6 s8 s3

sE

s7

s4s5

s1 s2

b!!

i!!

i??
a?? a??

a??

a??

a??

b??

a??

a??

a??

Fig. 2: Example witnessing quadratic cutoff. Not depicted are additional sending
transitions on a!! from every state in the outer cycle to s⊥.

safety property a cutoff exists [45], a general cutoff, even if it can be computed,
may be too large to be of practical value: it has been shown that for broadcast
protocols the time complexity of checking reachability is non-primitive recursive
in the size of the processes [51], and from the proof one can conclude that the
same must hold for the size of cutoffs.

Example: Quadratic Cutoffs. Consider the (unguarded) process in Fig. 2.
We are interested in a lower bound on the cutoff for this process, with respect
to φ1(sE), i.e., reachability of sE by at least one process. Note that to reach
sE , we need at least one process in s8 and one in s5 at the same time. From
the initial state s0, the only possible action is i, sending one process to s6 in
the inner cycle and all other processes to s1 in the outer cycle. Then, the only
way to make progress is action a, moving the process in the inner cycle to s7,
the sending process from s1 to s⊥ (sending transitions on a!! are not depicted
in Fig. 2), and all other processes to s2. After three further transitions on a,
the outer processes are in s5, where the sending transition on b!! could be fired,
but the process in the inner cycle is in s7, so additional transitions on a are
required. Only after two additional rounds around the outer cycle we arrive in a
state where both s5 and s8 are occupied, and we can take the final transition on
b that takes one process into sE . To arrive there, we took 16 transitions (one on
i, 14 on a, and one on b), and by construction every process can only take one
sending transition in a run. Thus, we need a system with at least 16 processes to
have one of them reach sE , and no smaller number can be a cutoff for φ1(sE).

To see that cutoffs grow at least quadratically, note that in similar examples
where the inner and outer cycles consist of p1 and p2 states, respectively, and p1
and p2 are relatively prime, then we need p1 · p2 + 1 processes to reach sE .

5.2 Conditions for Small Cutoffs

We introduce sufficient conditions on processes that allow us to obtain small
cutoffs. These conditions are inspired by our intended applications (see Sec. 6),

16 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

and based on insights from the decision procedure in the proof of Thm. 2 and the
example above. We observe that any q ∈ Pred(C) that reaches a state q′ ∈ C
through a k-sender action a must satisfy (i) va � q, and (ii)Ma ·(q−va)+v′a =
q′. Thus, if there is q′ ∈ C such that ¬(va � q), we need to consider a predecessor
q with |q| > |q′|. It is easy to see that this can only happen if q′ contains
processes in states that can be reached through a only through either a receiving
transition, or a sending transition if k > 1. Thus, we want to avoid that states
we are interested in are only reachable through such transitions.

We restrict our attention to specifications φm(s) and to cases where we can
identify conditions on a GSP process P such that the cutoff for such specifications
is c = m. If this is the case, then we say that reachability of s is synchronization-
independent in P , and that the pair 〈P, φm(s)〉 is cutoff-amenable.

We begin with a simple case, where systems are restricted to only internal
transitions and negotiations (we defined in Section 2.1 how these are expressed
in terms of 1-sender transitions).

Lemma 1. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process such that
all transitions are internal transitions or negotiations. Then reachability of s is
synchronization-independent in P for every s ∈ S.

Proof. To see this, first consider a system with n > m processes, where eventually
m of them reach s. We can simulate this run in a system with m processes by
simply keeping the m processes that reach s, and removing all others. Similarly,
if all processes in a system of sizem eventually reach s, then we can simulate this
run in a bigger system by adding processes that “follow” the internal transitions
of the other processes such that always the same guards as in the original run
will be satisfied. Well-behavedness ensures that this is always possible. ut

While we are in general not interested in systems that only communicate
through internal transitions and negotiations, we can refine this observation
based on the states we are interested in, and allow other types of communication.

To this end, define a transition of a process P to be free if it is (i) an internal
transition, (ii) a sending transition of either a broadcast (i.e., a 1-sender action)
or a k-maximal action, or (iii) a receiving transition s a??,G−−−−→ s′ of a broadcast
with matching sending transition s a!!,G−−−→ s′. Note that the latter includes nego-
tiation transitions. A path from one state to another is free if all transitions on
the path are free. The idea is that free transitions and paths are only restricted
by guards (i.e., the absence of processes in certain states), but not by the exis-
tence of other processes in certain states (as, e.g., a 2-sender transition would
be, since a sender depends on the presence of another sender to be able to fire
the global transition and move along its own local transition).

Lemma 2. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process, and s ∈
S such that all paths from s0 to s in P are free. Then reachability of s is
synchronization-independent in P .

Parameterized Verification of Systems with Global Synchr. & Guards 17

Proof. The argument follows the same line as the one above for protocols with
only internal transitions and negotiations, since the same transitions for existing
processes are also possible if we can ensure that the same guards can be satisfied
in the bigger system. Well-behavedness ensures that there is a run in the bigger
system where the same guards are satisfied. ut

We require that all paths be free, since existence of a free path is not sufficient
in general: if m > 1, then the first process that moves along that free path
may force other processes to leave it (e.g., by taking a sending transition of a
broadcast). However, this condition is still slightly restrictive, and can be relaxed.

Define a simple path as a path with no repeated states. We show that under
additional conditions, it is enough to consider restrictions that are based on
paths that are simple and free:

Lemma 3. Let P = 〈A,S, s0, T 〉 be a well-behaved GSP process, s ∈ S, and
let F be the set of simple free paths from s0 to s. If for each send transition:
1. the transition does not appear in paths in F and the corresponding receiving

transitions ss
a??,Ga−−−−→ sd with ss ∈ p for some p ∈ F have sd = ss, or,

2. the transition appears in paths in F and the following holds for every corre-
sponding receive transition ss

a??,Ga−−−−→ sd where ss ∈ p for some p ∈ F and
sd /∈ p for any p ∈ F : either (a) there exists an internal transition ss −→ s′d
with s′d ∈ p for some p ∈ F , or (b) all paths out of sd lead back to a state sf
in a path in F and are free between sd and sf .

then reachability of s is synchronization-independent in P .

Proof. First consider a run of a system that satisfies the above conditions, and
has n > m processes, where eventually m of them reach s. We can simulate
this run in a system with m processes by keeping the m processes that reach s,
and removing all others. Note that the sending transitions are on the same free
simple path from which processes can diverge using the corresponding receiving
or sending transitions, or they do not affect them at all. Hence, at least one of
the senders is guaranteed to reach s. All other senders and receivers may diverge
from a simple free path but are guaranteed a free path back to a state along a
free path and hence, can reach s freely.

Now assume that all processes in a system of size m eventually reach s, then
we can simulate this run in a bigger system by adding processes (that behave in
the same way as an existing process). Note that, since any transition diverging
from a free simple path can only be triggered by a sending transition on that
same free path, it is impossible to add a sender that can make processes diverge
and then not reach s after. ut

Example 7. In this example we show how Lem. 3 applies to the example in Fig. 1.
Here s0 is the Env state, s is the Report state, and the value of m is 3 (since
the safety specification is: no more than 2 detectors can report the fire).

The set of simple free paths F is:
– Env −→ Ask Smoke!!−−−−−→ Pick Choosei!!−−−−−−→ Report for i ∈ {1, 2}, and

18 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

– Env −→ Ask Smoke??−−−−−−→ Pick Choosei!!−−−−−−→ Report for i ∈ {1, 2}.
It is clear that all the sending transitions Smoke!!,Choose1!!,Choose2!!

appear only in F . Furthermore, the corresponding broadcast-receive transitions
satisfy the required conditions as follows:
– the transition Env Smoke??−−−−−−→ Idle satisfies condition (2a) because the internal

transition Env −→ Ask exists in a path in F .
– the transition Pick Choose??−−−−−−→ Idle satisfies condition (2b) since all paths out
of Idle are free (namely, the negotiation transition Idle Reset−−−−→ Env) and
lead back to a path in F .
Since Lem. 3 holds, the reachability of s is synchronization-independent and

the cutoff is 3.

Checking the Cutoff Conditions. Note that while the conditions in Lem. 3
seem complex, all our cutoff conditions can be checked on the process definition
in polynomial time, making them well-suited for fully automatic verification.

6 Applications and Evaluation

To evaluate our approach, we consider several distributed applications that use
agreement protocols like consensus or leader election, and that can be modeled
as well-behaved systems that satisfy one of our cutoff lemmas:
– Chubby [11]: A distributed lock service for coarse-grained synchronization with
an elected leader node that handles client messages.

– Distributed Smoke Detector (SD): A sensor network application that elects a
subset of processes, who have detected smoke, to report to the authorities.

– Smoke Detector with Reset (SDR): A variant of SD that uses a “reset” signal to
resume monitoring for smoke, thereby requiring infinite rounds of agreement.
(this was our motivating example in Fig. 1)

– Distributed Mobile Robotics (DMR): Based on an existing benchmark [18],
where a set of robots successively coordinate to create a motion plan.

– Distributed Key-Value Store (KVS) modeling a key-value store á la Redis [48].
– Small Aircraft Transportation System (SATS): The landing protocol of SATS
proposed by NASA [53]. SATS aims to increase access to small airports with-
out control towers by allowing aircrafts to coordinate with each other to op-
erate safely upon entering the airport airspace.

– SATS++: A variant of the SATS protocol where all processes communicate
explicitly to determine subsets of aircrafts to coordinate the landing with.

In addition, we provide an experimental evaluation, based on related work [37]
in which a new model—the Choose model—that can be seen as a refinement of
GSP, is proposed. The Choose model extends a standard model of distributed
systems [2,3] with a primitive that abstracts various types of distributed agree-
ment protocols. The work further defines a mapping from the Choose model to
GSP that establishes a simulation equivalence between the two models, enabling
interchange of safety verification and cutoff results between the two models.

Parameterized Verification of Systems with Global Synchr. & Guards 19

Benchmark States Cutoff Verification
Time(s)

Chubby 9 2 0.12
SD 5 3 0.28
SDR 5 3 0.13
DMR 8 3 0.16
KVS 18 3 3.06
SATS 24 5 3.83
SATS++ 26 5 17.1

Table 1: Performance of parameterized verification based on our cutoffs.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 0 2 4 6 8 10

V
e
ri
fi
ca

ti
o
n
 T

im
e
 (

S
)

(l
o
g
 s

ca
le

)

of Processes

Chubby
SD

SDR
DMR
KVS

SATS
SATS++

Fig. 3: Verification time as a func-
tion of the number of processes.

To make use of the ease of encod-
ing the above benchmarks in the Choose
model and the ease of verification in the
Choose model using off-the-shelf model
checkers, we illustrate the effect of our
cutoff results on efficiency of verification
in the Choose model. For the bench-
marks given above, Fig. 3 depicts the ver-
ification time as a function of the num-
ber of processes. Observe that verification
time grows roughly exponentially with the
number of processes. Moreover, verifica-
tion for all the benchmarks timed out be-
yond 9 processes, for a timeout of 30 min-
utes. In contrast, in Tab. 1 all benchmarks
have a cutoff of less than 6, and reasonable verification times.

7 Related Work

Bodies of work that aim at automatically solving the parameterized verification
problem (which is undecidable in the most general case [54,23]) take a large
variety of different approaches [35,10,47,13,33,1,41,43,56], in most cases without
a focus on decidability. In the following we consider the approaches that target
decidability, with models closely related to our GSP model.

Models with Broadcasts and/or Global Guards. We want to enable rea-
soning about distributed systems, abstracting complex building blocks like agree-
ment protocols by primitives that satisfy assume-guarantee specifications. To
support parameterized reasoning for systems with such abstractions, one needs
a model with (i) conjunctive guards to model the assumptions, and (ii) forms
of synchronization that are sufficiently general to model the guarantees of those
building blocks, i.e., generalizations of broadcast communication.

20 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

Esparza et al.[28] present a decidability result for safety properties of broad-
cast protocols, but without global guards. Their result is also based on a reduc-
tion to WSTSs, but we showed that the WQO presented in their work (corre-
sponding to the WQO � in Sec. 3.2) is not suitable for systems with guards. We
note that our GSP model subsumes the model of Esparza et al., and that our
cutoff results also apply to their model (which had no previous cutoff results).

Other existing models either are not sufficiently general [19,20,22], or support
a combination of broadcasts and conjunctive guards without restrictions [21],
which makes safety undecidable. This highlights the significance of our result:
we manage to find a model with conjunctive guards and global synchronization
such that safety remains decidable.

Other Decidable Classes. One way to obtain decidability is to restrict the
generality of the parameterized verification problem in various ways. Most re-
sults in this direction consider a fully connected network (a clique), either with
rendezvous communication [32,5], local updates with global guards [19,6], or vari-
ants of these [16]. Some communication primitives have also been considered in
more complex networks, for example token passing [24,12,4], or broadcasts [17].
Decidability results for systems that are composed of identical components have
recently been surveyed by Bloem et al. [9] as well as Espazra et al. [26]. Sev-
eral bodies of work attempt to identify cutoff bounds for different classes of
distributed systems. For example, cutoffs have been obtained for cache coher-
ence protocols [20], guarded protocols [40,21,19], consensus protocols [44], and
self-stabilizing systems [8]. None of these approaches are sufficiently general to
tackle the types of distributed applications we address.

Petri Nets and Vector Addition Systems. Also closely related to the param-
eterized verification problems we consider is the body of work on Petri nets and
vector addition systems, surveyed e.g. by Esparza and Nielsen [29] or Reisig [49].
While some types of communication can faithfully be expressed in these systems,
global synchronization in general cannot.

8 Conclusion

We introduced global synchronization protocols (GSP), a system model that gen-
eralizes many existing models supporting global synchronization such as broad-
cast synchronization, pairwise rendezvous, and asynchronous rendezvous. We
identified sufficient conditions, summarized under our notion of well-behavedness,
that ensure decidability of the parameterized verification problem even in the
presence of global (conjunctive) transition guards. Finally, we investigated cutoffs
for parameterized verification, and identified sufficient conditions under which
small cutoffs exist.

In ongoing work, we are focusing on extensions of our cutoff results as well as a
dedicated implementation of our decision procedure. In the near future, we plan
to investigate sufficient conditions that enable support for the parameterized
verification of liveness properties for GSPs, and intend to develop a domain-
specific language for writing GSPs that are well-behaved by construction.

Parameterized Verification of Systems with Global Synchr. & Guards 21

References

1. Abdulla, P., Haziza, F., Holik, L.: Parameterized Verification Through View Ab-
straction. International Journal on Software Tools for Technology Transfer 18(5),
495–516 (2016)

2. Alur, R., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Automatic Com-
pletion of Distributed Protocols with Symmetry. In: International Conference on
Computer Aided Verification. pp. 395–412. Springer (2015)

3. Alur, R., Tripakis, S.: Automatic Synthesis of Distributed Protocols. SIGACT
News 48(1), 55–90 (Mar 2017)

4. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: VMCAI. Lecture Notes in Computer Science, vol. 8318,
pp. 262–281. Springer (2014)

5. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. Distributed Computing 31(3), 187–222 (2018)

6. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight Cutoffs for Guarded Protocols
with Fairness. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification, Model Check-
ing, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.
Petersburg, FL, USA, January 17-19, 2016. Proceedings. Lecture Notes in Com-
puter Science, vol. 9583, pp. 476–494. Springer (2016)

7. Berkovits, I., Lazic, M., Losa, G., Padon, O., Shoham, S.: Verification of Threshold-
Based Distributed Algorithms by Decomposition to Decidable Logics. In: Interna-
tional Conference on Computer Aided Verification (2019)

8. Bloem, R., Braud-Santoni, N., Jacobs, S.: Synthesis of Self-stabilising and
Byzantine-resilient Distributed Systems. In: International Conference on Computer
Aided Verification. pp. 157–176. Springer (2016)

9. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers (2015)

10. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
CAV. Lecture Notes in Computer Science, vol. 1855, pp. 403–418. Springer (2000)

11. Burrows, M.: The Chubby Lock Service for Loosely-coupled Distributed Systems.
In: Proceedings of the 7th symposium on Operating systems design and implemen-
tation. pp. 335–350. USENIX Association (2006)

12. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR. Lecture Notes in Computer
Science, vol. 3170, pp. 276–291. Springer (2004)

13. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized
verification. In: VMCAI. Lecture Notes in Computer Science, vol. 3855, pp. 126–
141. Springer (2006)

14. Damian, A., Dragoi, C., Militaru, A., Widder, J.: Communication-closed Asyn-
chronous Protocols. In: International Conference on Computer Aided Verification
(2019)

15. Damm, W., Finkbeiner, B.: Automatic Compositional Synthesis of Distributed
Systems. In: International Symposium on Formal Methods. pp. 179–193. Springer
(2014)

16. Delzanno, G., Raskin, J., Begin, L.V.: Towards the Automated Verification of
Multithreaded Java Programs. In: TACAS. Lecture Notes in Computer Science,
vol. 2280, pp. 173–187. Springer (2002)

22 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

17. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the Complexity of Pa-
rameterized Reachability in Reconfigurable Broadcast Networks. In: D’Souza, D.,
Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2012, Decem-
ber 15-17, 2012, Hyderabad, India. LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2012)

18. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: A Framework
for Safe Distributed Mobile Robotics. In: Proceedings of the 8th International
Conference on Cyber-Physical Systems. pp. 239–248. ICCPS ’17, ACM (2017)

19. Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few.
In: McAllester, D.A. (ed.) CADE. Lecture Notes in Computer Science, vol. 1831,
pp. 236–254. Springer (2000)

20. Emerson, E.A., Kahlon, V.: Exact and Efficient Verification of Parameterized
Cache CoherenceProtocols. In: CHARME. Lecture Notes in Computer Science,
vol. 2860, pp. 247–262. Springer (2003)

21. Emerson, E.A., Kahlon, V.: Model Checking Guarded Protocols. In: 18th IEEE
Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa,
Canada, Proceedings. pp. 361–370. IEEE Computer Society (2003)

22. Emerson, E.A., Kahlon, V.: Rapid Parameterized Model Checking of Snoopy Cache
Coherence Protocols. In: TACAS. Lecture Notes in Computer Science, vol. 2619,
pp. 144–159. Springer (2003)

23. Emerson, E.A., Namjoshi, K.S.: Reasoning About Rings. In: Proceedings of the
22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 85–94. POPL ’95, ACM (1995)

24. Emerson, E.A., Namjoshi, K.S.: On Reasoning About Rings. Int. J. Found. Com-
put. Sci. 14(4), 527–550 (2003)

25. Emerson, E.A., Trefler, R.J.: From Asymmetry to Full Symmetry: New Techniques
for Symmetry Reduction in Model Checking. In: Pierre, L., Kropf, T. (eds.) Cor-
rect Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced
Research Working Conference, CHARME ’99, Bad Herrenalb, Germany, Septem-
ber 27-29, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1703, pp.
142–156. Springer (1999)

26. Esparza, J.: Parameterized Verification of Crowds of Anonymous Processes. In:
Esparza, J., Grumberg, O., Sickert, S. (eds.) Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series - D: Information and Com-
munication Security, vol. 45, pp. 59–71. IOS Press (2016)

27. Esparza, J., Desel, J.: On Negotiation As Concurrency Primitive. In: D’Argenio,
P.R., Melgratti, H.C. (eds.) CONCUR. Lecture Notes in Computer Science,
vol. 8052, pp. 440–454. Springer (2013)

28. Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols. In:
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July
2-5, 1999. pp. 352–359. IEEE Computer Society (1999)

29. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52, 244–262 (1994)

30. Finkel, A.: A Generalization of the Procedure of Karp and Miller to Well Structured
Transition Systems. In: ICALP. Lecture Notes in Computer Science, vol. 267, pp.
499–508. Springer (1987)

31. Finkel, A., Schnoebelen, P.: Well-structured Transition Systems Everywhere!
Theor. Comput. Sci. 256(1-2), 63–92 (2001)

32. German, S.M., Sistla, A.P.: Reasoning About Systems with Many Processes. J.
ACM 39(3), 675–735 (1992)

Parameterized Verification of Systems with Global Synchr. & Guards 23

33. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Logical Methods in Computer Science
6(4) (2010)

34. v. Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend Syn-
chrony: Synchronous Verification of Asynchronous Distributed Programs. Proc.
ACM Program. Lang. 3(POPL), 59:1–59:30 (2019)

35. Gurfinkel, A., Shoham, S., Meshman, Y.: Smt-based verification of parameterized
systems. In: SIGSOFT FSE. pp. 338–348. ACM (2016)

36. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving Practical Distributed Systems Correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles. pp. 1–17.
SOSP ’15, ACM (2015)

37. Jaber, N., Jacobs, S., Wagner, C., Kulkarni, M., Samanta, R.: Parameterized Rea-
soning for Distributed Systems with Consensus. arXiv arXiv:2004.04613 (2020)

38. Jaber, N., Jacobs, S., Wagner, C., Kulkarni, M., Samanta, R.: Parameterized Ver-
ification of Systems with Global Synchronization and Guards (Extended Version).
arXiv arXiv:2004.04896 (2020)

39. Jacobs, S., Bloem, R.: Parameterized Synthesis. Logical Methods in Computer
Science 10(1) (2014)

40. Jacobs, S., Sakr, M.: Analyzing Guarded Protocols: Better Cutoffs, More Systems,
More Expressivity. In: International Conference on Verification, Model Checking,
and Abstract Interpretation. pp. 247–268. Springer (2018)

41. Kaiser, A., Kroening, D., Wahl, T.: Dynamic Cutoff Detection in Parameterized
Concurrent Programs. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6174, pp.
645–659. Springer (2010)

42. Konnov, I., Lazić, M., Veith, H., Widder, J.: A Short Counterexample Property
for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms. ACM
SIGPLAN Notices 52(1), 719–734 (2017)

43. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. Inf.
Comput. 117(1), 1–11 (1995)

44. Marić, O., Sprenger, C., Basin, D.: Cutoff Bounds for Consensus Algorithms. In:
International Conference on Computer Aided Verification. pp. 217–237. Springer
(2017)

45. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: VMCAI. Lecture Notes in Computer Science, vol. 4349, pp. 299–313.
Springer (2007)

46. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety Verifi-
cation by Interactive Generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 614–630.
PLDI ’16, ACM (2016)

47. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic Deductive Verification with Invisible
Invariants. In: Margaria, T., Yi, W. (eds.) TACAS. Lecture Notes in Computer
Science, vol. 2031, pp. 82–97. Springer (2001)

48. Redis, https://redis.io/
49. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,

Case Studies. Springer (2013). https://doi.org/10.1007/978-3-642-33278-4, https:
//doi.org/10.1007/978-3-642-33278-4

https://redis.io/
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4

24 N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta

50. Scalas, A., Yoshida, N., Benussi, E.: Verifying Message-passing Programs with De-
pendent Behavioural Types. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 502–516. PLDI
2019, ACM (2019)

51. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: CON-
CUR. Lecture Notes in Computer Science, vol. 8052, pp. 5–24. Springer (2013).
https://doi.org/10.1007/978-3-642-40184-8_2

52. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and Proving with Distributed
Protocols. Proc. ACM Program. Lang. 2(POPL), 28:1–28:30 (Dec 2017)

53. NASA - Small Aircraft Transportation System, https://www.nasa.gov/centers/
langley/news/factsheets/SATS.html

54. Suzuki, I.: Proving Properties of a Ring of Finite-state Machines. Inf. Process.
Lett. 28(4), 213–214 (Jul 1988)

55. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: A Framework for Implementing and Formally Verifying Distributed
Systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 357–368. PLDI ’15, ACM (2015)

56. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Automatic Verification Methods for Finite State Systems.
Lecture Notes in Computer Science, vol. 407, pp. 68–80. Springer (1989)

https://doi.org/10.1007/978-3-642-40184-8_2
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html

	Parameterized Verification of Systems with Global Synchronization and Guards

