
Cost-Aware Automatic Program Repair

Roopsha Samanta1?, Oswaldo Olivo2, and E. Allen Emerson2

1 The University of Texas at Austin and IST Austria
rsamanta@ist.ac.at

2 The University of Texas at Austin
{olivo,emerson}@cs.utexas.edu

Abstract. We present a formal framework for repairing infinite-state,
imperative, sequential programs, with (possibly recursive) procedures
and multiple assertions; the framework can generate repaired programs
by modifying the original erroneous program in multiple program lo-
cations, and can ensure the readability of the repaired program using
user-defined expression templates; the framework also generates a set of
inductive assertions that serve as a proof of correctness of the repaired
program. As a step toward integrating programmer intent and intuition
in automated program repair, we present a cost-aware formulation —
given a cost function associated with permissible statement modifica-
tions, the goal is to ensure that the total program modification cost does
not exceed a given repair budget. As part of our predicate abstraction-
based solution framework, we present a sound and complete algorithm
for repair of Boolean programs. We have developed a prototype tool
based on SMT solving and used it successfully to repair diverse errors in
benchmark C programs.

1 Introduction

Program debugging — the process of fault localization and error elimination —
is an integral part of ensuring correctness in existing or evolving software. Being
essentially manual, program debugging is often a lengthy, expensive part of a
program’s development cycle. There is an evident need for improved formaliza-
tion and mechanization of this process. However, program debugging is hard
to formalize — there are multiple types of programming mistakes with diverse
manifestations, and multiple ways of eliminating a detected error. Moreover, it is
particularly challenging to assimilate and mechanize the expert human intuition
involved in the choices made in manual program debugging.

In this paper, we present a cost-aware formulation of the automated program
debugging problem that addresses the above concerns. Our formulation obviates
the need for a separate fault localization phase by directly focusing on error
elimination, i.e., program repair. We fix a set U of update schemas that may
be applied to program statements for modifying them. An update schema is a

? This author was supported in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF) NFN
project S11402-N23 (RiSE)

compact description of a class of updates that may be applied to a program state-
ment in order to repair it. For instance, the update schema assign 7→ assign

permits replacement of the assignment statement x := y with other assignment
statements such as x :=x+ y or y :=x+ 1, assign 7→ skip permits deletion of
an assignment statement, etc. In this paper, U includes deletion of statements,
replacement of assignment statements with other assignment statements, and
replacement of the guards of conditional and loop statements with other guards.
We assume we are given a cost function that assigns some user-defined cost to
each application of an update schema to a program statement. Given an erro-
neous program P, a cost function c and a repair budget δ, the goal of cost-aware
automatic program repair is to compute a program P̂ such that: P̂ is correct, P̂
is obtained by modifying P using a set of update schemas from U and the total
modification cost does not exceed δ. We postulate that this quantitative formula-
tion [6] is a flexible and convenient way of incorporating user intent and intuition
in automatic program debugging. For instance, the user can define appropriate
cost functions to search for P̂ that differs from P in at most δ statements, or
to penalize any modification within some trusted program fragment, or to favor
the application of a particular update schema over another, and so on.

Our approach to cost-aware repair of imperative, sequential programs is based
on predicate abstraction [13], which is routinely used by verification tools such
as SLAM [5], SLAM2 [2], SATABS [8], etc. for analyzing infinite-state programs.
These tools generate Boolean programs which are equivalent in expressive power
to pushdown systems and enjoy desirable computational properties such as de-
cidability of reachability [4]. Inevitably, Boolean programs have also been ex-
plored for use in automatic repair of sequential programs for partial correctness
[14] and total correctness [22]. These papers, however, do not accommodate a
quantitative formulation of the repair problem and can only compute repaired
programs that differ from the original erroneous program in exactly one expres-
sion. Moreover, these papers do not attempt to improve the readability of the
concrete program P̂, obtained by concretizing a repaired Boolean program.

Our predicate abstraction-based approach to automatic program repair re-
laxes the above limitations. Besides erroneous P, c, and δ, our framework requires
a Boolean program B, obtained from P through iterative predicate abstraction-
refinement, such that B exhibits a non-spurious path to an error. We present an
algorithm which casts the question of repairability of B, given U , c, and δ, as an
SMT query; if the query is satisfiable, the algorithm extracts a correct Boolean
program B̂ from the witness to its satisfiability. Along with B̂, we also extract a
set of inductive assertions from the witness, that constitute a proof of correct-
ness of B̂. This algorithm for Boolean program repair is sound and complete,
relative to U , c, and δ. A repaired Boolean program B̂, along with its proof,
is concretized to obtain a repaired concrete program P̂, along with a proof of
correctness. However, the concretized repairs may not be succinct or readable.
Hence, our framework can also accept user-supplied templates specifying the
desired syntax of the modified expressions in P̂ to constrain the concretization.

2

Alternate approaches to automatic repair and synthesis of sequential pro-
grams [17, 26–28] that do not rely on abstract interpretations of concrete pro-
grams, also often encode the repair/synthesis problem as a constraint-solving
problem whose solution can be extracted using SAT or SMT solvers. Except for
[28], these approaches, due to their bounded semantics, are imprecise and cannot
handle total correctness3. The authors in [17] use SMT reasoning to search for
repairs satisfying user-defined templates; the templates are needed not only for
ensuring readability of the generated repairs, but also for ensuring tractability of
their inherently undecidable repair generation query. They also include a notion
of minimal diagnoses, which is subsumed by our more general cost-aware formu-
lation. Given user-defined constraints specifying the space of desired programs
and associated proof objects, the scaffold-based program synthesis approach of
[28] attempts to synthesizes a program, along with a proof of total correctness
consisting of program invariants and ranking functions for loops. In contrast to
[28], our framework only interacts with a user for improving the readability of the
generated repairs and for the cost function; all predicates involved in the genera-
tion of the repaired Boolean program and its proof are discovered automatically.
Besides the above, there have been proposals for program repair based on com-
puting repairs as winning strategies in games [15], abstraction interpretation
[18], mutations [10], genetic algorithms [1,12], using contracts [29], and focusing
on data structure manipulations [25,30]. There are also customized program re-
pair engines for grading and feedback generation for programming assignments,
cf. [24]. Finally, a multitude of algorithms [3, 7, 16, 31] have been proposed for
fault localization, based on analyzing error traces. Some of these techniques can
be used as a preprocessing step to improve the efficiency of our algorithm, at
the cost of giving up on the completeness of the Boolean program repair module.

Summary of contributions: We define a new cost-aware formulation of automatic
program repair that can incorporate programmer intuition and intent (Sec. 3).
We present a formal solution framework (Sec. 4 and Sec. 5) that can repair
infinite-state, imperative, sequential programs with (possibly recursive) proce-
dures and multiple assertions. Our method can modify the original erroneous
program in multiple program locations and can ensure the readability of the re-
paired program using user-defined expression templates. If our method succeeds
in generating a repaired program P̂, it generates a proof of P̂’s correctness, con-
sisting of inductive assertions, that guarantees satisfaction of all the assertions
in the original program P. As part of our predicate abstraction-based solution,
we present a sound and complete algorithm for repair of Boolean programs. Fi-
nally, we present experimental results for repairing diverse errors in benchmark
C programs using a prototype implementation (Sec. 6).

3 Our framework can be extended to handle total correctness by synthesizing ranking
functions along with inductive assertions.

3

2 Background

Predicate abstraction [4,13] is an effective technique for model checking infinite-
state programs with respect to safety properties. It uses iterative counterexample-
guided abstraction refinement to compute a finite-state, conservative abstraction
of a concrete program P based on a finite set {φ1, . . . , φr} of predicates. The
resulting abstract program is termed a Boolean program B (see Fig. 1a and
Fig. 1b): the control-flow of B is the same as that of P and the set {b1, . . . , br} of
variables of B are Boolean variables, with each bi representing the predicate φi
for i ∈ [1, r]. If B is found to be correct, the method concludes that P is correct.
In our work, the interesting case is when the method terminates reporting an
error. This happens when the method computes a Boolean program containing
an abstract counterexample path which is found to be feasible in P. Henceforth,
we fix a concrete program P, and a corresponding Boolean program B that
exhibits such a non-spurious counterexample path. Let γ denote the mapping
of the Boolean variables in B to their respective predicates: for each i ∈ [1, r],
γ(bi) = φi. The mapping γ can be extended in a standard way to expressions
over the Boolean variables.

Program Syntax. For our technical presentation, we fix a common, simpli-
fied syntax for concrete and abstract programs (see [23] for a precise definition)
— a program consists of a declaration of global variables, followed by a list of
procedure definitions; a procedure definition consists of a declaration of local
variables, followed by a sequence of (labeled) statements; a statement is a skip,
(parallel) assignment, assume, assert, goto, (call-by-value) procedure call or
return statement4. A Boolean expression is either a deterministic Boolean ex-
pression or the expression ∗, which nondeterministically evaluates to true or
false.

We make the following assumptions: (a) there is a distinguished initial proce-
dure main, (b) all variable and formal parameter names are globally unique, and
(c) goto statements are used only to simulate the flow of control in structured
programs. In addition, for Boolean programs, we assume: (a) all variables and
formal parameters are Boolean, (b) all expressions are Boolean expressions and
(c) the Boolean expressions in assume and assert statements are deterministic.

Notation. For program P, let {F0, . . . , Ft} be its set of procedures with F0 being
the main procedure, and let GV (P) denote the set of global variables. For proce-
dure Fi, let Li denote the set of locations. Let V (P) denote the set of all variables
of P, and L(P) =

⋃t
i=1 Li denote the set of locations of P. For a location ` within

a procedure Fi, let inscope(`) denote the set of all variables in P whose scope
includes l. We denote by stmt(`), formal(`) and local(`) the statement at ` and
the sets of formal parameters and local variables of the procedure containing
`, respectively. We denote by entry i ∈ Li the location of the first statement in
Fi. For Boolean program B, we use the same notation, replacing P with B as
needed. When the context is clear, we simply use V , L instead of V (P), L(B) etc.

4 We take the liberty of using if and while statements for our examples.

4

main() {
int x;
`1 : if (x ≤ 0)
`2 : while (x < 0){
`3 : x := x+ 2;
`4 : skip;

}
else

`5 : if (x == 1)
`6 : x := x− 1;
`7 : assert (x > 1);

}
(a) P

main() {
/ ∗ γ(b0) = x ≤ 1, γ(b1) = x == 1, γ(b2) = x ≤ 0 ∗ /
Bool b0, b1, b2 := ∗, ∗, ∗;
`1 : if (¬b2) then goto `5;
`2 : if (∗) then goto `0;
`3 : b0, b1, b2 := ∗, ∗, ∗;
`4 : goto `2;
`0 : goto `7;
`5 : if (¬b1) then goto `7;
`6 : b0, b1, b2 := ∗, ∗, ∗;
`7 : assert (¬b0);

}
(b) B

`1

`2

`3

`4

`0

`5

`6

`7

err exit

assume (b2)

assume (true)

b0, b1, b2 := ∗, ∗, ∗

assume (¬b2)

assume (b1)

assume (true)

as
su
me

(¬
b1

)

b0, b1, b2 := ∗, ∗, ∗

(c) G(B)

Fig. 1: An example concrete program P, a corresponding Boolean program B
and B’s transition graph

Transition Graphs. In addition to a textual representation, we will often find
it convenient to use a transition graph representation of programs (see Fig. 1c).
The transition graph representation of P, denoted G(P), comprises a set of la-
beled, rooted, directed graphs G0, . . . ,Gt, with exactly one node, err , in common.
Informally, the ith graph Gi captures the flow of control in procedure Fi with
its nodes and edges labeled by locations and corresponding statements of Fi,
respectively (see [23] for a formal definition). The set Ni of nodes of Gi, given by
Li ∪ exit i ∪ err , includes a unique entry node entry i, a unique exit node exit i
and the error node err (every node ` with stmt(`) being an assert statement
has two successors, one of which is err). A path π in Gi is a sequence of labeled
connected edges; we denote the sequence of statements labeling the edges in π
as stmt(π).

5

Program Semantics and Correctness. An operational semantics can be de-
fined for our programs in an obvious way, by formalizing the effect of each type
of program statement on a program configuration. A configuration η of a pro-
gram P is a tuple of the form (`,Ω, ζ), where ` ∈ L(P), Ω is a valuation of the
variables in inscope(`) and ζ is a stack of elements. Each element of ζ is of the

form (˜̀, Ω̃), where ˜̀ is a location and Ω̃ is a valuation of the variables in local(˜̀).
A configuration (`,Ω, ζ) of P is called an initial configuration if ` = entry0 and
ζ is the empty stack. We use η η′ to denote that P can transition from con-
figuration η to η′; the transitions rules for each type of program statement at `
are standard (see [23] for details).

An execution path of program P is a sequence of configurations, η η′
η′′ . . ., obtained by repeated application of transition rules, starting from
an initial configuration η. An execution path may be finite or infinite. The last
configuration (`,Ω, ζ) of a finite execution path may either be a terminating
configuration with ` = exit0, or an error configuration with ` = err or a stuck
configuration. An execution path ends in a stuck configuration η if no transition
rule is applicable to η.

An assertion in program P, is a statement of the form ` : assert (g), and
represents the expected valuation of the program variables at location `. We will
use the term assertion to denote both the statement ` : assert (g) as well as the
quantifier-free, first order expression g. We say a program configuration (`,Ω, ζ)
satisfies an assertion g, if the embedded variable valuation Ω satisfies g.

Given a program P (or, B) annotated with a set of assertions, P (or, B) is
partially correct iff every finite execution path of P (or B) ends in a terminating
configuration (for all nondeterministic choices that B might make). P (or, B) is
totally correct iff every execution path is finite and ends in a terminating config-
uration (for all nondeterministic choices that B might make). Unless otherwise
specified, an incorrect program is one that is not partially correct.

3 Cost-aware Program Repair

3.1 The Problem

Let Σ = {skip, assign, assume, assert, call, return, goto} denote the set of
statement types in program P. Given a statement s, let τ(s) be an element of Σ
denoting the statement type of s. Let U = {u0, u1, . . . , ud} be a set of permissible,
statement-level update schemas: u0 = id is the identity update schema that
maps every statement to itself, and ui, i ∈ [1, d], is a function σ 7→ σ̂, σ, σ̂ ∈
Σ \{assert}, that maps a statement type to a statement type. For each update
schema u, given by σ 7→ σ̂, we say u can be applied to statement s to get
statement ŝ if τ(s) = σ; we then have τ(ŝ) = σ̂. For example, u, given by
assign 7→ assign, can be applied to the assignment statement ` : x := y to get
an assignment statement ` : y :=x+ 1. Notice that update schemas in U do not
affect the label of a statement, and that we do not permit modifying an assert

6

statement. In this paper, we fix the following set of update schemas:

U = {id, assign 7→ assign, assign 7→ skip, assume 7→ assume, (1)

call 7→ call, call 7→ skip}.

We extend the notion of a statement-level update to a program-level update
as follows. For programs P, P̂, let the respective sets of locations be L, L̂ and let
stmt(`), ŝtmt(`) denote the respective statements at location `. Let RU,L : L 7→ U
be an update function that maps each location of P to an update schema in U .
We say P̂ is an RU,L-update of P iff L = L̂ and for each ` ∈ L, ŝtmt(`) is
obtained by applying RU,L(`) on stmt(`).

Let cU,L : U × L → N be a cost function that maps a tuple, consisting of a
statement-level update schema u and a location ` of P, to a certain cost. Thus,
cU,L(u, `) is the cost of applying update schema u to the stmt(`). We impose
an obvious restriction on cU,L: ∀` ∈ L : cU,L(id, `) = 0. Since we have already
fixed the set U and the program P, we henceforth use c, R instead of cU,L, RU,L,
respectively, The total cost, Costc(R), of performing an R-update of P is given
by

∑
`∈L c(R(`), `).

Given an incorrect concrete program P annotated with assertions, a cost
function c, and a repair budget δ, the goal of cost-aware program repair is to
compute P̂ such that:

1. P̂ is partially correct, and,
2. there exists R:

(a) P̂ is some R-update of P, and
(b) Costc(R) ≤ δ.

If there exists such a P̂, we say P̂ is a (U , c, δ)-repair of P.
Notice that without U , c and δ, there would be no restriction on the relation

of the repaired program P̂ to the incorrect program P; in particular, P̂ could be
any correct program constructed from scratch, without using P at all. Insightful
choices for these can help prune the search space for repaired programs and help
generate a repaired program similar to what the programmer may have in mind.

3.2 Solution Overview

We present a predicate abstraction-based framework for cost-aware program re-
pair. Thus, in addition to P, c, δ, our framework requires (a) a Boolean program
B such that B is obtained from P via iterative predicate abstraction-refinement
and B exhibits a non-spurious counterexample path, and (b) the correspond-
ing function γ that maps Boolean variables to their respective predicates. The
computation of a suitable repaired program P̂ involves two main steps:

1. Cost-aware repair of B to obtain B̂, and
2. Concretization of B̂ to obtain P̂.

In the following sections, we describe these two steps in detail.

7

4 Cost-aware Repair of Boolean Programs

Our solution to cost-aware repair of a Boolean program B relies on automat-
ically computing inductive assertions, along with a suitable B̂, that together
certify the partial correctness of B̂. In what follows, we explain our adaptation
of the method of inductive assertions [11,19] for cost-aware program repair.

Cut-set. Let N be the set of nodes in G(B), the transition graph representation
of B. We define a cut-set Λ ⊆ N as a set of nodes, called cut-points, such that
for every i ∈ [0, t]: (a) entry i, exit i ∈ Λ, (b) for every edge (`, ς, `′) in Gi where
stmt(`) is a procedure call or an assert statement, `, `′ ∈ Λ, and (c) every
cycle in G contains at least one node in Λ. A pair of cut-points `, `′ is said to
be adjacent if every path from ` to `′ contains no other cut-point. A verification
path is any path from a cut-point to an adjacent cut-point.

Example: The set {`1, `2, `7, exit} (shaded blue) in Fig. 1c is a valid cut-set for
Boolean program B in Fig. 1b. The verification paths in G(B) corresponding to

this cut-set are: (1) `1
assume (b2)−−−−−−−→ `2, (2) `2

assume (T)−−−−−−→ `3
b0,b1,b2 := ∗,∗,∗−−−−−−−−−−→ `4 −→ `2,

(3) `2
assume (T)−−−−−−→ `0 −→ `7, (4) `1

assume (¬b2)−−−−−−−−→ `5
assume (¬b1)−−−−−−−−→ `7, (5) `1

assume (¬b2)−−−−−−−−→
`5

assume (b1)−−−−−−−→ `6
b1,b1,b2 := ∗,∗,∗−−−−−−−−−−→ `7 and (6) `7 −→ exit .

Inductive assertions. We denote an inductive assertion associated with cut-
point ` in Λ by I`. Informally, an inductive assertion I` has the property that
whenever control reaches ` in any program execution, I` must be true for the
current values of the variables in scope. For Boolean program B, I` is a Boolean
formula over Vs[`], where Vs[`] denotes an `th copy of the subset Vs of the program
variables, with Vs = GV ∪ formal(`) if ` ∈ {exit1, . . . , exit t}, and Vs = inscope(`)
otherwise. Thus, except for the main procedure, the inductive assertions at the
exit nodes of all procedures exclude the local variables declared in the procedure.
Let IΛ denote the set of inductive assertions associated with all the cut-points
in Λ.

Verification conditions. A popular approach to verification of sequential, im-
perative programs is to compute IΛ such that IΛ satisfies a set of constraints
called verification conditions. Let π be a verification path in Gi, from cut-point `
to adjacent cut-point `′. The verification condition corresponding to π, denoted
VC (π), is essentially the Hoare triple 〈I`〉 stmt(π) 〈I`′〉, where stmt(π) is the
sequence of statements labeling π. When I`, I`′ are unknown, VC (π) can be
seen as a constraint encoding all possible solutions for I`, I`′ such that: every
program execution along path π, starting from a set of variable valuations sat-
isfying I`, terminates in a set of variable valuations satisfying I`′ .

Program verification using the inductive assertions method. Given B
annotated with assertions, and a set Λ of cut-points, B is partially correct if one
can compute a set IΛ of inductive assertions such that: for every verification
path π between every pair `, `′ of adjacent cut-points in G(B), VC (π) is valid.

8

Example: It is not possible to compute such a set of inductive assertions for the
Boolean program in Fig. 1b as the program is incorrect.

Cost-aware repairability conditions. Let C : N → N be a function mapping
nodes in G to costs. We find it convenient to use C` to denote the value C(`) at
node/location `. We set Ientry0

= true and C` = 0 if ` ∈ {entry0, . . . , entryt}.
Informally, C` with ` ∈ Ni can be seen as recording the cumulative cost of ap-
plying a sequence of update schemas to the statements in procedure Fi from
entry i to `. Thus, for a specific update function R with cost function c, Cexit0
records the total cost Costc(R) of performing an R-update of the program. Given
a verification path π in Gi, from cut-point ` to adjacent cut-point `′, we extend
the definition of VC (π) to define the cost-aware repairability condition corre-
sponding to π, denoted CRC (π). CRC (π) can be seen as a constraint encoding
all possible solutions for inductive assertions I`, I`′ and update functions R,
along with associated functions C, such that: every program execution that pro-
ceeds along path π via statements modified by applying the update schemas
in R, starting from a set of variable valuations satisfying I`, terminates in a
set of variable valuations satisfying I`′ , for all nondeterministic choices that the
program might make along π.

Before we proceed, note that I` is a Boolean formula over Vs[`], where for
all locations λ 6= `′ in verification path π from ` to `′, Vs = inscope(λ). In
what follows, the notation JuK(stmt(λ)) represents the class of statements that
may be obtained by applying update schema u on stmt(λ), and is defined for
our permissible update schemas in Fig. 2. Here, f, f1, f2 etc. denote unknown
Boolean expressions5, over the variables in inscope(λ). Note that the update
schema assign 7→ assign, modifies any assignment statement, to one that as-
signs unknown Boolean expressions to all variables in Vs.

u JuK(stmt(λ))

id stmt(λ)
assign 7→ skip skip

assume 7→ skip skip

call 7→ skip skip

assign 7→ assign b1, . . . , b|Vs| := f1, . . . , f|Vs|
assume 7→ assume assume f
call 7→ call call Fj(f1, . . . , fk), where stmt(λ): call Fj(e1, . . . , ek)

Fig. 2: Definition of JuK(stmt(λ))

5 To keep our exposition simple, we assume that these unknown Boolean expressions
are deterministic. However, in our prototype tool (see Sec. 6), we have the abil-
ity to compute modified statements with nondeterministic expressions such as ∗ or
choose(f1, f2).

9

We now define CRC (π). While there are three cases to consider, due to lack of
space, we only define CRC (π) when stmt(π) does not contain a procedure call

or assert statement. We refer the reader to [23] for the definitions of CRC (π)
when stmt(π) contains a procedure call and when stmt(π) contains an assert

statement.
Let Aλ denote a Boolean formula/assertion associated with location λ in π.

CRC (π) is given by the (conjunction of the) following set of constraints:

A` = I`
A`′ ⇒ I`′ (2)∧

`�λ≺`′

∧
u∈Ustmt(λ)

R(λ) = u ⇒ Cλ′ = Cλ + c(u, λ) ∧

Aλ′ = sp(JuK(stmt(λ)),Aλ).

In the above, ≺ denotes the natural ordering over the sequence of locations in
π with λ, λ′ being consecutive locations. The notation Ustmt(λ) ⊆ U denotes the
set of all update schemas in U which may be applied to stmt(λ). The notation
sp(JuK(stmt(λ)),Aλ) denotes the strongest postcondition of the assertion Aλ
over the class of statements JuK(stmt(λ)). We define this strongest postcondition
using multiple variable copies - a copy Vs[λ] for each location λ in π. Let us
assume that Aλ is a Boolean formula of the form6:

Aλ = ρ[`, λ̀] ∧
∧
b∈Vs

b[λ] = ξ[λ̀], (3)

where λ̀, λ are consecutive locations in π, ρ[`, λ̀] is a Boolean expression over

all copies Vs[µ], ` � µ � λ̀, representing the path condition imposed by the

program control-flow, and ξ[λ̀] is a Boolean expression over Vs[λ̀] representing

the λth copy of each variable b in terms of the λ̀th copy of the program variables.
Note that A` = I` is of the form ρ[`].

Given the above Aλ, sp(JuK(stmt(λ)),Aλ) is defined in Fig. 3. Observe that
sp(JuK(stmt(λ)),Aλ) is a Boolean formula of the same form as (3), over variable
copies from Vs[`] to Vs[λ

′]. For the entries assume g and b1, . . . , bm := e1, . . . , em,
the expressions g, e1, . . . , em are known beforehand (these entries correspond to
u = id). For the entries assume f and b1, . . . , b|Vs| := f1, . . . , f|Vs|, the expres-
sions f, f1, . . . , f|Vs| are unknown (these entries correspond to u = assume 7→
assume and u = assign 7→ assign, respectively). Notation such as f [λ] denotes
that f is an unknown Boolean expression over Vs[λ]. For nondeterministic ex-
pressions in the RHS of an assignment statement b1, . . . , bm := e1, . . . , em, the
strongest postcondition is computed as the disjunction of the strongest postcon-
ditions over all possible assignment statements obtained by substituting each ∗
expression with either false or true.

6 In general, Aλ is a disjunction over Boolean formulas of this form;
sp(JuK(stmt(λ)),Aλ) can then be obtained by computing a disjunction over the
strongest postconditions obtained by propagating each such Boolean formula
through JuK(stmt(λ)) using the rules in Fig. 3.

10

JuK(stmt(λ)) sp(JuK(stmt(λ)),Aλ)

skip
ρ[`, λ̀] ∧

∧
b∈Vs b[λ

′] = b[λ]
goto

assume g g[λ] ∧ ρ[`, λ̀] ∧
∧
b∈Vs b[λ

′] = b[λ]

assume f f [λ] ∧ ρ[`, λ̀] ∧
∧
b∈Vs b[λ

′] = b[λ]

b1, . . . , bm := e1, . . . , em ρ[`, λ̀] ∧
∧
bi∈Vs,i∈[1,m] bi[λ

′] = ei[λ] ∧∧
bi∈Vs,i 6∈[1,m] bi[λ

′] = bi[λ]

b1, . . . , b|Vs| := f1, . . . , f|Vs| ρ[`, λ̀] ∧
∧
bi∈Vs bi[λ

′] = fi[λ]

Fig. 3: Definition of sp(JuK(stmt(λ)),Aλ)

Thus, to summarize, the set of constraints in (2) encodes all I`, C`, I`′ , C`′
and R such that: if R is applied to the sequence of statements stmt(π) to get
some modified sequence of statements, say ŝtmt(π), and program execution pro-
ceeds along ŝtmt(π), then sp(ŝtmt(π), I`) ⇒ I`′ , and C`′ equals the cumulative
modification cost, counting up from C`.

Cost-aware Boolean program repair. Given a cut-set Λ of G(B), let ΠΛ be
the set of all verification paths between every pair of adjacent cut-points in Λ.
Consider the following formula:

∃Unknown ∀Var : Cexit0 ≤ δ ∧
∧

π∈ΠΛ

CRC (π) ∧ AssumeConstraints (4)

where Unknown is the set of all unknowns and Var is the set of all Boolean
program variables and their copies used in encoding each CRC (π). The set
of unknowns includes the set IΛ of inductive assertions, update function R,
unknown expressions f, f1 etc. associated with applications of update schemas
in R and valuations at each program location of the cumulative-cost-recording
function C. Finally, AssumeConstraints ensures that any modifications to the
guards of assume statements corresponding to the same conditional statement
are consistent. Thus, for every pair of updated assume (f1), assume (f2) state-
ments labeling edges starting from the same node in the transition graph, the
unknown functions f1, f2 are constrained to satisfy f1 = ¬f2.

If the above formula is true, then we can extract models for all the un-
knowns from the witness to the satisfiability of the formula: ∀Var : Cexit0 ≤ δ
∧

∧
π∈ΠΛ CRC (π) ∧ AssumeConstraints. In particular, we can extract an R

and the corresponding modified statements to yield a correct Boolean program
B̂. The following theorem states the soundness and completeness of the above
algorithm for repairing Boolean programs for partial correctness (see [23] for the
proof).

11

Theorem 41 Given the set U specified in (1), and given an incorrect Boolean
program B annotated with assertions, cost function c and repair budget δ,

1. if there exists a (U , c, δ)-repair of B, the above method finds a (U , c, δ)-repair
of B,

2. if the above method finds a B̂, then B̂ is a (U , c, δ)-repair of B.

Example: For the Boolean program in Fig. 1b, our tool modifies two statements:
(1) the guard for stmt(`1) is changed from b2 to b0∨ b1∨¬b2 and (2) the guard
for stmt(`2) is changed from ∗ to b0 ∨ b1 ∨ b2.

5 Concretization

We now present the second step in our framework for computing a concrete re-
paired program P̂. In what follows, we assume that we have already extracted
models for B̂ and IΛ.

Concretization of B̂. This involves computing a mapping, denoted Γ , from
each modified statement of B̂ into a corresponding modified statement in the
concrete program. We define Γ for each type of modified statement in B̂. Let us
fix our attention on a statement at location `, with Vs(B), Vs(P) denoting the
set of abstract, concrete program variables, respectively, whose scope includes `.
Let r = |Vs(B)| and q = |Vs(P)|.

1. Γ (skip) = skip
2. Γ (assume (g)) = assume (γ(g))
3. Γ (call Fi(e1, . . . , ek)) = call Fi(γ(e1), . . . , γ(ek))
4. The definition of Γ for an assignment statement is non-trivial. In fact, in this

case, Γ may be the empty set, or may contain multiple concrete assignment
statements.
We say that an assignment statement b1, . . . , br := e1, . . . , er in B is con-
cretizable if one can compute expressions f1, . . . , fq over Vs(P), of the same
type as the concrete program variables v1, . . . , vq in Vs(P), respectively, such
that a certain constraint is valid. To be precise, b1, . . . , br := e1, . . . , er in B
is concretizable if the following formula is true:

∃f1, . . . , fq ∀v1, . . . , vq :

r∧
j=1

γ(bj)[v1/f1, . . . , vq/fq] = γ(ej) (5)

Each quantifier-free constraint γ(bj)[v1/f1, . . . , vq/fq] = γ(ej) above essen-
tially expresses the concretization of the abstract assignment bj = ej . The
substitutions v1/f1, . . . , vq/fq reflect the new values of the concrete program
variables after the concrete assignment v1, . . . , vq := f1, . . . , fq. If the above
formula is true, we can extract models expr1, . . . , exprq for f1, . . . , fq, re-
spectively, from the witness to the satisfiability of the inner ∀-formula. We
then say:

v1, . . . , vq := expr1, . . . , exprq ∈ Γ (b1, . . . , br := e1, . . . , er).

12

Example: For our example in Fig. 1, the modified guards, b0 ∨ b1 ∨ ¬b2 and
b0∨b1∨b2, in stmt(`1) and stmt(`2) of B̂, respectively are concretized into true

and x ≤ 1, respectively using γ.

Template-based concretization of B̂. Our framework/tool can also accept
user-supplied templates, specifying the desired syntax of the expressions in con-
crete modified statements. The concretization of B̂ is then guided by the given
templates. This is another avenue for incorporating programmer expertise and
intent into automatic program repair. Due to lack of space, we skip a detailed
description and refer the interested reader to [23].

Concretization of inductive assertions. The concretization of each inductive
assertion I` ∈ IΛ is simply γ(I`).

6 Experiments with a Prototype Tool

We have built a prototype tool for repairing Boolean programs. The tool accepts
Boolean programs generated by the predicate abstraction tool SATABS (version
3.2) [8] from sequential C programs. In our experience, we found that for C pro-
grams with multiple procedures, SATABS generates (single procedure) Boolean
programs with all procedure calls inlined within the calling procedure. Hence,
we only perform intraprocedural analysis in this version of our tool. The set of
update schemas handled currently is {id, assign→ assign, assume→ assume};
we do not handle statement deletions. We set the costs c(assign → assign, `)
and c(assume→ assume, `) to some large number for every location ` where we
wish to disallow statement modifications, and to 1 for all other locations — we
essentially search for a repaired program with at most δ modifications amongst
candidate locations. We initialize the tool with δ = 1. We also provide the tool
with a cut-set of locations for its Boolean program input.

The tool automatically generates an SMT query corresponding to the inner
∀-formula in (4). When generating this repairability query, for update schemas
involving expression modifications, we stipulate every deterministic Boolean ex-
pression g be modified into a (unknown) deterministic Boolean expression f (as
described in Fig. 2), and every nondeterministic Boolean expression be modified
into a (unknown) nondeterministic expression of the form choose(f1, f2). The
SMT query is then fed to the SMT-solver Z3 (version 4.3.1) [20]. The solver
either declares the formula to be satisfiable, and provides models for all the un-
knowns, or declares the formula to be unsatisfiable. In the latter case, we can
choose to increase the repair budget by 1, and repeat the process.

Once the solver provides models for all the unknowns, we can extract a re-
paired Boolean program automatically. Currently, the next step, concretization,
is automated in part. For assignment statements, we manually formulate SMT
queries corresponding to the inner ∀-formula in (5), and feed these queries to
Z3. If the relevant queries are satisfiable, we can obtain a repaired C program.
If the queries are unsatisfiable, we attempt template-based concretization using

13

linear-arithmetic templates. In some experiments, we allowed ourselves a degree
of flexibility in guiding the solver to choose the right template parameters.

In Fig. 4, we present some of the details of repairing a C program drawn from
the NEC Laboratories Static Analysis Benchmarks [21]. After our tool automati-
cally generated a repaired Boolean program for this example, we manually wrote
an SMT query corresponding to (5) to concretize the assignment statement at
location `3, and obtained y := 0 as the repair for the concrete program. Unsat-
isfied by this repair, we formulated a template-based SMT query, restricting the
RHS of stmt(`3) to the template −x + c, where c is unknown. The query was
found to be satisfiable, and yielded c = 10. As shown in Fig. 4, all inductive
assertions generated for this example were true.

int main() {
int x, y;
int a[10];
`1 : x := 1U;
`2 : while (x ≤ 10U) {
`3 : y := 11− x;
`4 : assert (y ≥ 0 ∧ y < 10);
`5 : a[y] := − 1;
`6 : x := x+ 1;
}

}

Boolean program vars/predicates:
γ(b0) = y < 0, γ(b1) = y < 10

Boolean program repair:
Change stmt(`3) from
b0, b1 := ∗, ∗ to b0, b1 := F, T

Concrete program repair:
Change stmt(`3) to y := 10− x

Inductive Assertions:
They were all true

Fig. 4: Repairing program necex14

In Table 1, we present the results of repairing some handmade examples
(handmade2 is the same example as in Fig. 1), and some benchmark programs
from NEC Labs [21] and the 2014 Competition on Software Verification [9]. The
complexity of the programs from [9] stems from nondeterministic assignments
and function invocations within loops. All experiments were run on the same
machine, an Intel Dual Core 2.13GHz Unix desktop with 4 GB of RAM.

We enumerate the time taken for each individual step involved in generating a
repaired Boolean program. The columns labeled LoC(P) and LoC(B) enumerate
the number of lines of code in the original C program and the Boolean program
generated by SATABS, respectively. The column labeled V (B) enumerates the
number of variables in each Boolean program. The column B-time enumerates
the time taken by SATABS to generate each Boolean program, the column Que-
time enumerates the time taken by our tool to generate each repairability query
and the column Sol-time enumerates the time taken by Z3 to solve the query. The
columns # Asg and # Asm count the number of assign→ assign and assume→
assume update schemas applied, respectively, to obtain the final correct program.

Notice that our implementation either produces a repaired program very
quickly, or fails to do so in reasonable time whenever there is a significant increase
in the number of Boolean variables, e.g. for veris.c NetBSD-libc loop true.
This is because the SMT solver might need to search over simultaneous non-

14

Table 1: Experimental results
Name LoC(P) LoC(B) V (B) B-time Que-time Sol-time # Asg # Asm

handmade1 6 58 1 0.180s 0.009s 0.012s 0 1
handmade2 16 53 3 0.304s 0.040s 0.076s 0 2

necex6 24 66 3 0.288s 0.004s 0.148s 1 0
necex14 13 60 2 0.212s 0.004s 0.032s 1 0

while infinite loop 1 true 5 33 1 0.196s 0.002s 0.008s 0 1
array true 23 57 4 0.384s 0.004s 0.116s 1 1
n.c11 true 27 50 2 0.204s 0.002s 0.024s 1 0
terminator 03 true 22 38 2 0.224s 0.004s 0.036s 1 1
trex03 true 23 58 3 0.224s 0.036s 0.540s 1 1
trex04 true 29 36 1 0.200s 0.004s 0.004s 2 0
veris.c NetBSD− libc loop true 30 144 23 3.856s - - - -
vogal true 41 - - > 10m - - - -
count up down true 18 - - > 10m - - - -

deterministic assignments to all the Boolean variables for every assignment state-
ment in B in order to solve the repairability query. For the last two programs,
SATABS was the main bottleneck, with SATABS failing to generate a Boolean
program with a non-spurious counterexample after 10 minutes; we experienced
issues while using SATABS on programs with a lot of character manipulation.

We emphasize that when successful, our tool can repair a diverse set of er-
rors in programs containing loops, multiple procedures and pointer and array
variables. In our benchmarks, we were able to repair operators (e.g., an incor-
rect conditional statement x < 0 was repaired to x > 0) and array indices (e.g.,
an incorrect assignment x:=a[0] was repaired to x:=a[j]), and modify constants
into program variables (e.g. an incorrect assignment x:=0 was repaired to x:=d,
where d was a program variable). Also, note that for many benchmarks, the
repaired programs required multiple statement modifications.

7 Discussion

The framework described in this paper computes a repaired concrete program
in two separate steps: computation of a repaired Boolean program B̂, followed
by its concretization. The separation of these two steps is not necessary and is
potentially sub-optimal. It may not be possible to concretize a repaired Boolean
program computed in the first step, while there may exist some other concretiz-
able B̂. The solution is to directly search for B̂ such that all modified statements
of B̂ are concretizable. This can be done by combining the constraints presented
in Sec. 5 with the one in (4). As noted in Sec. 1, we can target total correctness
of the repaired programs by associating ranking functions along with inductive
assertions with each cut-point in Λ, and including termination conditions as part
of the constraints. Finally, we wish to explore ways to ensure that the repaired
program does not unnecessarily restrict correct behaviors of the original pro-
gram. We conjecture that this can be done by computing the weakest possible
set of inductive assertions and a least restrictive B̂.
Acknowledgements. The authors would like to thank Gérard Basler, Daniel
Kröning and Georg Weissenbacher for their help with SATABS.

15

References

1. Arcuri, A.: On the Automation of Fixing Software Bugs. In: International Confer-
ence on Software Engineering (ICSE). pp. 1003–1006. ACM (2008)

2. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static Driver Verifica-
tion with under 4% False Alarms. In: Formal Methods in Computer Aided Design
(FMCAD). pp. 35–42 (2010)

3. Ball, T., Naik, M., Rajamani, S.K.: From Symptom to Cause: Localizing Errors
in Counterexample Traces. In: Principles of Programming Languages (POPL). pp.
97–105. ACM (2003)

4. Ball, T., Rajamani, S.K.: Boolean Programs: A Model and Process for Software
Analysis. Tech. Rep. 2000-14, MSR (2000)

5. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of
Interfaces. In: International Workshop on Model Checking of Software (SPIN). pp.
103–122. Springer-Verlag (2001)

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Syn-
thesis through Quantitative Objectives. In: Computer Aided Verification (CAV).
pp. 140–156. Springer (2009)

7. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic Debugging. In: Interna-
tional Conference on Software Engineering (ICSE). pp. 121–130. ACM (2011)

8. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based Predi-
cate Abstraction for ANSI-C. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 570–574. Springer Verlag (2005)

9. Competition on Software Verification (SV-COMP): Loops Benchmarks. http://
sv-comp.sosy-lab.org/2014/benchmarks.php (2014)

10. Debroy, V., Wong, W.E.: Using Mutation to Automatically Suggest Fixes for
Faulty Programs. In: Software Testing, Verification and Validation (ICST). pp.
65–74 (2010)

11. Floyd, R.W.: Assigning Meanings to Programs. In: Mathematical Aspects of Com-
puter Science. pp. 19–32. American Mathematical Society (1967)

12. Goues, C.L., Dewey-Vogt, M., Forrest, S., Weimer, W.: A Systematic Study of Au-
tomated Program Repair: Fixing 55 out of 105 Bugs for $8 Each. In: International
Conference on Software Engineering (ICSE). pp. 3–13. IEEE Press (2012)

13. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Computer
Aided Verification (CAV). pp. 72–83. Springer Verlag (1997)

14. Griesmayer, A., Bloem, R., Cook, B.: Repair of Boolean Programs with an Appli-
cation to C. In: Computer Aided Verification (CAV). pp. 358–371 (2006)

15. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. In: Com-
puter Aided Verification (CAV). pp. 226–238. Springer-Verlag (2005)

16. Jose, M., Majumdar, R.: Cause Clue Clauses: Error Localization using Maximum
Satisfiability. In: Programming Language Design and Implementation (PLDI). pp.
437–446. ACM (2011)

17. Könighofer, R., Bloem, R.: Automated Error Localization and Correction for Im-
perative Programs. In: Formal Methods in Computer Aided Design (FMCAD). pp.
91–100 (2011)

18. Logozzo, F., Ball, T.: Modular and Verified Automatic Program Repair. In: Object
Oriented Programming Systems Languages and Applications (OOPSLA). pp. 133–
146. ACM (2012)

19. Manna, Z.: Introduction to Mathematical Theory of Computation. McGraw-Hill,
Inc. (1974)

16

20. Moura, L.D., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). pp. 337–
340. Springer-Verlag (2008)

21. NEC: NECLA Static Analysis Benchmarks. http://www.nec-labs.com/

research/system/systems_SAV-website/benchmarks.php

22. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic Generation of Local
Repairs for Boolean Programs. In: Formal Methods in Computer Aided Design
(FMCAD). pp. 1–10 (2008)

23. Samanta, R., Olivo, O., Emerson, E.A.: Cost-Aware Automatic Program Repair.
CoRR abs/1307.7281 (2013)

24. Singh, R., Gulwani, S., Solar-Lezama, A.: Automatic Feedback Generation for
Introductory Programming Assignments. In: Programming Language Design and
Implementation (PLDI) (2013)

25. Singh, R., Solar-Lezma, A.: Synthesizing Data-Structure Manipulations from Sto-
ryboards. In: Foundations of Software Engineering (FSE). pp. 289–299 (2011)

26. Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by Sketching
for Bit-streaming Programs. In: Programming Language Design and Implementa-
tion (PLDI). pp. 281–294. ACM (2005)

27. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
Sketching for Finite Programs. In: Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). pp. 404–415. ACM (2006)

28. Srivastava, S., Gulwani, S., Foster, J.S.: From Program Verification to Program
Synthesis. In: Principles of Programming Languages (POPL). pp. 313–326. ACM
(2010)

29. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated Fixing of Programs with Contracts. In: International Symposium on Soft-
ware Testing and Analysis (ISSTA). pp. 61–72. ACM (2010)

30. Zaeem, R.N., Gopinath, D., Khurshid, S., McKinley, K.S.: History-Aware Data
Structure Repair using SAT. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 2–17. Springer-Verlag (2012)

31. Zeller, A., Hilebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

17

