Robustness Analysis of String Transducers

Roopsha Samanta

Joint work with Jyotirmoy V. Deshmukh and Swarat Chaudhuri

February 4, 2013

Roopsha Samanta

Robustness Analysis of String Transducers

< ロ > < 同 > < 回 > < 回 >

- String transducers abound!
 - · Compilers, image processors, computational biology
- Uncertainty is pervasive
 - Noisy images in image processing engines
 - Incomplete DNA strings in computational biology
 - Wrongly spelled inputs to text processors
 - Corrupt data from sensors in medical devices

A (10) A (10) A (10)

- String transducers abound!
 - · Compilers, image processors, computational biology
- Uncertainty is pervasive
 - Noisy images in image processing engines
 - Incomplete DNA strings in computational biology
 - Wrongly spelled inputs to text processors
 - Corrupt data from sensors in medical devices

We need predictability in the presence of uncertainty

A (10) A (10) A (10)

- String transducers abound!
 - · Compilers, image processors, computational biology
- Uncertainty is pervasive
 - Noisy images in image processing engines
 - Incomplete DNA strings in computational biology
 - Wrongly spelled inputs to text processors
 - Corrupt data from sensors in medical devices

Small input pertubation \rightarrow Small perturbation in system output

- String transducers abound!
 - Compilers, image processors, computational biology
- Uncertainty is pervasive
 - Noisy images in image processing engines
 - Incomplete DNA strings in computational biology
 - Wrongly spelled inputs to text processors
 - Corrupt data from sensors in medical devices

Robustness!

< 同 ト < 三 ト < 三 ト

Finite-state device with two tapes

- In each step, T
 - reads an input symbol (alphabet Σ)
 - writes a finite string (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting

• $\mathcal{L} \subseteq \Sigma^*$

• Functional: at most one output string for every input string

• $s' = \llbracket T \rrbracket(s)$

Mealy machines: deterministic, symbol-to-symbol functional transducer

イロト イヨト イヨト イヨト

- Finite-state device with two tapes
- In each step, T
 - reads an input symbol (alphabet Σ)
 - writes a finite string (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting

• $\mathcal{L} \subseteq \Sigma^*$

• Functional: at most one output string for every input string

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, symbol-to-symbol functional transducer

- Finite-state device with two tapes
- In each step, T
 - reads an input symbol (alphabet Σ)
 - writes a finite string (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting

• $\mathcal{L} \subseteq \Sigma^*$

Functional: at most one output string for every input string

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, symbol-to-symbol functional transducer

- Finite-state device with two tapes
- In each step, T
 - reads an input symbol (alphabet Σ)
 - writes a finite string (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $\mathcal{L} \subseteq \Sigma^*$
- Functional: at most one output string for every input string

• $s' = \llbracket T \rrbracket (s)$

Mealy machines: deterministic, symbol-to-symbol functional transducer

- Finite-state device with two tapes
- In each step, T
 - reads an input symbol (alphabet Σ)
 - writes a finite string (alphabet Γ)
 - nondeterministically changes state
- Output of T: defined only if run is accepting
 - $\mathcal{L} \subseteq \Sigma^*$
- Functional: at most one output string for every input string

• $s' = \llbracket T \rrbracket(s)$

• Mealy machines: deterministic, symbol-to-symbol functional transducer

Robust transducers

Given:

- a (functional) transducer \mathcal{T} , over $\mathcal{L} \subseteq \Sigma^*$,
- upper bound *B* on input perturbation,
- distance metric $d : \Sigma^* \times \Sigma^* \cup \Gamma^* \times \Gamma^* \to \mathbb{N}$,
- constant $K \in \mathbb{N}$

T is defined to be (B, K)-robust if:

 $\forall \delta \leq B, \forall s, t \in \mathcal{L} : \ d(s, t) = \delta \implies d(\llbracket T \rrbracket(s), \llbracket T \rrbracket(t)) \leq K \delta$

イロト イポト イヨト イヨト

Robust transducers

Given:

- a (functional) transducer \mathcal{T} , over $\mathcal{L} \subseteq \Sigma^*$,
- upper bound B on input perturbation,
- distance metric $d : \Sigma^* \times \Sigma^* \cup \Gamma^* \times \Gamma^* \rightarrow \mathbb{N}$,
- constant $K \in \mathbb{N}$

T is defined to be (B, K)-robust if:

 $\forall \delta \leq \boldsymbol{B}, \forall \boldsymbol{s}, t \in \mathcal{L}: \ \boldsymbol{d}(\boldsymbol{s}, t) = \delta \implies \boldsymbol{d}(\llbracket \boldsymbol{T} \rrbracket(\boldsymbol{s}), \llbracket \boldsymbol{T} \rrbracket(t)) \leq K \delta$

э

(日)

Problem definition

Given:

- a (functional) transducer \mathcal{T} , over $\mathcal{L} \subseteq \Sigma^*$,
- upper bound *B* on input perturbation,
- distance metric $d : \Sigma^* \times \Sigma^* \cup \Gamma^* \times \Gamma^* \rightarrow \mathbb{N}$,
- constant $K \in \mathbb{N}$

Check if T is (B, K)-robust.

э

イロト イポト イヨト イヨト

Solution strategy

Given:

- a (functional) transducer \mathcal{T} , over $\mathcal{L} \subseteq \Sigma^*$,
- upper bound *B* on input perturbation,
- distance metric $d : \Sigma^* \times \Sigma^* \cup \Gamma^* \times \Gamma^* \rightarrow \mathbb{N}$,
- constant $K \in \mathbb{N}$

For each $\delta \leq B$, construct machine \mathcal{A}^{δ} :

 \mathcal{T} is (B, K)-robust iff for all $\delta \leq B$, $\mathcal{L}(\mathcal{A}^{\delta})$ is empty

イロト イポト イヨト イヨト

Solution strategy

Solution strategy

\mathcal{A}^{δ} is constructed from:

- **1** Input automaton, **Input**: accepts (s, t) iff $d(s, t) = \delta$
- 2 Pair-transducer, Pair: transforms (s, t) to (s', t') according to T
- Output automaton, **Output**: accepts (s', t') iff $d(s', t') > K\delta$.

< ロ > < 同 > < 回 > < 回 >

Distance metric(s)

Levenshtein distance $d_L(s, t)$: Minimum number of symbol *insertions*, *deletions* and *substitutions* to transform *s* into *t*

d(haa ahca) - 2	\Box	b	а	а	
$u_L(baa, abca) = 2$	а	b	С	а	

Distance metric(s)

Generalized Levenshtein distance $d_{gL}(s, t)$:

- Tracks the *degree*, not just the *number* of mismatches
- diff(a, b): pair-wise mismatch penalty to substitute a and b
- α: gap penalty to insert or delete symbol

Let: diff(a, b) = diff(b, c) = 1, diff(a, c) = 2, $\alpha = 1$

$d_{1}(baa, abaa) = 2$	
$u_{gL}(baa, abca) = 5$	а

Distance metric(s)

$d_{gL}(s,t) d(s,t)$

Roopsha Samanta

Robustness Analysis of String Transducers

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

$$d(s[0], t[0]) = 0$$

$$d(s[0, i], t[0]) = i\alpha$$

$$d(s[0], t[0, j]) = j\alpha$$

$$\alpha = 1$$

э

$$\begin{split} d(s[0,i], \ t[0,j]) &= \\ \min(d \ (s[0,i-1], \ t[0,j-1]) + \dim f(s[i], \ t[j]), \\ d \ (s[0,i-1], \ t[0,j]) + \alpha, \\ d \ (s[0,i], \ t[0,j-1]) + \alpha \\) \\ \alpha &= 1 \\ \dim ff(a,b) &= \dim f(b,c) = 1, \\ \dim ff(a,c) &= 2 \end{split}$$

< 回 > < 回 > < 回 >

$$\begin{split} d(s[0,i], \ t[0,j]) &= \\ \min(d \ (s[0,i-1], \ t[0,j-1]) + \operatorname{diff}(s[i], \ t[j]), \\ d \ (s[0,i-1], \ t[0,j]) + \alpha, \\ d \ (s[0,i], \ t[0,j-1]) + \alpha \\) \\ \alpha &= 1 \\ \operatorname{diff}(a,b) &= \operatorname{diff}(b,c) = 1, \\ \operatorname{diff}(a,c) &= 2 \end{split}$$

< 回 > < 回 > < 回 >

 $\begin{aligned} d(s[0,i], t[0,j]) &= \\ \min(d(s[0,i-1], t[0,j-1]) + \operatorname{diff}(s[i], t[j]), \\ d(s[0,i-1], t[0,j]) + \alpha, \\ d(s[0,i], t[0,j-1]) + \alpha \\) \end{aligned}$ $\alpha &= 1 \\ \operatorname{diff}(a,b) &= \operatorname{diff}(b,c) = 1, \\ \operatorname{diff}(a,c) &= 2 \end{aligned}$

< 回 > < 回 > < 回 >

 $\delta = 2$

To check if $d(s,t) > \delta$ or if $d(s,t) = \delta$, focus on δ -diagonal.

Construct DFA $\mathcal{D}^{>\delta}$: runs on a string pair (s, t), and accepts iff $d(s, t) > \delta$.

Construct DFA $\mathcal{D}^{=\delta}$: runs on a string pair (s, t), and accepts iff $d(s, t) = \delta$.

< ロ > < 同 > < 回 > < 回 >

Distance-tracking automaton, $\mathcal{D}^{>\delta}$

					_						
				с	а	с	а	#	#	$(\epsilon,\epsilon,\langle \perp,\perp,0,\perp,\perp angle)$	
			0	1	2	3	4	5	6	(a, c)	
		0	0	1	2					$(a, c, \langle \perp, 1, 2, 1, \perp \rangle)$	[
a	1	1	1	2	1	2				(c, a)	
c	;	2	2	1	2	1	2			(ac, ca, (2, 1, 2, 1, 2))	
c	;	3		2	т	2	т	Т		(<i>c</i> , <i>c</i>)	
c	;	4			т	т	Т	Т	Т	$(cc, ac, \langle 2, \top, 2, 1, 2 \rangle)$	
a	1	5				Т	()	Т	т		
#		6					Т	Т	т		

・ロト ・ 四ト ・ ヨト ・ ヨト

 $\delta = 2$

э

Distance-tracking automata

 $\mathcal{D}^{>\delta}$ accepts a pair of strings (s, t) iff $d(s, t) > \delta$.

$\mathcal{D}^{=\delta}$ accepts a pair of strings (s, t) iff $d(s, t) = \delta$.

Roopsha Samanta

Robustness Analysis of String Transducers

Robustness analysis of Mealy machines

- \mathcal{A}^{δ} is constructed from:
 - **1** Input: accepts (s, t) iff $d(s, t) = \delta$
 - **2** Pair: transforms (s, t) to (s', t') according to T
 - **Output:** accepts (s', t') iff $d(s', t') > K\delta$.

< 回 > < 三 > < 三 >

Robustness analysis of Mealy machines

\mathcal{A}^{δ} is constructed as a *synchronized product* of:

```
    Input: D<sup>=δ</sup>
    Pair: transforms (s, t) to (s', t') according to T
    Output: D<sup>>Kδ</sup>
```

Roopsha Samanta

イロト イポト イヨト イヨト

Robustness analysis of functional transducers

- In each transition, Pair can generate a string pair
- In each transition, Output can only read a symbol pair
- Output is tricky needs to remember substrings of leading string
- *^δ* is not a simple synchronized product

Robustness analysis of functional transducers

- In each transition, Pair can generate a string pair
- In each transition, Output can only read a symbol pair
- Output is tricky needs to remember substrings of leading string
- \mathcal{A}^{δ} is not a simple synchronized product

- MeFirst = Trim(Input \otimes Pair)
- Pairwise-delay (pd) of path π of **MeFirst**: abs (|w'| |v'|)

- MeFirst = Trim(Input \otimes Pair)
- Pairwise-delay (pd) of path π of **MeFirst**: abs (|w'| |v'|)

MeFirst has bounded pd iff pd of all cyclic paths in MeFirst is 0.

MeFirst has bounded pd iff all simple cycles have equal length output strings.

- MeFirst = Trim(Input \otimes Pair)
- Pairwise-delay (pd) of path π of **MeFirst**: abs (|w'| |v'|)

If **MeFirst** has bounded pd, then maximum pd over all paths < **Delay**, where **Delay** = $|Q|^2 |Q_I| \ell_{max}$.

- Q, Q_I : states of T, Input
- ℓ_{max} : length of longest output string in T's transitions

- MeFirst = Trim(Input \otimes Pair)
- Pairwise-delay (pd) of path π of **MeFirst**: abs (|w'| |v'|)

If **MeFirst** does not have bounded pd, \mathcal{T} is non-robust.

Robustness analysis of functional transducers

- Check if MeFirst has bounded pd
- 2 If not, declare T as non-robust
- 3 If yes, *carefully construct* \mathcal{A}^{δ} from:
 - **)** Input: $\mathcal{D}^{=\delta}$
 - **2** Pair: transforms (s, t) to (s', t') according to T
 - Output:
 - similar to $\mathcal{D}^{>K\delta}$
 - remembers **Delay** + $K\delta$ symbols in state

and proceed as before

Results

Robustness verification w.r.t. generalized Levenshtein distance:

- Mealy machine can be done in PSPACE in B and K
- Functional transducer can be done in EXPSPACE in B

Robustness verification w.r.t. generalized Manhattan distance:

- Mealy machine can be done in NLOGSPACE in size(T), B, K, $|\Sigma|$, $|\Gamma|$ and maximum mismatch penalty
- Functional transducer can be done in PSPACE in B and K

Results

Robustness verification w.r.t. generalized Levenshtein distance:

- Mealy machine can be done in PSPACE in B and K
- Functional transducer can be done in EXPSPACE in B

Robustness verification w.r.t. generalized Manhattan distance:

- Mealy machine can be done in NLOGSPACE in size(T), B, K, $|\Sigma|$, $|\Gamma|$ and maximum mismatch penalty
- Functional transducer can be done in PSPACE in B and K

Related Work

- Sequential programs with perturbed inputs [MS09, CGLN11]
- Input-output stability of finite-state transducers [TBCSM12]
- Sequential circuits, common suffix distance metric [DHLN10]
- Robustness analysis of networked systems [SDC13]
- Reactive systems with ω -regular spec. in uncertain environment [MRT11, CHR10, BGHJ09]

Future Work

- Understand robustness of transducers better
- Generalize error model channel error, modeling error, process failure
- Generalize system model weighted transducers?

Thank you.

Roopsha Samanta

Robustness Analysis of String Transducers

æ

イロト イヨト イヨト イヨト