
157

QuickSilver: Modeling and Parameterized Verification for

Distributed Agreement-Based Systems

NOURALDIN JABER, Purdue University, USA

CHRISTOPHER WAGNER, Purdue University, USA

SWEN JACOBS, CISPA Helmholtz Center for Information Security, Germany

MILIND KULKARNI, Purdue University, USA

ROOPSHA SAMANTA, Purdue University, USA

The last decade has sparked several valiant efforts in deductive verification of distributed agreement protocols

such as consensus and leader election. Oddly, there have been far fewer verification efforts that go beyond

the core protocols and target applications that are built on top of agreement protocols. This is unfortunate, as

agreement-based distributed services such as data stores, locks, and ledgers are ubiquitous and potentially

permit modular, scalable verification approaches that mimic their modular design.

We address this need for verification of distributed agreement-based systems through our novel modeling

and verification framework,QuickSilver, that is not only modular, but also fully automated. The key enabling

feature of QuickSilver is our encoding of abstractions of verified agreement protocols that facilitates modular,

decidable, and scalable automated verification. We demonstrate the potential of QuickSilver by modeling

and efficiently verifying a series of tricky case studies, adapted from real-world applications, such as a data
store, a lock service, a surveillance system, a pathfinding algorithm for mobile robots, and more.

CCS Concepts: • Theory of computation → Program verification; Distributed computing models;
Automated reasoning; Verification by model checking; Abstraction; Concurrency; Program analysis.

Additional Key Words and Phrases: Parameterized Verification, Modular Verification, Distributed Systems

ACM Reference Format:

Nouraldin Jaber, ChristopherWagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta. 2021.QuickSilver:
Modeling and Parameterized Verification for Distributed Agreement-Based Systems. Proc. ACM Program. Lang.

5, OOPSLA, Article 157 (October 2021), 31 pages. https://doi.org/10.1145/3485534

1 INTRODUCTION

Modern distributed services such as data stores, logs, caches, queues, locks, and ledgers heavily rely
on distributed agreement to perform their higher-level functionsÐprocesses in these distributed
services need to agree on a leader, on the members of a group, on configurations, or on owners
of locks. Notable instances of such distributed agreement-based services include the Chubby lock
service [Burrows 2006] and RedisRaft key-value store [RedisRaft 2021], which are built on top of the
Paxos [Lamport 1998] and Raft [Ongaro and Ousterhout 2014] consensus algorithms, respectively.
The importance of agreement protocols as a key building block in distributed services has sparked
significant verification efforts for these protocols [Chand et al. 2016; Cousineau et al. 2012; Drăgoi

Authors’ addresses: Nouraldin Jaber, Purdue University, West Lafayette, USA, njaber@purdue.edu; Christopher Wagner,
Purdue University, West Lafayette, USA, wagne279@purdue.edu; Swen Jacobs, CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany, jacobs@cispa.saarland; Milind Kulkarni, Purdue University, West Lafayette, USA, milind@
purdue.edu; Roopsha Samanta, Purdue University, West Lafayette, USA, roopsha@purdue.edu.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART157
https://doi.org/10.1145/3485534

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534

157:2 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

et al. 2014; Drăgoi et al. 2016; García-Pérez et al. 2018; Lamport 2002; Liu et al. 2012; Marić et al.
2017; Padon et al. 2017b; Woos et al. 2016]. Intriguingly, with rare exceptions, these efforts restrict
their attention to the core protocols and do not consider the distributed services that build on
those protocols. This is unfortunate because there are arguably more distributed systems that build
on agreement protocols than there are implementations of these core protocols. Moreover, such
agreement-based systems are more likely to be developed by non-experts who can benefit from
verification. In this paper, we ask can we develop modular modeling and verification frameworks for

distributed agreement-based systems by (1) assuming that the underlying agreement protocols are
verified separately and (2) encapsulating their complexities within cleanly-defined abstractions?
Such an approach would both allow us to leverage the heroic efforts towards verifying agreement
protocols as well as ease the burden of modeling the distributed systems that rely on those proto-
cols. We note that existing verification efforts for agreement-based systems that go beyond core
protocols [Hawblitzel et al. 2015; Liu et al. 2012; Padon et al. 2016; v. Gleissenthall et al. 2019], with
the exception of [Griffin et al. 2020; Sergey et al. 2017], do not leverage the availability of verified
agreement artifacts through systematic agreement abstractions.
We further ask: can our agreement abstractions enable fully automated, parameterized verifi-

cation for interesting classes of agreement-based systems? This second question is an open one.
The parameterized model checking problem (PMCP)Ðthe problem of algorithmically verifying
correctness of systems parameterized by the number of processesÐis well-known to be undecidable
in its full generality [Apt and Kozen 1986; Suzuki 1988]. While decidability has been shown for
some restricted classes of distributed systems, it is unclear whether agreement-based systems allow
for a decidable parameterized verification procedure at all. Past verification efforts for agreement
protocols/implementations as well as agreement-based systems sidestep the decidability issue by
preferring the use of interactive or semi-automated deductive verification over model checking.
The appeal of push-button verification that does not require a user to provide inductive invariants
or manipulate a theorem prover, however, remains undeniable. We argue that abstracting away
and separately verifying the intricate details of agreement (using deductive techniques) should
yield simpler models of agreement-based systems that may now become amenable to decidable and
scalable model checking.
In this paper, we propose theQuickSilver framework for modeling and parameterized model

checking of distributed agreement-based systems. QuickSilver advances a brand new verification
strategy for agreement-based systems that is not only modular, but also fully automated.

1.1 The QuickSilver Framework

In our design of QuickSilver, we address several questions:
(1) How should we abstract agreement? The primitives we develop to abstract agreement must be

sufficiently general to capture the essential characteristics of a wide variety of agreement
protocols, while still permitting decidable parameterized model checking of distributed
systems with such primitives.

(2) How should we model our systems? The modeling language we use for distributed agreement-
based systems should match the manner in which system designers build their programs.

(3) How should we identify systems that enable decidable and scalable verification? The fundamental
obstacle we need to tackle is the undecidability of PMCP. Thus, we must find easily-checkable
conditions under which the verification of systemswemodel (including their use of agreement
primitives) is decidable. Further, because our goal is to model fairly complex systems, we
must endeavor to find scalable approaches for verifying these systems.

In particular,QuickSilver makes the following contributions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:3

Mercury: A Modeling Language with Agreement Primitives.We carefully examined a range
of agreement protocols in the literature, such as consensus and leader election, and observed that
while the protocol internals differed substantially, their externally-observable behavior could be
captured with two agreement primitives (namely, Partition and Consensus) that have simple
semantics and abstract away the protocols’ implementation details. The Partition primitive allows
a set of participant processes to divide themselves into groups (e.g., leaders and followers). The
Consensus primitive allows its participants, with each proposing a value, to agree on a finite
set of decided values. Sec. 3 presents a new, intuitive modeling language,Mercury1, that allows
designers to model finite-state distributed systems using these agreement primitives, and hence
design systems without worrying about the internals of the core agreement protocols.

Parameterized Verification ofMercury Systems.WithMercury’s primitives abstracting away
the messy details of distributed agreement, we observe that the resulting higher-level systems can
be more amenable to automated verification. Sec. 4 identifies a broad class of Mercury systems that
permit decidable and efficient parameterized verification. In particular, we present two key results.
First, we identify syntactic conditions onMercury systems that yield decidability of PMCP. Second,
we identify additional syntactic conditions that, for a given class of safety/reachability properties,
enable practical parameterized verification by providing cutoffs: a number 𝑘 of processes such that
verifying the correctness of a fixed-size 𝑘-process system implies the correctness of arbitrary-sized
systems. This result means that non-parameterized model checkers can be leveraged to provide
parameterized verification.
We prove both results by (1) defining Mercury Core, a novel extension of the decidable and

cutoff-yielding fragments of a recently proposed abstract model for distributed systems [Jaber et al.
2020a] and (2) showing thatMercury systems satisfying our syntactic conditions are simulation

equivalent to systems inMercury Core.
The class of safety/reachability properties to which these results apply include properties forbid-

ding the reachability of global states wheremore than a fixed number of processes are simultaneously
in some pivotal local states. An example of such a property is mutual exclusion of a certain critical
local state, i.e., no more than two processes can reach the critical state simultaneously in any execu-
tion. These results currently do not apply to liveness properties, e.g., a leader is eventually elected,
or to arbitrary safety properties, e.g., there exists at least one leader at all times, or, no more than

half of the processes can simultaneously be leaders.

Implementation, Mercury Benchmarks, and Evaluation. With our decidability and cutoff
results for Mercury programs in hand, we have an approach that enables scalable, parameterized
verification of distributed agreement-based systems in theory. Sec. 5 instantiates the theoretical
results of QuickSilver by presenting an implementation of a cutoff-driven parameterized verifica-
tion procedure forMercury systems. Crucially,QuickSilver automatically checks the syntactic
conditions that yield practical parameterized verification. When a system is not practically verifi-
able,QuickSilver provides best-effort feedback suggesting modifications to the system that may
make it so. We show that complex distributed agreement-based systems including a data store, a
lock service, a surveillance system, a pathfinding algorithm for mobile robots, the Small Aircraft
Transportation System (SATS) protocol [NASA 2021], and several other interesting applications
can be naturally and succinctly modeled in Mercury, and can then be efficiently verified.

1.2 Related Work

We first compare with the most related lines of work.

1Modeling Event Reaction and Coordination Using symmetRY

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:4 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

Global Synchronization Protocols (GSPs). In recent work, Jaber et al. [2020a] propose a new
model, GSP, for crash- and failure-free distributed systems and present decidability and cutoff results
for parameterized verification of systems in the model. This model supports global transitions
associated with global guards which can be used by multiple processes to synchronize collectively
and simultaneously. Such global transitions and guards can be used, in theory, to carefully encode
abstractions of agreement protocols. However, the GSP model is an abstract, theoretical model
based on counter abstraction and does not provide an intuitive, accessible interface for system
designers; for instance, processes in the GSP model cannot use local variables and are specified as
low-level state-transition systems with manually-inferred guards. Additionally, users are required
to manually check if their GSP system models fall within the decidable, cutoff-yielding fragment.

In contrast, QuickSilver (i) provides a user-friendly modeling language for distributed systems
with inbuilt primitives that are designed to abstract agreement protocols, (ii) supports process
crash-stop failures, (iii) pushes the boundaries of decidable parameterized verification by expanding
the GSP decidability fragment, and (iv) includes a fully-automated implementation for checking if
Mercury programs belong to the expanded decidable, cutoff-yielding fragment.
Modular Verification with Abstract Modules. Disel [Sergey et al. 2017] and TLC [Griffin et al.
2020] leverage the same observationwe doÐthat distributed applications build on standard protocolsÐ
and enable users to incorporate abstractions of such protocols to provide modular verification using
the Coq theorem prover. The user is responsible for providing both the high-level descriptions of
the underlying protocols as well as the inductive invariants needed to link protocols to their clients
and/or enable horizontal composition with other protocols. The TLC framework could potentially
reason about agreement-based systems as it supports vertical composition, but the user would
need to manually incorporate abstractions of the underlying agreement protocols. In contrast,
QuickSilver is equipped with intuitive, inbuilt primitives that abstract agreement protocols and
facilitate vertical composition and fully-automated parameterized verification.

In what follows, we discuss other broad themes of verification approaches for distributed systems.

Semi-Automated, Deductive Verification. Approaches for semi-automated, deductive verifica-
tion of distributed protocols and implementations expect a user to specify inductive invariants [An-
dersen and Sergey 2019; Doenges et al. 2017; Feldman et al. 2019; Krogh-Jespersen et al. 2020;
Padon et al. 2016; Rahli 2012; Sergey et al. 2017; Wilcox et al. 2017, 2015; Woos et al. 2016]. Some
approaches [Damian et al. 2019; Padon et al. 2017a,b; Taube et al. 2018] enable more (but not full)
automation by translating the user-provided system and inductive invariants into a decidable
fragment of first-order logic (e.g., effectively propositional logic (EPR) [Piskac et al. 2010]) or a
model with a semi-automatic verification procedure (e.g., the Heard-Of model [Charron-Bost and
Schiper 2009]). Recent work [Kragl et al. 2020; v. Gleissenthall et al. 2019] proposes the use of
Lipton’s reduction [Lipton 1975] to reduce reasoning about asynchronous programs to synchro-
nous and sequential programs, respectively, thereby greatly simplifying the invariants needed.
Our approach builds on deductive verification for agreement protocols to enable modeling and
automated parameterized verification of systems built on top of verified agreement protocols.

Model Checking. Prior work on PMCP identifies decidable fragments based on restrictions on
the communication primitives, specifications, and structure of the system [Aminof et al. 2018;
Außerlechner et al. 2016; Delzanno et al. 2002; Emerson and Kahlon 2003b; Esparza et al. 1999;
German and Sistla 1992; Jaber et al. 2020a]. To enable efficient parameterized verification, prior work
additionally identifies cutoff results for various classes of systems, e.g., cache coherence protocols
[Emerson and Kahlon 2003a], guarded protocols [Jacobs and Sakr 2018], consensus protocols [Marić
et al. 2017], and self-stabilizing systems [Bloem et al. 2016]. Unfortunately, no existing decidability
and cutoff results, except for those in [Jaber et al. 2020a], extend to agreement-based systems.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:5

There has also been some work on model checking and synthesis of distributed systems with a
fixed number of finite-state processes [Alur et al. 2014, 2015; Alur and Tripakis 2017; Damm and
Finkbeiner 2014; Liu et al. 2012; Yang et al. 2009]. However, these frameworks are not naturally
extendable for parameterized reasoning and do not consider abstractions of agreement protocols
for improving scalability of verification in the fixed-size setting.

2 QUICKSILVER OVERVIEW

This section presents an illustrative example of a complex system that leverages multiple instances
of distributed agreement for its high-level function. It then provides an overview of the key building
blocks of our modeling language and verification approach using the example. We begin the section
with a brief review of distributed agreement protocols.

Distributed Agreement Protocols. Distributed agreement protocols enable a set of distributed
participants, each proposing one value, to collectively decide on a set of proposals in the presence
of failures and asynchrony. There are many variants of agreement protocols with small differ-
ences in their decision objectives. For instance, the participants may wish to decide on a single
proposal [Lamport 1998, 2006; Mao et al. 2008], an infinite sequence of proposals [Chandra et al.
2007; Ongaro and Ousterhout 2014], or a finite set of leaders amongst themselves [Arghavani et al.
2011; Garcia-Molina 1982]. Despite these variations, any correct agreement protocol is characterized
by the following three guarantees [Lynch 1996]: (i) agreementÐall participants decide on the same
set of proposals, (ii) validityÐevery proposal in the decided set of proposals must have been pro-
posed by a participant, and (iii) terminationÐall participants eventually decide. Accordingly, recent
work in verification of agreement protocols and/or their implementations focuses on guaranteeing
agreement, validity, and termination (or, some reasonable variant of these properties).

2.1 Illustrative Example: Distributed Store

Suppose a system designer wants to model and verify a distributed store where multiple processes
consistently replicate and update a piece of stored data in response to client requests. The clients
may request various operations on the stored data including read and update. To ensure that the
data is consistent across all replicas, the designer decides to use distributed agreement protocols
to determine which operation these replicas should execute next. For efficiency, they use a leader
election protocol to pick a leader that acts as a single point of contact to handle requests from the
clients. These requests are replicated to all other processes using a consensus algorithm to maintain
consistent stored data throughout the system. This design pattern is common in distributed services
like fault-tolerant key-value stores (e.g., RedisRaft [2021]). The safety properties for this system
are: (1) there is at most one leader at any given time and (2) all processes agree on the stored data.
Notice that the designer’s scheme for the distributed store uses different agreement protocols

as building blocks and is inherently modular. Moreover, the safety properties are about the high-
level design of the distributed store and do not refer to the internals of the leader election and
consensus protocols used. Hence, it is sensible to also adopt a modular approach to reasoning
about the correctness of the design. Specifically, instead of reasoning about the distributed store as
a monolithic program with all agreement protocols modeled explicitly, one can assume that the
underlying agreement protocols are verified separately and verify the system where these protocols
are replaced with simpler abstractions that capture their behaviors.
Our framework, QuickSilver, and its modeling language Mercury (presented in Sec. 3) en-

ables the designer to utilize such a modular verification approach with the agreement protocols
represented using special primitives (denoted Partition and Consensus for leader election and
consensus, respectively) that soundly abstract the semantics of agreement protocols.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:6 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

1 process DistributedStore

2 variables

3 int[1,5] cmd ≔ 1

4 int[1,2] stored ≔ 1

5 actions

6 env

7 rz doCmd : int[1,5]

8 rz ackCmd : int[1,5]

9 rz ret : int[1,2]

10 br LeaderDown : unit

11
12 initial location Candidate

13 on Partition<elect>(All,1)

14 win: goto Leader

15 lose: goto Replica

16
17 location Leader

18 on recv(doCmd) do

19 cmd ≔ doCmd.payld

20 if(cmd <= 2 && stored != cmd)

21 goto RepCmd

22 else if(cmd = 3)

23 sendrz(ret[stored], doCmd.sID)

24 else

25 goto RepCmd

26 location RepCmd

27 on Consensus<vcCmd>(All,1,cmd) do

28 cmd ≔ vcCmd.decVar[1]

29 if(cmd <= 2) /*set*/

30 stored ≔ cmd

31 else if(cmd = 4) /*inc*/

32 stored ≔ stored + 1

33 else /*dec*/

34 stored ≔ stored - 1

35 sendrz(ackCmd[cmd], doCmd.sID)

36 goto Leader

37
38 location Replica

39 on Consensus<vcCmd>(All,1,_) do

40 cmd ≔ vcCmd.decVar[1]

41 if(cmd <= 2) /*set*/

42 stored ≔ cmd

43 else if(cmd = 4) /*inc*/

44 stored ≔ stored + 1

45 else /*dec*/

46 stored ≔ stored - 1

47 on recv(LeaderDown) do

48 goto Candidate

Safety Property: In every reachable state, there is at most one leader.
Safety Property: In every reachable state, all processes in locations Replica and Leader agree on the value of

the variable stored.

Fig. 1. Mercury Representation of a Distributed Store Process Definition. A process in a Mercury program

consists of a collection of variables, communication actions, and locations with associated event handlers.

Each event handler consists of an event and a reaction to that event. An event is an empty event, a receive

of a communication action, or one of the two agreement primitives: Partition and Consensus. Reactions

typically consist of a block of update statements, control statements, and/or sends of communication actions.

For instance, the designer may model their distributed store inMercury as shown in (Fig. 1).
Processes start in the Candidate location (Line 12) and coordinate with each other (Line 13) to
elect one leader to move to the Leader location (Line 17), while the remaining processes become
replicas and go to the Replica location (Line 38). The leader can receive requests from clients (via
the doCmd message on Line 18), while the replicas wait for the leader to replicate requests to them.
When the leader receives a request from a client (which could be one of several potential

commands), it handles the request on lines 19ś25. A command payload consists of either a directive
to set the value to 1 or 2 (cmd <= 2); to read the stored value (cmd = 3); or to increment (cmd = 4)
or decrement (cmd = 5) the stored value. On a read request, the leader responds by returning its
stored data to that client (Line 22). When the leader receives any update request, such as a request
to set, increment, or decrement its stored data, the leader moves to the RepCmd location to initiate a
round of consensus to replicate the operation to all replicas in the system (Line 27 for the leader,
Line 39 for the replicas). When consensus is complete, all processes update their stored data by
executing the operation on which they have agreed, and the leader returns an acknowledgment
message to the requesting client. In the event that the leader process has crashed (modeled by

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:7

the environment sending a special LeaderDown message, not shown in Fig. 1), all processes in the
Replica location receive that message (Line 47) and return to the Candidate location so a new
leader may be elected.

Note that the key feature of Mercury’s design arises from the encapsulation of the two distributed
agreement operations that occur: choosing a leader (Line 13), captured by the Partition primitive,
and that leader’s replicating commands to the replicas (lines 27 and 39), captured by the Consensus
primitive. These primitives have carefully-designed semantics that capture the essence of agreement
protocols, and allowMercury programs to be built without considering how that agreement is
implemented. Sec. 2.2 describes these primitives and motivates their design in more detail.

Having represented the distributed store inMercury, the designer can now utilizeQuickSilver’s
push-button parameterized verifier to check the correctness of any distributed system consisting
of one or more such identical processes with respect to the two safety properties. In particular,
QuickSilver can automatically verify that this Mercury distributed store satisfies the safety
properties regardless of the number of processes, in less than a minute. Moreover, any refinement of
this program that instantiates the Partition and Consensus primitives with some verified leader
election or consensus protocol, respectively, is also guaranteed to satisfy the safety properties.

2.2 Agreement Primitives

The design of Mercury’s agreement primitives is driven by our goal of automated, parameterized
verification of agreement-based systems. Thus, the granularity of abstraction in the agreement
primitives was carefully chosen to strike a balance between (a) capturing the essence ofmost practical
agreement protocols without modeling protocol-specific behavior and (b) facilitating decidability
of PMCP (when combined with additional syntactic conditions). To meet these objectives, we
propose two agreement primitives, Partition and Consensus, that can individually model two
common variants of agreement that we refer to as partition-and-move agreement and value-consensus
agreement, respectively. The two primitives can further be composed together to model other
variants of agreement. We informally explain these primitives here, and provide a more formal
treatment of their semantics in Sec. 3.3.

The Partition Primitive. The Partition agreement primitive is used to model partition-and-
move agreement, where a set of participants wishes to partition itself into groups. Instances of
partition-and-move agreement include variants of leader election protocols which partition the
participants into two groups: leaders (or, winners) and non-leaders (or, losers). Note that each
participant essentially proposes their process index (PID), which, in a parameterized distributed
system with an unbounded number of processes, is drawn from an infinite domain. To enable
decidability of PMCP for systems that use partition-and-move agreement protocols, the cardinality
of exactly one group must be unbounded (e.g., non-leaders), while that of all other groups must be
finite (e.g., leaders). This disallows, for instance, partitioning the participants into two equal sets of
winners and losers. Fortunately, we observe that most partition-and-move agreement protocols
pick a finite number of winners that is independent of the number of participants.
Each Partition agreement primitive has an identifier, and takes two parameters: the set of

participants and the desired number of winners. The reaction of each Partition primitive contains
a win (resp. lose) handler that indicates how the process behaves upon winning (resp. losing).

Example. Distributed Store (Fig. 1) uses partition-and-move agreement in Line 13, modeled using
a handler in the Candidate location with the agreement event: Partition <elect>(All,1). This
event uses the Partition primitive with identifier elect and is used to pick 1 process out of the
set of all processes (All). The winners (resp. losers) of this agreement instance move to location
Leader (resp. Replica).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:8 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

The Consensus Primitive. The Consensus agreement primitive is used to model value-consensus
agreement, where a set of participants, each proposing one value, wishes to decide on (a set of)
values. Instances of value-consensus agreement include protocols such as Paxos [Lamport 1998],
Fast Paxos [Lamport 2006], and Mencius [Mao et al. 2008]. To enable decidability of PMCP for
systems that use value-consensus agreement, we restrict the domain of the proposed values to be
finite. We note that many distributed systems aim to solve coordination-like problems rather than
compute a function over their data. Hence, infinite concrete data domains can soundly be treated
as finite abstract data domains using, for example, predicate abstraction.
Each Consensus primitive has an identifier, and takes three parameters: the set of participants,

the number of proposals to be decided and (an optional) variable that a process uses to propose a
value.

Example.Distributed Store (Fig. 1) uses value-consensus agreement in Lines 27 and 39 to allow the
processes to decide which operation should be executed next. In particular, the processes use two
handlers: one in the RepCmd location with the agreement event Consensus <vcCmd>(All,1,cmd),
and another in the Replica location with the agreement event Consensus <vcCmd>(All,1,_).
Both primitives have the identifier vcCmd and allow all processes to participate (All). In the former,
the leader proposes a value from the variable cmd, while in the latter, the replicas propose no value
(denoted by _). The primitive decides on one value that can be accessed by all participants using
the expression vcCmd.decVar[1].

Composition of Primitives. The Partition and Consensus primitives can be composed to model
agreement protocols like Multi-Paxos [Chandra et al. 2007] and Raft [Ongaro and Ousterhout
2014], where a set of participants wish to decide on a potentially infinite sequence of values.
Instead of invoking agreement on every value of the sequence individually, such protocols enhance
practicality by first electing a leader that proposes the values, while the rest of the processes accept
such values. Such protocols can be modeled by using a Partition primitive to elect a leader, and
then using Consensus primitives to have the leader propose values in subsequent rounds. Our
Distributed Store example uses such a composition: upon receiving a doCmd request, the leader uses
the Consensus primitive to agree with the replicas. Note that the replicas pass an empty proposal
(denoted _) as only the leader should be proposing values.

2.3 Parameterized Verification in QuickSilver

Since PMCP is a well-known undecidable problem, it is not immediately obvious if parameterized
verification is even decidable for Mercury programs with agreement primitives. To this end,
we first identify an expanded decidable fragment,Mercury Core, of an existing abstract model
of distributed systems. Furthermore, we present two additional theoretical results that enable
decidable and efficient parameterized verification for Mercury programs. These results are based
on establishing a correspondence between Mercury programs and programs in the more abstract
Mercury Core model, and appealing toMercury Core’s decidability and cutoff results.

Decidable ParameterizedVerification.We identify syntactic conditions, called phase-compatibility

conditions, on systems with agreement primitives that yield decidability of PMCP. Informally, the
phase-compatibility conditions capture systems that proceed in phases: each process is always in
the same phase as every other process and all processes, simultaneously, move from one phase
to the next using some global synchronization such as synchronous broadcasts or agreement.
The phase-compatibility conditions ensure that the system’s ability to move between phases is
independent of the number of processes, thereby paving the way towards decidable parameterized
verification.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:9

Example. Distributed Store (Fig. 1) is phase-compatible and hence enables decidable parameterized
verification. The system starts in a phase where all processes are in the Candidate location, then
uses a Partition primitive to move to the second phase where all processes are in locations Leader
and Replica where the system is ready to receive requests from the clients.

Practical Parameterized Verification. Unfortunately, the decision procedure for PMCP in the
Mercury Core fragment has non-primitive recursive complexity [Schmitz and Schnoebelen 2013].
Hence, we identify additional syntactic conditions, called cutoff-amenability conditions, that, for
a given class of safety properties, enable reducing the parameterized verification problem for
systems with phase-compatible processes to verification of a system with a small, fixed number of
processes. This small, fixed number of processes is called a cutoff, and essentially entails a small
model property: if there exists a counterexample to a safety property in a system with a certain,
possibly large, number of processes, then there exists a counterexample to the property in a system
with a cutoff number of processes.
Example. The cutoff for Distributed Store (Fig. 1) and its safety properties is 3. Essentially, due to
the nature of the safety properties and the structure of the system, any violation of the property in
a system with more than 3 actors can still be reproduced in a system with 3 processÐany additional
actors will not prevent the 3 process from potentially reaching an error state.
While the cutoff may seem obvious here, in general, cutoff arguments are non-trivial and

deriving cutoff results requires a deep understanding of the underlying machinery for decidable
parameterized verification.

We note that someMercury programs may not be practically verifiable. In this event,QuickSil-

ver provides best-effort feedback suggesting program modifications to the designer that can help
fit their design into the desirable fragment of Mercury programs.

3 THE MERCURY MODELING LANGUAGE

We present Mercury, a language for modeling distributed agreement-based systems. We focus on
systems in which the uncertainties and intricacies of their behavior in the presence of asynchro-
nous communication and failures are essentially encapsulated within the underlying agreement
protocols. Thus, while the agreement protocols may use asynchronous communication and tolerate
network and process failures, we impose some simplifying assumptions on the systemmodel outside
of agreement. We assume that non-communicating processes can operate asynchronously, but
communication is synchronous (i.e., sending and receiving processes must block until they can
communicate). We further assume that processes may crash (i.e. exhibit crash-stop failures), but the
network is reliable. These assumptions enable our initial exploration of the boundaries of decidable
parameterized reasoning for agreement-based systems.
While Mercury includes standard features like communication actions, events, and event han-

dlers, its distinguishing feature is the availability of special primitives for encapsulating different

agreement protocols. Mercury also includes some design choices to facilitate decidable parame-
terized verification. We define the syntax and semantics of Mercury programs, with a detailed
treatment of the semantics of its agreement primitives.

3.1 Mercury Syntax and Informal Semantics

Programs. A Mercury program is a collection of an unbounded number 𝑛 of identical2 system
processes 𝑃1, 𝑃2, . . . , 𝑃𝑛 and an environment process 𝐸, communicating via events. Each system process
has a unique process index (PID) drawn from the set 𝐼𝑛 = {1, 2, . . . , 𝑛}.

2This can be relaxed to allow a finite number of distinct process definitions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:10 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

Processes. The syntax for a Mercury system process is shown in Fig. 2. A process definition
begins with a declaration of typed variables and communication actions, and is followed by a
sequence of locations wit aa designated initial location. The variable type idSet corresponds to
sets of process indices; the domain of this type is unbounded as the number of system processes
is, in general, unbounded. The variable type int has a fixed, finite range that is specified in the
declarationÐthis is one of the inbuilt restrictions inMercury to facilitate automated parameterized
verification. Communication actions either represent communication between system processes or
communication between the environment process and system processes; further, communication
actions are either broadcast actions (denoted br) involving communication from one process to
all other processes or rendezvous actions (denoted rz) involving communication between a pair
of processes. Each communication action act has an optional (finite) integer-valued payload field
that can be retrieved via the expression act.payld.

Each location contains a set of event handlers that consists of an event and a reaction to that event.
An event can be the empty event (_), a receive of a communication action (recv), or one of two
agreement primitives. A handler for an empty event corresponds to a non-reactive action a process
may initiate, i.e., an internal computation or a send of a communication action. A Partition

primitive part has two parameters: the set of participants and the number of winners to be chosen.
The set of winners (resp. losers) is retrieved via the expression part.winS (resp. part.loseS). A
Consensus primitive cons has three parameters: the set of participants, the number of proposals to
be chosen, and an optional variable, ⟨optIntVar⟩, from which a process proposes its value. The 𝑘 th

value from the set of decided values, cons.decVar, is retrieved via the expression cons.decVar[𝑘].
A reaction to an event consists of a block of update statements, control statements, and/or sends.

Update statements include assignments to integer variables and statements to add or remove a PID
from a set of PIDs. Control statements include conditionals and goto statements used to switch
between locations. A sendrz statement is a rendezvous send that transmits a message with an
action identifier act and an optional payload ⟨optIntVar⟩ to a process with index given by ⟨idExp⟩.
A sendbr statement is a broadcast send that transmits a message with an action identifier act and
an optional payload ⟨optIntVar⟩ to all other processes.
Reactions for empty, receive and Consensus events all begin with do. Additionally, a guarded

reaction of the form where(⟨bExp⟩) do ⟨stmt⟩ can be used for empty and receive events to ensure
that the handler is only enabled if some Boolean predicate evaluates to true. Finally, the reaction
for a Partition event is of the form win: ⟨stmt⟩ lose: ⟨stmt⟩, indicating how a process should
react if it wins and if it loses.
An environment process is a simpler version of a system process with variable types restricted

to int and event types restricted to empty and receive events.

Expressions. The syntax for all expressions in Mercury processes is shown in Fig. 3. An ⟨idExp⟩
expression evaluates to a PIDÐself retrieves the PID of the current process and, in a receive handler
for communication action act, the expression act.sID retrieves the PID of the corresponding
sender. An ⟨idSetExp⟩ expression evaluates to a set of PIDs as shown and includes the expressions
part.winS and part.loseS introduced earlier. An ⟨intExp⟩ expression evaluates to an integer and
includes the expressions act.payld and cons.decVar[intConst], introduced earlier. A Mercury

arithmetic expression, ⟨arithOp⟩, is standard and is not shown. AMercury Boolean expression,
⟨bExp⟩, constrains comparison of ⟨idExp⟩ expressions to equality and disequality checks; we expand
on this restriction at the end of Sec. 3.2 and emphasize that this is a common syntactic restriction
used to facilitate the use of structural symmetries for scalable verification (cf. [Emerson and Sistla
1996; Emerson and Wahl 2003; Ip and Dill 1996; v. Gleissenthall et al. 2019; Wahl 2007]).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:11

⟨process⟩ ::= process proc ; variables ⟨vars⟩ ; actions ⟨acts⟩ ; initial ⟨locs⟩

⟨vars⟩ ::= 𝜖 | ⟨vars⟩ ; ⟨vars⟩
| idSet idSetV Set of PIDs initialized to Empty

| int [intConst, intConst] intV ≔ intConst User-initialized bounded integer

⟨acts⟩ ::= ⟨sysActs⟩ ; ⟨envActs⟩

⟨sysActs⟩ ::= 𝜖 | ⟨sysActs⟩ ; ⟨sysActs⟩
| br act : ⟨payldDom ⟩ Broadcast action
| rz act : ⟨payldDom ⟩ Rendezvous action

⟨envActs⟩ ::= 𝜖 | env ⟨sysActs⟩

⟨payldDom⟩ ::= unit Empty payload
| int [intConst, intConst] Bounded integer payload

⟨locs⟩ ::= ⟨locs⟩ ; ⟨locs⟩
| location loc ⟨handlers⟩

⟨handlers⟩ ::= 𝜖 | ⟨handlers⟩ ; ⟨handlers⟩
| on ⟨event ⟩ ⟨reaction⟩

⟨event ⟩ ::= _ Empty event
| recv(act) Receive event
| Partition<part>(⟨idSetExp⟩, intConst) Partition event
| Consensus <cons>(⟨idSetExp⟩, intConst, ⟨optIntVar ⟩) Consensus event

⟨reaction⟩ ::= do ⟨stmt ⟩ Unguarded reaction
| where(⟨bExp⟩) do ⟨stmt ⟩ Guarded reaction
| win: ⟨stmt ⟩ lose: ⟨stmt ⟩ Partition reaction

⟨stmt ⟩ ::= ⟨stmt ⟩ ; ⟨stmt ⟩

| ⟨updateStmt ⟩

| ⟨sendStmt ⟩

| ⟨controlStmt ⟩

⟨updateStmt ⟩ ::= intV := ⟨intExp⟩
| idSetV.add(⟨idExp⟩)

| idSetV.remove(⟨idExp⟩)

⟨sendStmt ⟩ ::= sendrz(act, ⟨optIntVar ⟩, ⟨idExp⟩) Rendezvous send statement
| sendbr(act, ⟨optIntVar ⟩) Broadcast send statement

⟨controlStmt ⟩ ::= if(⟨bExp⟩) ⟨stmt ⟩ else ⟨stmt ⟩

| goto loc

⟨optIntVar ⟩ ::= _ | intV Optional integer variable

Fig. 2. Syntax forMercury. In the grammar, non-terminals are enclosed in ⟨ ⟩, keywords are in boldface,

and all other terminals are monospaced.

Syntactic Sugar. Mercury provides syntactic sugar (Fig. 4) to simplify expressing some common
idioms. A passive handler specifies events a process should not react to. A reply reaction sends a
rendezvous reply to the last sender.

3.2 Agreement-FreeMercury Program Semantics

The semantics of Mercury processes and programs is best described using state-transition systems.
We first define the semantics of Mercury programs without agreement primitives, then extend the
definition toMercury programs with agreement primitives in Sec. 3.3. Intuitively, the semantics

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:12 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

⟨idExp⟩ ::= self PID of current process
| act.sID PID of sender of action act

⟨idSetExp⟩ ::= All | Empty | idSetV
| part.winS Set of winners of Partition primitive part
| part.loseS Set of losers of Partition primitive part

⟨intExp⟩ ::= intConst | intV | ⟨intExp⟩ ⟨arithOp⟩ ⟨intExp⟩
| act.payld Payload of action act

| cons.decVar[intConst] Selecting some decided value of Consensus primitive cons

⟨bExp⟩ ::= True | False | !⟨bExp⟩
| ⟨bExp⟩ ⟨boolOp⟩ ⟨bExp⟩
| ⟨intExp⟩ ⟨cmpOp⟩ ⟨intExp⟩

| ⟨idExp⟩ ⟨eqOp⟩ ⟨idExp⟩

⟨cmpOp⟩ ::= < | > | <= | >= | ⟨eqOp⟩

⟨eqOp⟩ ::= = | !=

Fig. 3. Syntax of Mercury Expressions.

⟨handlers⟩ ::= passive ⟨eventList ⟩ Handler specifying list of events a process should not react to

⟨eventList ⟩ ::= ⟨eventId ⟩ | ⟨eventId ⟩ , ⟨eventList ⟩

⟨eventId ⟩ ::= act | part | cons

⟨reaction⟩ ::= reply(act, ⟨optIntVar ⟩) A rendezvous reply to the last sender

Fig. 4. Mercury Syntactic Sugar.

allows non-communicating processes in Mercury programs to operate asynchronously while
ensuring that communication and agreement is synchronous and consistent.

Core Fragment of Mercury. To enable a succinct description of Mercury programs’ semantics,
we rewrite process definitions into a core fragment of the language with the event handlers and
statements depicted in Fig. 5. The handlers may contain two types of statements (shown in Fig. 5a):
a statement ⟨iStmt⟩ that consists of a (possibly empty) sequence of update statements, followed
by a goto statement; and a statement ⟨sStmt⟩ that consists of a send statement, followed by an
⟨iStmt⟩ statement. The internal core handler in Fig. 5b embodies computations that the process
does without communication with other processes; the send core handler in Fig. 5c embodies a
send of some action by a process; and the receive core handler in Fig. 5d embodies the reaction
of a process to a receive of some action. Note that all three handlers are guarded by a predicate
that dictates when they are enabled. The core handlers in Fig. 5e and Fig. 5f are for agreement
primitives and only contain goto statements as shown. For the rest of this paper, let 𝑃 be a process
in the core frament of Mercury. With some abuse of notation, we use 𝑣𝑎𝑟𝑠 , 𝑎𝑐𝑡𝑠 , and 𝑙𝑜𝑐𝑠 to refer
to the sets of variables, actions, and locations in their eponymous sequences in Fig. 2.

Process Semantics. The semantics of a process 𝑃 is defined as a labeled state-transition system
(𝑆, 𝑠0, 𝑠𝑐𝑟 , 𝑎𝑐𝑡𝑠,𝑇), where 𝑆 is the set of (local) states, 𝑠0 is the initial state, 𝑠𝑐𝑟 is a special łcrashedž
state, 𝑎𝑐𝑡𝑠 is the set of actions, and𝑇 ⊆ 𝑆×{sendrz, sendbr, recvrz, recvbr, crash, 𝜖}×𝑎𝑐𝑡𝑠×𝐼𝑛×𝑆

is the set of (local) labeled transitions of 𝑃 . A state 𝑠 ∈ 𝑆 is a pair (loc, 𝜎) where loc ∈ 𝑙𝑜𝑐𝑠 is a

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:13

⟨iStmt ⟩ ::= ⟨uStmts⟩; goto loc

⟨sStmt ⟩ ::= ⟨sendStmt ⟩; ⟨iStmt ⟩

⟨uStmts⟩ ::= 𝜖 | ⟨updateStmt ⟩ | ⟨uStmts⟩; ⟨uStmts⟩

(a)

location loc

on _ where (⟨bExp⟩) do

⟨iStmt⟩
(b)

location loc

on _ where (⟨bExp⟩) do

⟨sStmt⟩
(c)

location loc

on recv(act) where (⟨bExp⟩) do

⟨iStmt⟩
(d)

location loc

on Partition<part>(⟨idSetExp⟩,intConst)

win: goto loc lose: goto loc
(e)

location loc

on Consensus<cons>(⟨idSetExp⟩,intConst,⟨optIntVar⟩)

goto loc
(f)

Fig. 5. Syntax of Core Mercury. (a) Core Statements. Core handler for (b) Internal, (c) Send, (d) Receive, (e)

Partition, and (f) Consensus.

location and 𝜎 is a valuation of the variables in 𝑣𝑎𝑟𝑠 . We let 𝜎 (𝑣𝑎𝑟) denote the value of the variable
𝑣𝑎𝑟 according to 𝜎 . For a state 𝑠 = (loc, 𝜎), we let 𝑠 .𝑙𝑜𝑐 denote the location loc in 𝑠 , and 𝑠 .𝜎 (𝑣𝑎𝑟)
denote the value 𝜎 (𝑣𝑎𝑟) of variable 𝑣𝑎𝑟 in 𝑠 . Similarly, we use 𝜎 (𝑒𝑥𝑝𝑟) (𝑠 .𝜎 (𝑒𝑥𝑝𝑟)) to denote the
value of expression 𝑒𝑥𝑝𝑟 evaluated under 𝜎 (in state 𝑠). The initial state 𝑠0 = (loc0, 𝜎0), where loc0
denotes the initial location and 𝜎0 denotes the initial variable valuation. The crash state 𝑠𝑐𝑟 is a
special state that the process is assumed to enter upon exhibiting a crash-stop failure.
A transition of process 𝑃 without agreement primitives corresponds to the execution of one of

the three core event handlers in Fig. 5b, Fig. 5c, and Fig. 5d; a transition is labeled either with a
send/receive of a communication action in 𝑎𝑐𝑡𝑠 or an empty label 𝜖 denoting an internal transition.
For each core handler, let loc denote the current location and loc′ denote the target location of
the goto statement. Then, the transitions in 𝑇 are defined as follows:
(a) For each broadcast send handler as shown in Fig. 5c with ⟨sendStmt⟩ given by sendbr(act,

⟨optIntVar⟩),𝑇 contains a transition (loc, 𝜎)
sendbr(act)
−−−−−−−−−→ (loc′, 𝜎 ′) for each𝜎 such that𝜎 (𝑏𝐸𝑥𝑝) =

𝑡𝑟𝑢𝑒 and 𝜎 ′ is obtained from 𝜎 by applying the sequence of updates ⟨uStmts⟩. Note that if
⟨optIntVar⟩ is 𝜖 , the payload is empty and if ⟨optIntVar⟩ is a variable, denoted by 𝑣𝑎𝑟act, the
payload is 𝜎 (𝑣𝑎𝑟act).

(b) For each broadcast receive handler as shown in Fig. 5d with broadcast action act, 𝑇 contains a

transition (loc, 𝜎)
recvbr(act)
−−−−−−−−−→ (loc′, 𝜎 ′) for each 𝜎 such that 𝜎 (𝑏𝐸𝑥𝑝) = 𝑡𝑟𝑢𝑒 and 𝜎 ′ is obtained

from𝜎 by applying the sequence of updates ⟨uStmts⟩. Note that ⟨uStmts⟩may access the received
value using the expression act.payld.

(c) To model process crash-stop failures,𝑇 contains a transition (loc, 𝜎)
crash
−−−−→ 𝑠𝑐𝑟 for each (loc, 𝜎).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:14 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

Local transitions corresponding to internal and rendezvous send and receive can be formalized
similarly. We use 𝐸 to denote the environment process and 𝑆𝐸, 𝑠0,𝐸 etc. to denote its set of states,
initial state etc., respectively.

Distributed Program Semantics. The semantics of a Mercury program consisting of 𝑛 identical
system processes 𝑃1, . . . , 𝑃𝑛 and the environment process 𝐸 is defined as a state-transition system
M(𝑛) = (𝑄,𝑞0, 𝑅), parameterized by the number of processes 𝑛, where:
1. 𝑄 = 𝑆𝑛 × 𝑆𝐸 is the set of global states,
2. 𝑞0 = (𝑠0, . . . , 𝑠0, 𝑠0,𝐸) is the initial global state, and
3. 𝑅 ⊆ 𝑄 × 𝑄 is the set of global transitions where (i) all processes synchronize on a broadcast

communication action, (ii) two processes synchronize on a rendezvous communication action,
(iii) one process makes an asynchronous internal move, or (iv) one process crashes. Formally, a
global transition (𝑞, 𝑞′) based on a broadcast action act is in 𝑅 iff there exists a process 𝑃𝑖 with

𝑠𝑖
sendbr(act)
−−−−−−−−−→ 𝑠 ′𝑖 , and every other process 𝑃 𝑗 with 𝑗 ≠ 𝑖 has a transition 𝑠 𝑗

recvbr(act)
−−−−−−−−−→ 𝑠 ′𝑗 such

that 𝑞′ = 𝑞 [𝑠𝑖 ← 𝑠 ′𝑖 ,∀𝑗 ≠ 𝑖 : 𝑠 𝑗 ← 𝑠 ′𝑗] and if ⟨optIntVar⟩ is the variable 𝑣𝑎𝑟act, 𝑠𝑖 .𝜎 (𝑣𝑎𝑟act) =
act.payld. Here, 𝑞 [𝑠𝑖 ← 𝑠 ′𝑖] indicates that process 𝑃𝑖 moves from state 𝑠𝑖 to 𝑠 ′𝑖 . A global crash

transition (𝑞, 𝑞′) is in 𝑅 iff there exists a process 𝑃𝑖 with a local crash transition 𝑠𝑖
crash
−−−−→ 𝑠𝑐𝑟 and

𝑞′ = 𝑞 [𝑠𝑖 ← 𝑠𝑐𝑟]. Global transitions corresponding to rendezvous actions or internal transitions
can be formalized similarly.

An execution of a global transition system M(𝑛) is a (possibly infinite) sequence of states,
𝑞0, 𝑞1, . . ., in 𝑄 such that for each 𝑗 ≥ 0, (𝑞 𝑗 , 𝑞 𝑗+1) ∈ 𝑅. A state 𝑞 is reachable if there exists a finite
execution ofM(𝑛) that ends in 𝑞.
In what follows, we useM andM(𝑛) as well as system process and process, interchangeably.

Correctness Specifications. In this work, we focus on a broad class of invariant properties of
systemsmodeled inMercury. In particular, our correctness specifications are Boolean combinations
of universally quantified formulas over locations, int variables, and a finite number of variables
with distinct valuations over 𝐼𝑛 .

For example, one can specify that a location 𝑐 is a critical section (of size 1) as:∀𝑖, 𝑗 ∈ 𝐼𝑛 .¬(𝑞 [𝑖] .𝑙𝑜𝑐 =
𝑐 ∧ 𝑞 [𝑗] .𝑙𝑜𝑐 = 𝑐); Distributed Store (Fig. 1) uses a specification of this form to ensure that at most 1
process can be in Leader. As another example, one can specify that all processes in some location
𝑑 must have the same value in their local variable 𝑣 as: ∀𝑖, 𝑗 ∈ 𝐼𝑛 .𝑞 [𝑖] .𝑙𝑜𝑐 = 𝑑 ∧ 𝑞 [𝑗] .𝑙𝑜𝑐 = 𝑑 ⇒

𝑞 [𝑖] .𝜎 (𝑣) = 𝑞 [𝑗] .𝜎 (𝑣); Distributed Store uses specifications of this form to ensure the stored data is
consistent.
The programM(𝑛) is safe if it has no reachable states that violate its correctness specification.

Given a specification 𝜙 (𝑛), also parameterized by 𝑛, we use the standard notationM(𝑛) |= 𝜙 (𝑛) to
denote thatM(𝑛) is safe.

Symmetry for Efficient, Parameterized Verification. Performing automated parameterized ver-
ification for systems with an arbitrary number of processes hinges on the number of different
types of processes being bounded (in Mercury, there are two types: system and environment).
Thus, parameterized systems naturally exhibit many similar global behaviors that are indepen-
dent of specific process indices. The symmetric nature of such global behaviors offers another
advantage: it is possible to greatly improve the verification time of symmetric systems through
symmetry reduction [Emerson and Sistla 1996]. In particular, a (global) state-transition systemM
is fully-symmetric if its transition relation 𝑅 is invariant under permutations over the set 𝐼𝑛 of
PIDs. As noted in Sec. 3.1, Mercury syntactically constrains comparison of ⟨idExp⟩ expressions to
(dis)equality checks. This is a sufficient condition to ensureMercury processes are fully-symmetric
and, hence, enable parameterized verification and symmetry reduction.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:15

3.3 Semantics of Mercury Agreement Primitives

We now extend the process and program semantics defined in Sec. 3.2 to Mercury programs with
agreement primitives. Furthermore, we show that our definition of the semantics of agreement
primitives provides a sound abstraction of agreement protocols and enables symmetry reduction.
To simplify the presentation of the semantics, we expand the set 𝑣𝑎𝑟𝑠 of variables as follows.

For each Partition event part, we add variables part_winS and part_loseS for storing the sets
of winners and losers, respectively. Similarly, for each Consensus event cons, we add variable
cons_decVar for storing the decided values.

Process-level Semantics of Agreement Primitives. For the Partition event handler (Fig. 5e), let
loc be the current location and loc𝑤 (resp. loc𝑙) be the target location of the goto statement in
the win: (resp. lose:) block. For the Consensus event handler (Fig. 5f), let loc denote the current
location and loc𝑑 denote the target location of the goto statement. Then, the set𝑇 of transitions is
extended as follows:
(a) For each Partition handler with event Partition <part> (⟨idSetExp⟩,intConst) in Fig. 5e,𝑇

contains transitions (loc, 𝜎)
win:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−→ (loc𝑤, 𝜎

′) and (loc, 𝜎)
lose:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−−→ (loc𝑙 , 𝜎

′) for each 𝜎 such that pcpt, matched by ⟨idSetExp⟩, denotes the set
of participants3, 𝑘 , given by intConst, denotes the number of winners to be decided, and 𝜎 ′ is
obtained from 𝜎 by updating variables part_WinS and part_loseS to the sets of winners and
losers in the global invocation of part, respectively.

(b) For each Consensus handler with event Consensus <cons> (⟨idSetExp⟩, intConst, ⟨optIntVar⟩)

in Fig. 5f, 𝑇 contains a local transition (loc, 𝜎)
𝑉𝐶cons (pcpt,𝑘,pVar)
−−−−−−−−−−−−−−−→ (loc𝑑 , 𝜎

′) for each 𝜎 such
that pcpt and 𝑘 are as before, pVar denotes the variable from which a process proposes its
value, matched by ⟨optIntVar⟩ if ⟨optIntVar⟩ is not 𝜖 , and 𝜎 ′ is obtained from 𝜎 by updating the
variable cons_decVar to the decided values in the invocation of cons.

Program-level Semantics of Agreement Primitives. The local transitions corresponding to agree-
ment primitives are essentially modeling invocation of verified agreement protocols that enable a
set of participants to decide on a finite set of winners/values in a globally consistent way. As stated
in Sec. 2, verified agreement protocols typically entail agreement, validity, and termination. Thus, to
ensure that agreement primitives provide a sound abstraction of verified agreement protocols, the
global behavior of these primitives must satisfy a set of conditions entailed by agreement, validity,
and termination. We represent this set of conditions on the global transitions corresponding to
agreement primitives as a precondition-postcondition pair, stated informally as:
𝐶1: Consistent Participants Precondition. The participants agree onwith whom to invoke agreement

4 , and,
𝐶2: Consistent Decisions Postcondition. Upon termination of agreement, all non-crashed partici-

pants concur on winners/values.
In what follows, we present the global transitions and specialization of the precondition-

postcondition pair (C1,C2) for each type of agreement primitive.

Partition. Consider an instance of a Partition agreement primitive with identifier part and

local transitions (loc𝑐 , 𝜎)
win:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−→ (loc𝑐𝑤, 𝜎

′) and (loc𝑐 , 𝜎)
lose:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−−→ (loc𝑐

𝑙
, 𝜎 ′).

3While such sets are usually predefined, we allow more flexibility by permitting processes to communicate and construct
them.
4Systems in which all processes intend to reach agreement trivially satisfy𝐶1. The more general form of𝐶1 enables systems
to invoke agreement protocols with only a subset of processes.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:16 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

Let 𝑙𝑜𝑐𝑠part be the set of all locations loc𝑐 from which the participants of this instance may invoke
Partition (i.e., all locations where the above two transitions originate).
We extend the global transition relation 𝑅 ofM with a Partition agreement transition from

global state 𝑞start to global state 𝑞𝑊
end

encoding a selected set𝑊 of 𝑘5 non-crashed winners, and a
set 𝐹 of participants that have crashed during agreement if:

𝐶1 (𝑃𝐶): There exists a set 𝑆 ⊆ 𝐼𝑛 of processes in 𝑞start in appropriate locations for invoking this
instance of the Partition primitive and with a consistent view of each other. Formally:
(1) ∀𝑖 ∈ 𝑆 : 𝑞start [𝑖] .𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑠part and
(2) ∀𝑖, 𝑗 ∈ 𝑆 :𝑞start [𝑖] .𝜎 (pcpt)=𝑞start [𝑗] .𝜎 (pcpt)=𝑆 , and,

𝐶2 (𝑃𝐶): The non-crashed processes of 𝑆 move to their appropriate target locations in 𝑞𝑊
end

based on
whether they win or lose and their part_winS and part_LoseS variables in 𝑞𝑊

end
are updated

to reflect the partition while the set 𝐹 ⊂ 𝑆 of crashed processes move to the crash state 𝑠𝑐𝑟 .
As explained in Remark 1 below, we assume that if all the participants fail, then no valid 𝑞𝑊

end

exists. Formally: Let 𝑁 be the set 𝑆 \ 𝐹 of non-crashed participants, then:
(1) ∀𝑖 ∈ 𝑁 : 𝑖 ∈𝑊 ∧ 𝑞start [𝑖] .𝑙𝑜𝑐 = loc𝑐 ⇒ 𝑞𝑊

end
[𝑖] .𝑙𝑜𝑐 = loc𝑐𝑤 ,

(2) ∀𝑖 ∈ 𝑁 : 𝑖 ∉𝑊 ∧ 𝑞start [𝑖] .𝑙𝑜𝑐 = loc𝑐 ⇒ 𝑞𝑊
end
[𝑖] .𝑙𝑜𝑐 = loc𝑐

𝑙
,

(3) ∀𝑖 ∈ 𝑁 : 𝑞𝑊
end
[𝑖] .𝜎 (part_winS) =𝑊 ,

(4) ∀𝑖 ∈ 𝑁 : 𝑞𝑊
end
[𝑖] .𝜎 (part_LoseS) = 𝑁 \𝑊 ,

(5) ∀𝑖 ∈ 𝐹 : 𝑞𝑊
end
[𝑖] = 𝑠𝑐𝑟 , and,

(6) ∀𝑖 ∈ 𝐼𝑛 \ 𝑆 : 𝑞𝑊
end
[𝑖] = 𝑞start [𝑖].

Consensus. Consider an instance of a Consensus agreement primitive with identifier cons and

local transition (loc𝑐 , 𝜎)
𝑉𝐶cons (pcpt,𝑘,pVar)
−−−−−−−−−−−−−−−→ (loc𝑐

𝑑
, 𝜎 ′). As before, let 𝑙𝑜𝑐𝑠cons be the set of locations

loc𝑐 from which the participants of this cons instance may start.
We extend the global transition relation 𝑅 ofM with a Consensus agreement transition from a

global state 𝑞start to a global state 𝑞𝑊
end

encoding a selected set𝑊 of 𝑘 decided values6 and a set 𝐹
of participants that have crashed during agreement if:

𝐶1 (𝑉𝐶): The state 𝑞start is as defined for Partition, and,
𝐶2 (𝑉𝐶): The set 𝑁 ≔ 𝑆 \ 𝐹 such that |𝑁 | > |𝐹 | of non-crashed processes move to their target

locations in 𝑞𝑊
end

and their cons_decVar variables are updated to reflect the decided values
while the set 𝐹 of crashed processes move to the crash state 𝑠𝑐𝑟 . As explained in Remark 1
below, we assume that if a majority of participants fail (i.e., |𝑁 | ≤ |𝐹 |), then no valid 𝑞𝑊

end

exists. Formally:
(1) ∀𝑖 ∈ 𝑁 : 𝑞start [𝑖] .𝑙𝑜𝑐 = loc𝑐 ⇒ 𝑞𝑊

end
[𝑖] .𝑙𝑜𝑐 = loc𝑐

𝑑
,

(2) ∀𝑖 ∈ 𝑁 : 𝑞𝑊
end
[𝑖] .𝜎 (cons_decVar) =𝑊 ,

(3) ∀𝑖 ∈ 𝐹 : 𝑞𝑊
end
[𝑖] = 𝑠𝑐𝑟 , and,

(4) ∀𝑖 ∈ 𝐼𝑛 \ 𝑆 : 𝑞𝑊
end
[𝑖] = 𝑞start [𝑖].

Remark 1: Failure Assumptions for Valid Termination. Common agreement protocols have assump-
tions about process failures under which they guarantee the validity of results upon termination.
For instance, leader election protocols [Garcia-Molina 1982] require the elected leader to not fail,
but can tolerate the failures of the losing processes and consensus protocols like Paxos [Lamport
1998] and Raft [Ongaro and Ousterhout 2014] require a simple majority of the participants to not
fail and to agree on a proposed value. While, in general, the semantics of Mercury’s agreement
primitives can be parameterized over specific failure assumptions, our default definitions encode

5All non-crashed participants act as winners if the number of non-crashed participants is less than 𝑘 .
6Note that, a proposed value of a crashed process can still be chosen as the decided value.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:17

these common assumptions. Thus, when using the Partition primitive, any global state 𝑞𝑊
end

where
all the participants have failed is assumed to be not valid. When using the Consensus primitive,
any global state 𝑞𝑊

end
where a majority of the participants have failed is assumed to be not valid.

Soundness. Mercury’s agreement primitives are sound:

Lemma 3.1. Our proposed abstraction of verified agreement protocols, as defined using the syntax

and semantics of Mercury agreement primitives, is sound. In other words, if an agreement protocol

satisfies agreement, validity, and termination, then the agreement protocol satisfies the semantics of

agreement primitives captured by the precondition-postcondition pair (𝐶1,𝐶2).

Proof.We prove this by contradiction. Assume that an agreement protocol satisfying agreement,
validity, and termination begins in a state 𝑞start that satisfies precondition 𝐶1

7 but ends in a state
𝑞𝑊
end

that violates postcondition 𝐶2. A violation of postcondition 𝐶2 (i.e., participants not agreeing
on the same winner/value or agreeing on a winner/value that was not in the set of participants/was
never proposed) contradicts agreement and validity. Finally, a violation due to the absence of a
transition between a state 𝑞start satisfying 𝐶1 and a state 𝑞𝑊

end
satisfying 𝐶2 directly contradicts

termination.
Note that the statement of Lemma 3.1 implicitly assumes that the failure assumptions encoded

in the semantics of Mercury agreement primitives hold. If the failure assumptions do not hold,
neither our primitives nor the agreement protocols they abstract provide any guarantees.

Symmetry. In a state-transition system,Magree = (𝑄,𝑞0, 𝑅), capturing the semantics of aMercury

program, let 𝑅agree be the set of all transitions corresponding to agreement primitives in 𝑅. Let
M = (𝑄,𝑞0, 𝑅 \𝑅agree) be the state-transition system without the agreement transitions ofMagree.8

Lemma 3.2. IfM is fully-symmetric, thenMagree is fully-symmetric.

Intuitively, the proof (ref. extended version [Jaber et al. 2020b]) is based on the observation that
agreement transitions are oblivious to the identities of the participants and are hence invariant
under permutations over 𝐼𝑛 .

4 VERIFICATION OF MERCURY PROGRAMS

We now formalize the parameterized verification problem for Mercury programs and present our
theoretical results for enabling decidable and efficient parameterized verification.

Mercury Parameterized Verification Problem (MPVP). Given a Mercury system process 𝑃 ,
an environment process 𝐸, and a parameterized safety specification 𝜙 (𝑛) as defined in Sec. 3, MPVP
asks if ∀𝑛.M(𝑛) |= 𝜙 (𝑛).

Our first result (Sec. 4.1) identifies conditions on Mercury programs and the specification 𝜙 (𝑛)

for enabling decidability of MPVP. Our second result (Sec. 4.2) identifies additional conditions
for which this problem is efficiently decidable, based on cutoff results. Cutoff results reduce the
parameterized verification problem to a verification problem over a fixed number of processes.
Formally, a cutoff for a parameterized systemM and correctness specification 𝜙 is a number 𝑐 ∈ N
such that:

∀𝑛 ≥ 𝑐. (M(𝑐) |= 𝜙 (𝑐) ⇐⇒ M(𝑛) |= 𝜙 (𝑛)) .

7A violation of precondition𝐶1 (i.e., participants do not have a consistent view of each other or are in invalid local states to
participate in the agreement protocol) indicates an invalid global state to invoke agreement.
8We do not make any symmetry-related assumptions about the specific agreement protocol that an agreement primitive
encapsulates. In particular, the underlying agreement protocol could employ non-symmetric strategies such as łthe process
with maximum PID winsž.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:18 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

In particular, our second result identifies conditions on Mercury programs for small cutoffs,
reducing MPVP to verification of aMercury program with a small number of processes. The latter
problem is decidable for any Mercury program, as the corresponding semantics can be expressed
as a finite-state machine.
For the rest of this section, we fix a Mercury process 𝑃 with a set of process-local states 𝑆 ,

initial state 𝑠0, and process-local transitions𝑇 , and refer to the corresponding global state-transition
system,M, as a (Mercury) system.

4.1 Decidable Parameterized Verification

Phases. To enable decidable parameterized verification, we view Mercury systems as proceeding
in phases. A phase of aMercury system is a set of process-local states, characterizing the set of
events that can occur when all processes co-exist in that set of local states. In any global execution,
all processes simultaneously move from one phase to the next, where a new set of events may
occur. Processes move between phases strictly via globally-synchronizing events, i.e, broadcasts
or agreement primitives; within a phase, processes can use any type of communication. While
two phases may share some local states, their associated events are disjoint. We note that any
Mercury system can be viewed as proceeding in phases, by identifying phases with appropriate
sets of eventsÐso phases do not constrain the applicability of our approach.

In what follows, we refer to the set of globally-synchronizing events as 𝐸global and the set of
rendezvous actions in 𝑃 as 𝐸rend. For each event e, we define its source set, denoted 𝑠𝑟𝑐e, as the
set of states in 𝑆 from which there exists a transition in 𝑇 labeled with e. Similarly, we define
the destination set of each event e, denoted 𝑑𝑠𝑡e, as the set of states in 𝑆 to which a transition

in 𝑇 labeled with e exists. For instance, if e is a broadcast action act, 𝑠𝑟𝑐act = {𝑠 | 𝑠
sendbr(act)
−−−−−−−−−→

𝑠 ′ ∈ 𝑇 ∨ 𝑠
recvbr(act)
−−−−−−−−−→ 𝑠 ′ ∈ 𝑇 } and 𝑑𝑠𝑡act = {𝑠 ′ | 𝑠

sendbr(act)
−−−−−−−−−→ 𝑠 ′ ∈ 𝑇 ∨ 𝑠

recvbr(act)
−−−−−−−−−→ 𝑠 ′ ∈ 𝑇 }. The

source and destination sets for rendezvous actions and instances of Consensus and Partition can
be defined similarly. Finally, we define the relation R ⊆ 𝑆 × 𝑆 to denote pairs of states related via
internal or rendezvous transitions as follows:

R = {(𝑠, 𝑡) | 𝑠 ≠ 𝑡 ∧ (𝑠
𝜖
−→ 𝑡 ∈ 𝑇 ∨ 𝑡

𝜖
−→ 𝑠 ∈ 𝑇 ∨ (∃e ∈ 𝐸rend . {𝑠, 𝑡} ⊆ 𝑠𝑟𝑐e ∪ 𝑑𝑠𝑡e))}.

We now present a constructive definition for the set of phases of 𝑆 . Intuitively, two states are in
the same phase if they are part of the same source or destination set, or, their phases are connected
by internal or rendezvous transitions.

Definition 4.1 (Phases). The set of phases is constructed as follows:

(1) Initialization: The set of phases is initialized to the set of source sets and destination sets of
each globally-synchronizing event:

inPhases =
⋃

e∈𝐸global

{

𝑠𝑟𝑐e, 𝑑𝑠𝑡e
}

.

Informally, the source set of a globally-synchronizing event e is a subset of the local state
space where all processes need to co-exist for e to occur. The destination set of e characterizes
the set of states in which all processes co-exist after event e has occurred.

(2) Expansion: Each initial phase is then expanded such that if a state 𝑠 is in a phase, then every
state 𝑡 such that R(𝑠, 𝑡) holds is in the phase too:

exPhases =
⋃

𝑋 ∈inPhases

{

𝑋 ∪ {𝑡 | 𝑠 ∈ 𝑋 ∧ R+ (𝑠, 𝑡)}
}

,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:19

where R+ is the transitive closure of R. Informally, this step ensures that any local state that
is reachable from or can be reached by a state in an initial phase via internal or rendezvous
transitions, is added to that phase.

(3) Merge: Finally, expanded phases that contain distinct states 𝑠 , 𝑡 with R(𝑠, 𝑡) are merged:

𝑝ℎ𝑎𝑠𝑒𝑠 =
{

⋃

𝑊 ∈𝑋

𝑊 | 𝑋 ⊆ exPhases ∧ ∀ 𝑌, 𝑍 ∈ 𝑋 . R+𝑝ℎ (𝑌, 𝑍)
}

,

where R𝑝ℎ = {(𝑋,𝑌) | ∃𝑠 ∈ 𝑋, 𝑡 ∈ 𝑌 . R(𝑠, 𝑡)} and R+
𝑝ℎ

is the transitive closure of R𝑝ℎ .

Informally, if processes canmove via internal or rendezvous transitions between two expanded
phases, then the two phases are merged to ensure that the processes always co-exist in the
same phase.

This definition ensures that all the processes in the system are in the same phase at any given
time in a program execution.

Phase-compatibility Conditions. Our phase-compatibility conditions ensure that all processes in
aMercury system move in phases such that the set of available events within a phase as well as the
system’s ability to move between phases (through globally-synchronizing events) is independent of
the number of processes. Such independence is critical for decidability of MPVP, which needs to
reason about an arbitrary number of processes. In particular, since processes can only move between
phases using globally-synchronizing events, these conditions ensure that such events behave in a
way that is independent of the number of processes. A process that satisfies these conditions is
called phase-compatible. In what follows, we present the phase-compatibility conditions.

We first define a classification of local transitions corresponding to globally-synchronizing events
into acting and reacting transitions. For broadcasts, sending transitions are acting while receiving
transitions are reacting. For the Partition primitive, winning transitions are acting while losing
transitions are reacting. For the Consensus primitive, transitions with winning proposals are acting

while other transitions are reacting. For each globally-synchronizing event e, let 𝑠
𝐴(e)
−−−→ 𝑠 ′ (resp.

𝑠
𝑅 (e)
−−−→ 𝑠 ′) denote a local acting (resp. reacting) transition of e. Additionally, for some event e and

some subset 𝑋 of the local state space 𝑆 , we say that e is initiable in 𝑋 if some state in 𝑋 has an
acting transition of e.

Definition 4.2 (Phase-Compatibility Conditions).

(1) Every state 𝑠 ∈ 𝑃 which has an acting transition 𝑠
𝐴(e)
−−−→ 𝑠 ′ must also have a corresponding

reacting transition 𝑠
𝑅 (e)
−−−→ 𝑠 ′′.

(2) For each internal transition 𝑠 −→ 𝑠 ′ that is accompanied by a reacting transition 𝑠 ′
𝑅 (f)
−−−→ 𝑠 ′′ and

for each state 𝑡 in the same phase as 𝑠 , if event f is initiable in that phase, then 𝑡 must have a
path to a state with a reacting transition of event f.

(3) For each acting transition 𝑠
𝐴(e)
−−−→ 𝑠 ′ that is accompanied by a reacting transition 𝑠 ′

𝑅 (f)
−−−→ 𝑠 ′′

such that f is initiable in the set 𝑑𝑠𝑡e of destination states of event e, (i) if there are other acting

transitions 𝑡
𝐴(e)
−−−→ 𝑡 ′ for event e, all of them must transition to a state 𝑡 ′ with a reacting

transition 𝑡 ′
𝑅 (f)
−−−→ 𝑡 ′′ of event f and (ii) for every reacting transition 𝑢

𝑅 (e)
−−−→ 𝑢 ′ of e, there must

be a path from 𝑢 ′ to a state with a reacting transition of event f.

Intuitively, the conditions ensure that if aMercury system with a given number of processes
can move in phases, then any additional processes can go along with the existing ones by always
taking a corresponding reacting transition. In particular, condition (1) ensures that processes in the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:20 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

same state as the process taking the acting transition on some event e have a way to react to e.
Condition (2) ensures that, if a process can reach a state with a reacting transition on an initiable
event in that phase, all other processes can also reach a state where they can react to that event.
Condition (3) ensures that once a process takes an acting transition of event e and moves to a state
𝑠 ′ where a reacting transition of event f can be taken, if f is initiable in the phase of 𝑠 ′, all processes
move in a way that ensures they can take a reacting transition of f as well.

Permissible Safety Specification. We target safety specifications which forbid the reachability
of any global state where some number𝑚 (or more) of processes are in some set of local states;
simple instantiations of such specifications include mutual-exclusion and process-local safety
properties. Let 𝑓 be a Boolean formula over locations and int variables of a Mercury process. Let
𝑓𝑖 be 𝑓 indexed by the PID 𝑖 . For instance, 𝑓 = 𝑠 .𝑙𝑜𝑐 ≠ 𝑐 ∧ 𝑠 .𝜎 (𝑣) < 1 has the indexed formula
𝑓𝑖 = 𝑞 [𝑖] .𝑙𝑜𝑐 ≠ 𝑐 ∧ 𝑞 [𝑖] .𝜎 (𝑣) < 1. Let 𝑖1, . . . , 𝑖𝑚 represent distinct valuations over 𝐼𝑛 . Then, we
define 𝜙𝑚,𝑓 (𝑛) as:

𝜙𝑚,𝑓 (𝑛) = ∀𝑖1, . . . , 𝑖𝑚 . ¬
(

𝑓𝑖1 ∧ . . . ∧ 𝑓𝑖𝑚
)

.

Intuitively, the formula 𝑓 encodes a set 𝑠𝑡 (𝑓) = {𝑠 ∈ 𝑆 | 𝑓 = 𝑡𝑟𝑢𝑒} of process-local states (where
𝑓 holds) and the property 𝜙𝑚,𝑓 (𝑛) forbids the reachability of a global state where 𝑚 or more
processes are in the set of local states 𝑠𝑡 (𝑓). We call formulas of the form 𝜙𝑚,𝑓 (𝑛) permissible safety
specifications and note that all specifications in this paper can be expressed using this form. For
example, the Distributed Store specification asserting that no more than 1 process is in location
Leader is expressed as 𝜙2,𝑠 .𝑙𝑜𝑐=Leader (𝑛), i.e., ∀𝑖1, 𝑖2 . ¬ (𝑞 [𝑖1] .𝑙𝑜𝑐 = Leader ∧ 𝑞 [𝑖2] .𝑙𝑜𝑐 = Leader).

Examples of specifications that are not permissible include: łthere exists at least one process in
location Leader at all timesž, and, łno more than half of the processes can be in location Leaderž.
The former forbids𝑚 or less processes to be in a given set of local states (as opposed to𝑚 or more)
while the latter forbids the reachability of a possibly unbounded number of processes to a given set
of states (as opposed to a fixed number𝑚 of processes). For the remainder of this section, we will
focus on permissible safety specifications of the form 𝜙𝑚,𝑓 (𝑛), but we note that our results extend
to conjunctions and disjunctions of permissible safety specifications (ref. extended version [Jaber
et al. 2020b]).

On a high-level, if aMercury process is phase-compatible, then the behavior of the corresponding
Mercury system is independent of its number of processes. Hence, the reachability, or the lack
thereof, of an error state corresponding to a violation of a permissible safety specification is
consistent across different łsizesž of the system. In other words, if an error state is reachable in
a system with a given number of phase-compatible processes, adding additional processes will
not render such an error state unreachable. Decidability follows from a similar argument in the
opposite direction: if an error state is reachable in a system with some number of phase-compatible
processes, then we can compute a number of processes sufficient for reaching the error state.
The following theorem identifies the decidable fragment for MPVP.

Theorem 4.3. MPVP is decidable forMercury system process 𝑃 and permissible safety specification

𝜙 (𝑛) if:

(1) 𝑃 is phase-compatible.

(2) The state space of 𝑃 is fixed and finite9.

9We note that this condition restricts the way participant sets of agreement primitives are built to the constant set All or
the result of a previous Partition instance part (part.winS or part.loseS), hence ensuring the precondition of agreement
is naturally met. In general, this condition can be relaxed to include some systems with an unbounded state space where
such sets are built through communication.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:21

(3) There exists at most one rendezvous-receive transition per action per phase10.

Proof Intuition. The proof leverages a new fragment of an existing abstract model, the GSP
model [Jaber et al. 2020a], for which MPVP is decidable. The decidability result for the GSP
model utilizes the framework of well-structured transition systems (WSTSs). This entails defining a
well-quasi-ordering (WQO) over the global state space of a GSP system as well as a set of sufficient
łwell-behavednessž conditions over the local GSP process definition to ensure that global transitions
are łcompatiblež with the well-quasi-ordering. To admit a larger decidable fragment, we designed a
novel WQO and relaxed these well-behavedness conditions. Further, we model process crash-stop
failures. We defer the intricacies of this extension (which we refer to as the Mercury Core), as
well as the formal definitions of WSTSs, WQOs, and compatibility to the extended version [Jaber
et al. 2020b]. We note that, without this extension, the phase-compatibility conditions will not be
initiability-aware (e.g., phase-compatibility condition (2) above will need to hold regardless of e
being initiable or not).
We show that for anyMercury process 𝑃Merc that satisfies the conditions of Theorem 4.3, one

can construct a corresponding process 𝑃Core inMercury Core such that (i) there exists a simulation
equivalence between their respective global state-transition systems and (ii) 𝑃Core is in the decidable
fragment of Mercury Core. We refer the interested reader to the extended version [Jaber et al.
2020b] for the full proof.

Recall that, in Sec. 1.2, we discuss reasons why neither the decidable fragment of GSP model nor
Mercury Core is directly suitable for designing agreement-based decidable systems.

4.2 Cutoffs for Efficient Parameterized Verification

We define additional conditions on Mercury programs to obtain small cutoffs and enable efficient
parameterized verification. These cutoff-amenability conditions ensure that any global error state,
where𝑚 processes are in local states 𝑠𝑡 (𝑓) violating a permissible safety specification 𝜙𝑚,𝑓 (𝑛),
can be reached in a system with exactly𝑚 processes iff it can be reached in a system of any size
larger than𝑚. Thus, programs satisfying these conditions enjoy a small model property: 𝜙𝑚,𝑓 (𝑛) is
satisfied inM(𝑛) for all 𝑛 ∈ N if 𝜙𝑚,𝑓 (𝑚) is satisfied in a systemM(𝑚) with a fixed number of
processes𝑚. This requires the conditions to ensure that the reachability of a global state violating
𝜙𝑚,𝑓 (𝑚) inM(𝑚) does not depend on the existence of more than𝑚 processes.

Cutoff-Amenability Conditions.We first define a notion of independence of transitions and paths
of a process. Informally, independent transitions do not require the existence of other processes in

certain states. For instance, in Partition agreement, the winning transition 𝑠
win:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−→ 𝑠 ′

is independent since a winning process does not require the existence of a losing one to take that

transition, but the losing transition 𝑠
lose:𝑃𝐶part (pcpt,𝑘)
−−−−−−−−−−−−−−−−→ 𝑠 ′ is not independent since the losing process

requires the existence of a winning process to take that transition. Note that acting transitions
of globally-synchronizing events as well as internal transitions are independent while reacting
transitions are not independent. A path is independent if it consists of independent transitions.

Definition 4.4 (Cutoff-Amenability Conditions). Let 𝑃 be a phase-compatible process, 𝜙𝑚,𝑓 (𝑛) a
permissible specification, and F the set of independent simple paths from 𝑠0 to a state 𝑠 ∈ 𝑠𝑡 (𝑓).
We require either of the following to hold.

(1) All paths from 𝑠0 to 𝑠𝑡 (𝑓) are independent, or,
(2) For every transition 𝑠𝑠 −→ 𝑠𝑑 such that 𝑠𝑠 ≠ 𝑠𝑑 and 𝑠𝑠 is a state in some path 𝑝 ∈ F , either
10Under full symmetry, this condition ensures that abstracting the receiver PID (in any rendezvous-send transition 𝑠
sendrz(act,𝑃𝐼𝐷)
−−−−−−−−−−−−−−→ 𝑠′) does not introduce spurious behaviors.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:22 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

(a) the state 𝑠𝑑 is in 𝑝 and the transition 𝑠𝑠 −→ 𝑠𝑑 is independent, or,
(b) the state 𝑠𝑑 is not in 𝑝 and all paths out of 𝑠𝑑 lead back to 𝑠𝑠 via independent transitions.

The conditions ensure that the processes required to enable a path to an error state are available
inM(𝑚). Condition (1) ensures that, if𝑚 processes were to reach the error states, they can do
so without requiring additional processes, since all paths to the error states are independent.
Condition (2) allows for some processes to łdivergež from the independent paths as long as they
return independently. We note that the QuickSilver tool implements a more advanced version of
this lemma that allows for more systems to have cutoffs.

We refer to the pair ⟨𝑃, 𝜙𝑚,𝑓 (𝑛)⟩ as amenable if 𝑃 is a phase-compatible process that satisfies the
cutoff-amenability conditions w.r.t. permissible safety specification 𝜙𝑚,𝑓 (𝑛).
On a high-level, an amenable pair ⟨𝑃, 𝜙𝑚,𝑓 (𝑛)⟩ identifies systems where the minimum number

of processes to trigger an error (i.e.,𝑚 process existing simultaneously in 𝑠𝑡 (𝑓)) is, in fact, exactly
𝑚. This is achieved by ensuring that any path a process may take to an error state is independent
and hence if a process may reach an error state, it can do so without the help of other processes.

Lemma 4.5. For an amenable pair ⟨𝑃, 𝜙𝑚,𝑓 (𝑛)⟩, 𝑐 =𝑚 is a cutoff for MPVP.

Proof Intuition. We utilize the cutoff results of Mercury Core. Using the construction in the proof
of Theorem 4.3 to obtain a process 𝑃Core in the Mercury Core from a process 𝑃Merc in Mercury,
we show that if cutoff-amenability holds for 𝑃Merc, then 𝑃Core will be cutoff-amenable and the
resulting cutoff for ⟨𝑃Core, 𝜙𝑚,𝑓 (𝑛)⟩ is also a cutoff for ⟨𝑃Merc, 𝜙𝑚,𝑓 (𝑛)⟩. We refer the reader to the
extended version [Jaber et al. 2020b] for the full proof.

Automation and Feedback. While the phase-compatibility and cutoff-amenability conditions are
somewhat intricate, we emphasize that ourQuickSilver tool automatically checks these conditions
and additionally gives the system designer feedback on how to make a process phase-compatible
and amenable. This allows the designer to proceed without being caught up in the details of the
exact conditions. The feedback varies depending on the failed condition and mainly aims to capture
the root cause of the failure and to provide heuristically-ranked suggestions to fix it.

A failure of a phase-compatibility condition can be succinctly captured by a phase, a set of local
states in that phase, and set of acting/reacting transitions from these states over one or two events.
This localization is valuable for the user to pin-point what changes are needed to render the system
phase-compatible. QuickSilver suggests edits that would eliminate the current violation and the
user gets to pick which edit to implement.
A failure of a cutoff-amenability condition for correctness properties 𝜙𝑚,𝑓 (𝑛) can be succinctly

captured by a non-independent path from the initial state 𝑠0 to a state 𝑠 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑓). This path
indicates a scenario where an error state could be unreachable in a system with𝑚 processes but can
be reachable in a bigger system; hence𝑚 is not a valid cutoff. In these cases, QuickSilver presents
the non-independent paths but does not suggest edits, and the user is responsible for eliminating
the non-independent transitions from these paths.

Example. Consider a system where a set of processes wish to select up to two processes that can
then perform an action one after the other. The designer starts with the process definition shown
in Fig. 6. All processes start in location Start, and coordinate to pick up to two processes to move
to the Selected location while the rest move to Idle. From Selected, the chosen processes send
the getReady broadcast and move to Prepare. In Prepare, they attempt to move to the Target
location one after the other using a sequencer message. The correctness property for this system
is 𝜙2,𝑙𝑜𝑐=Target (𝑛) indicating that at most one process can be at the Target location at any time.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:23

1 process SelectiveSerializer

2 actions

3 br getReady : unit

4 br sequencer : unit

5
6 initial location Start

7 on Partition<select>(All,2)

8 win: goto Selected

9 lose: goto Idle

10
11 location Idle

12 passive getReady, sequencer

13 location Selected

14 on _ do

15 sendbr(getReady)

16 goto Prepare

17
18 location Prepare

19 on recv(sequencer) do

20 goto Target

21
22 location Target

23 // perform action

Fig. 6. An InitialMercury Process Definition for Distributed Coordination for Serializing Access.

When QuickSilver in run on this process definition, it reports that the system is not phase-
compatible with the following feedback suggesting adding a receive handler of event getReady
from the Selected location:

(Selected,{}) needs a corresponding reacting transition on getReady

Suggestions to solve this:

- add transition (Selected,{}) ——R(getReady)——> (Prepare,{})

- add transition (Selected,{}) ——R(getReady)——> (Anywhere!,{})

The designer accepts the first heuristically-ranked suggestion and adds the following handler to
the Selected location:

on recv(getReady) do goto Prepare

With this edit, the system is now phase-compatible. However, the system is not cutoff-amenable.
QuickSilver returns the following feedback:

Cutoff computation failed: on path

(Start,{})——A(select)——>(Selected,{})——A(getReady)——>(Prepare,{})——R(sequencer)——>(Target,{})

the following transition(s) are not independent:

(Prepare,{})——R(sequencer)——> (Target,{})

Based on this feedback, the designer realizes that processes in Prepare need to send the
sequencer broadcast to move to the Target location, which is an independent transition. Learning
from the previous phase-compatibility violation, the user additionally adds the corresponding
reacting transition. Thus, the designer replaces the receive handler from location Prepare with the
following two handlers:

on _ do sendbr(sequencer) goto Target

on recv(sequencer) do goto Prepare

The system is now phase-compatible and cutoff-amenable, and QuickSilver reports a cutoff
value of two.

Modular Verification. Recall that Lemma 3.1 shows that any verified agreement protocol (i.e., one
proven to satisfy agreement, validity, and termination) also meets the pre- and post-condition pair
of our agreement primitives. So, by verifying anMercury program with agreement primitives w.r.t.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:24 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

to a safety specification, we can conclude that the program, when instantiated with any agreement
protocol that satisfies agreement, validity, and termination, also satisfies the safety specification.

5 IMPLEMENTATION AND EVALUATION

We describe the implementation of QuickSilver11 and evaluate the performance of its automated
parameterized verification procedure on various benchmarks encoded in Mercury.

5.1 Implementation

QuickSilver performs automated, parameterized verification of Mercury programs in three steps:
1. Parsing. QuickSilver compiles Mercury processes into the core fragment by rewriting all non-

core handlers (e.g., handlers with if-statements or multiple send statements) into core handlers
and expanding syntactic sugar.

2. Analysis. From the core fragment,QuickSilver creates a labeled graph representing the process-
level semantics including transitions that model crash-stop failures.QuickSilver checks the
phase-compatibility and cutoff-amenability conditions against this graph, and if the conditions
are met, computes a cutoff to verify the system.

3. Verification. QuickSilver’s verification engine is built on top of Kinara [Alur et al. 2015], a
verification tool for distributed systems with a fixed number of processes. QuickSilver extends
Kinara to support the Partition and Consensus primitives as well as their global behaviors.
QuickSilver translates the core fragment of Mercury into the input representation accepted
by the extended version of Kinara using the cutoff number of processes, as computed during
the analysis step. Permissible safety specifications 𝜙𝑚,𝑓 (𝑛) are encoded in QuickSilver as
atmost(𝑚 − 1,{loc:⟨bExp⟩}) where the Boolean expression 𝑓 is such that ∀𝑠 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑓) :
𝑠 .𝑙𝑜𝑐 = loc ∧ 𝑠 .𝜎 (𝑏𝐸𝑥𝑝) = True. For example, the property 𝜙3,𝑙𝑜𝑐=Replica∧𝑠𝑡𝑜𝑟𝑒𝑑=1 (𝑛) is encoded
as atmost(2 ,{Replica: stored == 1}). The environment process is automatically generated
to nondeterministically send/receive all environmental communication actions that theMercury

process expects. The specifications as well as the environment process are translated to Kinara’s
representation similarly.QuickSilver reports successful parameterized verification iff Kinara
reports successful verification for the system consisting of the cutoff number of processes.

User Feedback. QuickSilver helps the user obtain a phase-compatible and cutoff-amenable process
by providing heuristically ranked suggestions to handle any violation of the phase-compatibility
and cutoff-amenability conditions during the analysis step. For instance, the phase-compatibility
conditions do not hold if a local state has an acting transition but not its corresponding reacting
transition. In this case, QuickSilver returns the violated condition and suggests adding a handler
that corresponds to the reacting transition from that state.

5.2 Evaluation

The research questions we tackle in this evaluation are:

RQ1 Can interesting agreement-based systems be modeled concisely inMercury?
RQ2 Can interesting agreement-based systems be modeled in the decidable fragment of Mer-

cury with relative ease?
RQ3 Can QuickSilver perform automated parameterized verification of agreement-based

systems inMercury in a reasonable amount of time?
RQ4 DoQuickSilver’s cutoffs enable efficient verification?

In what follows, we first present our Mercury benchmarks and address RQ1 and RQ2. We then
analyze the performance of QuickSilver on these benchmarks and address RQ3 and RQ4. All

11A virtual machine containingQuickSilver is publicly available [QuickSilver 2021].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:25

experiments were performed on an Intel Xeon machine with E5-2690 CPU and 32GB of RAM. We
report the mean run time for 10 runs as well as the 95% confidence interval for each benchmark.

Mercury Benchmarks. Our benchmarks are briefly described below.12

1. Distributed Store is the illustrative example from Sec. 2.1.
2. Consortium is a distributed system where a set of actors wants to reach a decision based on

information the actors gather individually. A subset of the actors is elected and trusted with
making a decision that is then announced to the rest of the actors. This resembles scenarios where
a trade-off between trust and performance is needed (e.g., a consortium blockchain [Amsden
et al. 2020; Hyperledger 2021]). The safety property for this system is (1) at most two actors are
elected to decide on a value for all processes and (2) that all actors agree on the decided value.

3. Two-Object Tracker is a system for collaborative surveillance based on leader election and is
inspired by an example in [Chang and Tsai 2016]. Upon detecting an object, a leader is elected
to be responsible for monitoring it along with its followers. The system can additionally fork
another set of processes to monitor a second object simultaneously. The safety property for
Two-Object Tracker is that there can be at most two leaders at a time, and when a second object
is spotted, each of the leaders is tracking a distinct object.

4. Distributed Robot Flocking is a distributed system where processes follow a common leader as a
flock and is inspired by an example in [Canepa and Potop-Butucaru 2007]. Processes can disperse
into various locations where they can elect a leader. The leader then issues directions to the
rest of the flock. This is especially useful in self-stabilizing systems. The safety property for this
system is that the system stabilizes by ensuring there can be at most one leader at a time making
direction decisions.

5. Distributed Lock Service is a distributed lock service similar to Chubby [Burrows 2006] for coarse-
grained synchronization with an elected leader handling clients requests. Clients can interface
with this lock service as a file system where they send reads and writes to an elected leader,
and have their requests replicated safely on different servers. The leader periodically times out,
sends a step down signal to the rest of the servers, and a new round of election is used to pick a
new leader. The safety property for this system is that at most one server is elected as a single
point-of-contact for the clients.

6. Distributed Sensor Network is a sensor network application that elects a subset of processes, who
have sensed an environmental signal, to report to a centralized monitor. In this application, the
set of sensors that have detected the environmental signal (and hence need to coordinate) is
dynamically built before invoking the agreement protocol. The safety property here is that the
environmental signal is reported by no more than two sensors.

7. Sensor Network with Reset is a variant of the Distributed Sensor Network benchmark that uses a
łresetž signal to resumemonitoring for the environmental signal, thereby requiring an unbounded
number of rounds of agreement. The safety property is as before.

8. Small Aircraft Transportation System (SATS) Landing Protocol is the landing protocol of SATS
proposed by NASA [2021]. The goal of SATS is to increase access to small airports without
control towers by allowing aircraft to coordinate with each other to operate safely upon entering
the airport airspace. For the landing protocol, the aircraft coordinate to choose successive subsets
of aircraft to progress to the next phase of landing, until just one aircraft is chosen to land at a
time. The desired safety properties for the SATS landing protocol, provided by NASA, are as
follows: (1) there are a total of at most four aircraft across the airport vicinity; (2) there are a
total of at most two aircraft across each left (right) holding zone of the airport; and (3) there is at
most one aircraft that can attempt a final approach (i.e., attempt landing) at a time.

12Mercury code for benchmarks available at: https://tinyurl.com/m3zx7jxs

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

https://tinyurl.com/m3zx7jxs

157:26 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

9. SATS Landing Protocol II is a version of the SATS landing protocol where aircrafts communicate
explicitly to build a participant set when nearing the final approach, and return to a specific
holding zone if they miss landing. The safety property is as before.

10. Mobile Robotics Motion Planning is a distributed system based on an existing benchmark [Desai
et al. 2017] where a set of robots share a workspace with obstacles, and need to coordinate their
movements. The robots coordinate to create a motion plan by successively choosing each robot
to create a plan while taking into account the previous robots’ plans. The targeted property for
this system is collision avoidance; this is achieved by allowing the robots to create their motion
plans consecutively one-at-a-time.

11. Mobile Robotics with Reset is a variant of the Mobile Robotics Motion Planning benchmark that
allows all the robots to return to their initial state upon receiving a signal to do so. The safety
property is as before.

12. Distributed Register is a data store á la Atomix’s AtomicValue [Atomix 2021] which gives a
consistent view of a stored value under concurrent updates. Updates that do not change the
stored data in the register are ignored. The safety property for the Distributed Register system
is that no two replicas that are about to serve user requests may have different values of the
register; hence ensuring the clients have a consistent view of the data.

RQ1. Our benchmarks are models of distributed agreement-based systems commonly found in the
literature and have all been encoded inMercury with relative ease by the authors of this work.
Further, as can be seen in Column 2 of Table 1, the corresponding Mercury process definitions are
fairly compact, i.e., within 100 lines of code (LoC). Thus, our answer to RQ1 is Yes.

RQ2. We found two factors valuable in addressing RQ2.
Value of User Feedback. It is not always easy for a system designer to ensure that their initial model
of a Mercury process is phase-compatible. For example, when modeling the Distributed Lock
Service benchmark, we made assumptions about the behavior of the system, causing us to omit
reacting transitions on some events and, consequently, our initial model was not phase-compatible.
However, the feedback provided by QuickSilver helped identify the missing transitions that
needed to be added.

Value of Mercury Core. Prior decidability results did not encompass all of the benchmarks we
evaluate; in particular, those marked with * in Table 1 fall outside prior known fragments.Mercury

Core’s extension of decidability results, on the other hand, enables decidable parameterized
verification for all of our benchmarks.

Thus, with the help of QuickSilver’s user feedback and the Mercury Core decidable fragment,
our answer to RQ2 is Yes.

RQ3. In Table 1, for each benchmarkwe provide the number of phases, the cutoff used for verification,
and the mean run time of QuickSilver with its 95% confidence intervals. Notice that the cutoffs
computed by QuickSilver for all benchmarks are small (under 6 processes). Overall, QuickSilver

performs efficient parameterized verification for all benchmarks, taking less than 2 seconds to
verify most benchmarks, and about 12 minutes for the largest benchmark, SATS Landing Protocol
II. Thus, our answer to RQ3 is also Yes.

RQ4. To examine the contribution of cutoffs in enabling efficient verification, we performed exper-
iments studying the effect of varying the number of processes on the run time of QuickSilver.
As expected, increasing the number of processes causes the run time to grow exponentially. For
instance, the time to verify the Consortium benchmark jumps from 9 seconds to about 8 minutes
when verifying a system with 5 processes instead of the 3-process cutoff. Fortunately,QuickSilver

is able to detect small cutoffs to sidestep the exponential growth caused by increasing the number
of processes, enabling practical parameterized verification. Thus, our answer to RQ4 is Yes.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:27

Table 1. QuickSilver Performance.

Benchmark LoC Phases Cutoff Time(s)

Distributed Store 64 2 3 45.079 ± 0.621
Consortium∗ 58 9 3 6.953 ± 0.022
Two-Object Tracker∗ 69 9 3 0.641 ± 0.006
Distributed Robot Flocking 78 7 2 0.105 ± 0.002
Distributed Lock Service 38 2 2 0.059 ± 0.002
Distributed Sensor Network 55 3 3 1.041 ± 0.003
Sensor Network with Reset 63 3 3 1.662 ± 0.012
SATS Landing Protocol∗ 90 3 5 638.393 ± 0.872
SATS Landing Protocol II∗ 99 5 5 736.417 ± 3.659
Mobile Robotics Motion Planning 71 5 2 0.114 ± 0.004
Mobile Robotics with Reset∗ 83 4 2 0.166 ± 0.003
Distributed Register 32 1 2 0.329 ± 0.006

Remark. QuickSilver additionally reports the number of phases, which correspond to global
guards in the Mercury Core, that QuickSilver automatically generates. This shows the value of
automation as designing such guards manually is tedious and error-prone.

6 CONCLUDING REMARKS

We presented a framework, QuickSilver, for modeling and efficient, automated parameterized
verification of agreement-based systems. The framework supports a modular approach to the design
and verification of distributed systems in which systems are (i) modeled using sound abstractions of
complex distributed components and (ii) verified using model checking-based techniques assuming
that the complex components are verified separately, presumably using deductive techniques.
In ongoing work, we focus on extending QuickSilver to handle non-blocking communication

and network failures using łchannelsž that can buffer or drop messages, to support infinite variable
domains using abstract interpretation, and to help system designers synthesize amenable processes.

Eventually, we hope to see this framework generalized by us or our readers to other verified dis-
tributed components and richer properties such as liveness. We also hope to see more conversations
and verification frameworks, in particular layered ones, that cut across the deductive verification
and model checking communities.

ACKNOWLEDGMENTS

We thank Ilya Sergey, Rupak Majumdar, Isil Dillig, Thomas Wahl, and Marijana Lazic for their
invaluable feedback on various drafts of this paper, and Derek Dreyer for helping us interpret
reviewer comments about an earlier draft. We are grateful to Shaz Qadeer and Ken McMillan
for their thought-provoking questions at earlier stages of this work that helped shape this paper.
We also thank Abhishek Udupa for patiently answering all our questions about the Kinara tool.
Finally, the authors are grateful to the anonymous reviewers from POPL 2019, CAV 2019, POPL
2020, CAV 2020, POPL 2021, PLDI 2021, and OOPSLA 2021 who chose to take the time to provide
constructive feedback on our submissions. This research was partially supported by the National
Science Foundation under Grant Nos. 1846327, 1908504, and by grants from the Purdue Research
Foundation and Amazon Science. Any opinions, findings, and conclusions in this paper are those
of the authors only and do not necessarily reflect the views of our sponsors.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

157:28 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

REFERENCES

Rajeev Alur, Milo Martin, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and Abhishek Udupa. 2014. Synthe-
sizing Finite-State Protocols from Scenarios and Requirements. In Hardware and Software: Verification and Testing, Eran
Yahav (Ed.). Springer International Publishing, Cham, 75ś91.

Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and Abhishek Udupa. 2015. Automatic Completion
of Distributed Protocols with Symmetry. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu (Eds.).
Springer International Publishing, Cham, 395ś412.

Rajeev Alur and Stavros Tripakis. 2017. Automatic Synthesis of Distributed Protocols. SIGACT News 48, 1 (March 2017),
55ś90. https://doi.org/10.1145/3061640.3061652

Benjamin Aminof, Tomer Kotek, Sasha Rubin, Francesco Spegni, and Helmut Veith. 2018. Parameterized model checking of
rendezvous systems. Distributed Computing 31, 3 (2018), 187ś222. https://doi.org/10.1007/s00446-017-0302-6

Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu Baudet, Sam Blackshear, Abhay Bothra, George Cabrera andChristian
Catalini, Konstantinos Chalkias, Evan Cheng, Avery Ching, Andrey Chursin, George Danezis andGerardo Di Giacomo,
David L. Dill, Hui Ding, Nick Doudchenko, Victor Gao, Zhenhuan Gao, François Garillot, Michael Gorven, Philip Hayes,
J. Mark Hou, Yuxuan Hu, Kevin Hurley, Kevin Lewi, Chunqi Li, Zekun Li, Dahlia Malkhi andSonia Margulis, Ben Maurer,
Payman Mohassel, Ladi de Naurois, Valeria Nikolaenko, Todd Nowacki, Oleksandr Orlov andDmitri Perelman, Alistair
Pott, Brett Proctor, Shaz Qadeer, Rain, Dario Russi, Bryan Schwab, Stephane Sezer, Alberto Sonnino, Herman Venter,
Lei Wei, Nils Wernerfelt, Brandon Williams, Qinfan Wu, Xifan Yan, Tim Zakian, and Runtian Zhou. 2020. The Libra
Blockchain. Technical Report. https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf

Kristoffer Just Arndal Andersen and Ilya Sergey. 2019. Distributed Protocol Combinators. In Practical Aspects of Declarative

Languages, José Júlio Alferes and Moa Johansson (Eds.). Springer International Publishing, Cham, 169ś186.
Krzysztof R. Apt and Dexter C. Kozen. 1986. Limits for automatic verification of finite-state concurrent systems. Inform.

Process. Lett. 22, 6 (1986), 307ś309. https://doi.org/10.1016/0020-0190(86)90071-2
A. Arghavani, E. Ahmadi, and A. T. Haghighat. 2011. Improved bully election algorithm in distributed systems. In ICIMU

2011 : Proceedings of the 5th international Conference on Information Technology Multimedia. 1ś6. https://doi.org/10.1109/
ICIMU.2011.6122724

Atomix. 2021. Atomix. https://atomix.io/docs/latest/user-manual/primitives/AtomicValue/
Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. 2016. Tight Cutoffs for Guarded Protocols with Fairness. In

Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL,

USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann and K. Rustan M.
Leino (Eds.). Springer, 476ś494. https://doi.org/10.1007/978-3-662-49122-5_23

Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. 2016. Synthesis of Self-Stabilising and Byzantine-Resilient
Distributed Systems. In Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 157ś176.

Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In Proceedings of the 7th Symposium

on Operating Systems Design and Implementation (Seattle, Washington) (OSDI ’06). USENIX Association, USA, 335ś350.
Davide Canepa and Maria Gradinariu Potop-Butucaru. 2007. Stabilizing Flocking Via Leader Election in Robot Networks. In

Stabilization, Safety, and Security of Distributed Systems, Toshimitsu Masuzawa and Sébastien Tixeuil (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 52ś66.

Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. 2016. Formal Verification of Multi-Paxos for Distributed Consensus.
In FM 2016: Formal Methods, John Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.). Springer
International Publishing, Cham, 119ś136.

Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos Made Live: an Engineering Perspective. In
Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing. ACM, 398ś407.

Che-Cheng Chang and Jichiang Tsai. 2016. Distributed collaborative surveillance system based on leader election protocols.
IET Wireless Sensor Systems 6, 6 (2016), 198ś205. https://doi.org/10.1049/iet-wss.2015.0030

Bernadette Charron-Bost and André Schiper. 2009. The Heard-of Model: Computing in Distributed Systems with Benign
Faults. Distributed Computing 22, 1 (2009), 49ś71. https://doi.org/10.1007/s00446-009-0084-6

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and Hernán Vanzetto. 2012. TLA+ Proofs.
In International Symposium on Formal Methods. Springer, 147ś154.

Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder. 2019. Communication-closed Asynchronous Protocols.
In International Conference on Computer Aided Verification.

Werner Damm and Bernd Finkbeiner. 2014. Automatic Compositional Synthesis of Distributed Systems. In International

Symposium on Formal Methods. Springer, 179ś193.
Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. 2002. Towards the Automated Verification of Multithreaded

Java Programs. In TACAS (Lecture Notes in Computer Science, Vol. 2280). Springer, 173ś187.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1007/s00446-017-0302-6
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1109/ICIMU.2011.6122724
https://doi.org/10.1109/ICIMU.2011.6122724
https://atomix.io/docs/latest/user-manual/primitives/AtomicValue/
https://doi.org/10.1007/978-3-662-49122-5_23
https://doi.org/10.1049/iet-wss.2015.0030
https://doi.org/10.1007/s00446-009-0084-6

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:29

Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A. Seshia. 2017. DRONA: A Framework for Safe
Distributed Mobile Robotics. In Proceedings of the 8th International Conference on Cyber-Physical Systems (Pittsburgh,
Pennsylvania) (ICCPS ’17). ACM, 239ś248.

Ryan Doenges, James R Wilcox, Doug Woos, Zachary Tatlock, and Karl Palmskog. 2017. Verification of Implementations of
Distributed Systems Under Churn. (2017).

Cezara Drăgoi, Thomas A Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey. 2014. A Logic-based Framework for
Verifying Consensus Algorithms. In International Conference on Verification, Model Checking, and Abstract Interpretation.
Springer, 161ś181.

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-
Tolerant Distributed Algorithms. SIGPLAN Not. 51, 1 (Jan. 2016), 400ś415. https://doi.org/10.1145/2914770.2837650

E. Allen Emerson and Vineet Kahlon. 2003a. Exact and Efficient Verification of Parameterized Cache CoherenceProtocols. In
CHARME (Lecture Notes in Computer Science, Vol. 2860). Springer, 247ś262.

E. Allen Emerson and Vineet Kahlon. 2003b. Model Checking Guarded Protocols. In 18th IEEE Symposium on Logic in

Computer Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, Proceedings. IEEE Computer Society, 361ś370.
E. Allen Emerson and A Prasad Sistla. 1996. Symmetry and Model Checking. Formal methods in system design 9, 1-2 (1996),

105ś131.
E. Allen Emerson and Thomas Wahl. 2003. On Combining Symmetry Reduction and Symbolic Representation for Efficient

Model Checking. In Advanced Research Working Conference on Correct Hardware Design and Verification Methods. Springer,
216ś230.

Javier Esparza, Alain Finkel, and Richard Mayr. 1999. On the Verification of Broadcast Protocols. In 14th Annual IEEE

Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 352ś359. https://doi.org/
10.1109/LICS.1999.782630

Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv. 2019. Inferring Inductive Invariants from Phase
Structures. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham,
405ś425.

Hector Garcia-Molina. 1982. Elections in a distributed computing system. IEEE Computer Architecture Letters 31, 01 (1982),
48ś59. https://doi.org/10.1109/TC.1982.1675885

Álvaro García-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey. 2018. Paxos Consensus, Deconstructed and Abstracted.
In Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 912ś939.

Steven M. German and A. Prasad Sistla. 1992. Reasoning about Systems with Many Processes. J. ACM 39, 3 (July 1992),
675ś735. https://doi.org/10.1145/146637.146681

Jeremiah Griffin, Mohsen Lesani, Narges Shadab, and Xizhe Yin. 2020. TLC: Temporal Logic of Distributed Components.
Proc. ACM Program. Lang. 4, ICFP, Article 123 (Aug. 2020), 30 pages. https://doi.org/10.1145/3409005

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating

Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 1ś17.
https://doi.org/10.1145/2815400.2815428

Hyperledger. 2021. The Hyperledger Project. https://www.hyperledger.org/
C Norris Ip and David L Dill. 1996. Better Verification Through Symmetry. Formal methods in system design 9, 1-2 (1996),

41ś75.
Nouraldin Jaber, Swen Jacobs, ChristopherWagner, Milind Kulkarni, and Roopsha Samanta. 2020a. Parameterized Verification

of Systems with Global Synchronization and Guards. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang
(Eds.). Springer International Publishing, Cham, 299ś323.

Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta. 2020b. Parameterized Reasoning
for Distributed Systems with Consensus. CoRR abs/2004.04613 (2020). arXiv:2004.04613 https://arxiv.org/abs/2004.04613

Swen Jacobs and Mouhammad Sakr. 2018. Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity.
In Verification, Model Checking, and Abstract Interpretation - 19th International Conference, VMCAI 2018, Los Angeles, CA,

USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10747), Isil Dillig and Jens Palsberg (Eds.).
Springer, 247ś268. https://doi.org/10.1007/978-3-319-73721-8_12

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive
Sequentialization of Asynchronous Programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 227ś242. https://doi.org/10.1145/3385412.3385980

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.
Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems,
Peter Müller (Ed.). Springer International Publishing, Cham, 336ś365.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

https://doi.org/10.1145/2914770.2837650
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/3409005
https://doi.org/10.1145/2815400.2815428
https://www.hyperledger.org/
https://arxiv.org/abs/2004.04613
https://arxiv.org/abs/2004.04613
https://doi.org/10.1007/978-3-319-73721-8_12
https://doi.org/10.1145/3385412.3385980

157:30 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, and Roopsha Samanta

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (May 1998), 133ś169. https://doi.org/10.
1145/279227.279229

Leslie Lamport. 2002. Specifying Systems: the TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley
Longman Publishing Co., Inc.

Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79ś103. https://doi.org/10.1007/s00446-006-0005-x
Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (Dec. 1975),

717ś721. https://doi.org/10.1145/361227.361234
Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. 2012. From Clarity to Efficiency for Distributed

Algorithms. In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and

Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New York, NY, USA, 395ś410.
https://doi.org/10.1145/2384616.2384645

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building Efficient Replicated State Machines for WANs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (San Diego, California)
(OSDI’08). USENIX Association, USA, 369ś384. https://doi.org/10.5555/1855741.1855767

Ognjen Marić, Christoph Sprenger, and David Basin. 2017. Cutoff Bounds for Consensus Algorithms. In International

Conference on Computer Aided Verification. Springer, 217ś237.
NASA. 2021. NASA - Small Aircraft Transportation System. https://www.nasa.gov/centers/langley/news/factsheets/SATS.

html
Diego Ongaro and John K Ousterhout. 2014. In Search of an Understandable Consensus Algorithm.. In USENIX Annual

Technical Conference. 305ś319.
Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2017a. Reducing

Liveness to Safety in First-Order Logic. Proc. ACM Program. Lang. 2, POPL, Article 26 (Dec. 2017), 33 pages. https:
//doi.org/10.1145/3158114

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017b. Paxos Made EPR: Decidable Reasoning about
Distributed Protocols. Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages. https://doi.org/10.1145/
3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: Safety Verification by
Interactive Generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 614ś630.
https://doi.org/10.1145/2908080.2908118

Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjùrner. 2010. Deciding Effectively Propositional Logic Using DPLL and
Substitution Sets. Journal of Automated Reasoning 44, 4 (2010), 401ś424.

QuickSilver. 2021. QuickSilver Implementation. https://doi.org/10.5281/zenodo.5501650
Vincent Rahli. 2012. Interfacing with Proof Assistants for Domain Specific Programming Using EventML. (2012).
RedisRaft. 2021. RedisRaft. https://github.com/RedisLabs/redisraft/
Sylvain Schmitz and Philippe Schnoebelen. 2013. The Power of Well-Structured Systems. In CONCUR 2013 (Lecture

Notes in Computer Science, Vol. 8052), Pedro R. D’Argenio and Hernán C. Melgratti (Eds.). Springer, 5ś24. https:
//doi.org/10.1007/978-3-642-40184-8_2

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and Proving with Distributed Protocols. Proc. ACM
Program. Lang. 2, POPL, Article 28 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158116

Ichiro Suzuki. 1988. Proving Properties of a Ring of Finite-State Machines. Inf. Process. Lett. 28, 4 (July 1988), 213ś214.
https://doi.org/10.1016/0020-0190(88)90211-6

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug
Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 662ś677. https://doi.org/10.1145/3192366.3192414

Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend Synchrony:
Synchronous Verification of Asynchronous Distributed Programs. Proc. ACM Program. Lang. 3, POPL, Article 59 (Jan.
2019), 30 pages. https://doi.org/10.1145/3290372

Thomas Wahl. 2007. Adaptive Symmetry Reduction. In International Conference on Computer Aided Verification. Springer,
393ś405.

James R. Wilcox, Ilya Sergey, and Zachary Tatlock. 2017. Programming Language Abstractions for Modularly Verified
Distributed Systems. In 2nd Summit on Advances in Programming Languages (SNAPL 2017) (Leibniz International Pro-

ceedings in Informatics (LIPIcs), Vol. 71), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.). Schloss
DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 19:1ś19:12.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/2384616.2384645
https://doi.org/10.5555/1855741.1855767
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html
https://www.nasa.gov/centers/langley/news/factsheets/SATS.html
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.5281/zenodo.5501650
https://github.com/RedisLabs/redisraft/
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1145/3158116
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3290372

QuickSilver: Modeling and Parameterized Verification for Distributed Agreement-Based Systems 157:31

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). Association
for Computing Machinery, New York, NY, USA, 357ś368. https://doi.org/10.1145/2737924.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for
Change in a Formal Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on

Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,
USA, 154ś165. https://doi.org/10.1145/2854065.2854081

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and
Lidong Zhou. 2009. MODIST: Transparent Model Checking of Unmodified Distributed Systems. In Proceedings of the

6th USENIX Symposium on Networked Systems Design and Implementation (Boston, Massachusetts) (NSDI’09). USENIX
Association, USA, 213ś228.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 157. Publication date: October 2021.

https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	1.1 The QuickSilver Framework
	1.2 Related Work

	2 QuickSilver Overview
	2.1 Illustrative Example: Distributed Store
	2.2 Agreement Primitives
	2.3 Parameterized Verification in QuickSilver

	3 The Mercury Modeling Language
	3.1 Mercury Syntax and Informal Semantics
	3.2 Agreement-Free Mercury Program Semantics
	3.3 Semantics of Mercury Agreement Primitives

	4 Verification of Mercury Programs
	4.1 Decidable Parameterized Verification
	4.2 Cutoffs for Efficient Parameterized Verification

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Concluding Remarks
	References

