
Copyright

by

Roopsha Samanta

2013

The Dissertation Committee for Roopsha Samanta
certifies that this is the approved version of the following dissertation:

Program Reliability through Algorithmic Design and

Analysis

Committee:

E. Allen Emerson, Supervisor

Vijay K. Garg, Supervisor

Aristotle Arapostathis

Adnan Aziz

Joydeep Ghosh

Warren A. Hunt, Jr.

Program Reliability through Algorithmic Design and

Analysis

by

Roopsha Samanta, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2013

For Ma and Baba,

who inspired me to start a Ph.D.,

and for Naren,

who helped me finish.

Acknowledgments

I thank my advisor, Allen Emerson, for his support on multiple fronts through

the years. I will always look back fondly at his insistence on precision and

brevity, our spirited technical conversations, and the Turing Award announce-

ment. I thank my co-advisor, Vijay Garg, for his invaluable mentorship, dili-

gent review of my thesis and for being an inspirational role model. I thank the

other members of my disseration committee — Ari Arapostathis, Adnan Aziz,

Joydeep Ghosh and Warren Hunt — for their help in various stages of this

long PhD, and for multiple technical pointers. I am grateful to Gustavo de Ve-

ciana, for his guidance, encouragement and refreshingly constructive attitude

towards academia.

I treasure each opportunity I have had to collaborate and interact with

colleagues outside the university. I am grateful to Swarat Chaudhuri for fa-

cilitating our successful collaborations, and for his support and mentorship. I

thank Aditya Nori, Sriram Rajamani, Ganesh Ramalingam and Kapil Vaswani

at Microsft Research, India for making my internship a truly memorable ex-

perience. I am also grateful to Sven Schewe for patiently answering all my

questions about his excellent dissertation, and for being an empathetic friend.

I also cherish the friendship, collaboration and guidance I have received

from my colleagues at UT Austin over the years. I am grateful to Jyotirmoy

v

Deshmukh for introducing me to formal methods, for our many gratifying

collaborations, and for the hours of animated discussions on technical and

not-so-technical topics; Oswaldo Olivo, for being a dedicated collaborator,

sounding board and an ever ready dessert buddy; Sandip Ray and Thomas

Wahl for their reliable counsel; Bharath Balasubramanium for his continual

support; and, Bishwarup Mondal for our enjoyable early collaborations and

his support during my transition into formal methods.

I am indebted to Melanie Gulick, who has been an administrative as-

sistant par excellence, and has helped me out countless times, with her typical

cheerfulness.

I am deeply grateful to my close friends — Neha, Kaushik, Avani,

Ruchir, Bharath and Anitha — for their help and support during the difficult

phases, and for lots of happy memories along the way.

My family’s support has been relentless, and their patience, incredible.

I have lost track of the number of times that my little sister, Poorna, has cooked

us dinner, or helped us out with chores, or some member of my extended family

has called up to check on a paper notification or my health. My parents and

Naren have been with me through every ebb and flow of my time in graduate

school, and I cannot imagine this journey without them. I am truly humbled

by their love and faith.

vi

Program Reliability through Algorithmic Design and

Analysis

Roopsha Samanta, Ph.D.

The University of Texas at Austin, 2013

Supervisors: E. Allen Emerson
Vijay K. Garg

Software systems are ubiquitous in today’s world and yet, remain vul-

nerable to the fallibility of human programmers as well as the unpredictability

of their operating environments. The overarching goal of this dissertation is

to develop algorithms to enable automated and efficient design and analysis

of reliable programs.

In the first and second parts of this dissertation, we focus on the devel-

opment of programs that are free from programming errors. The intent is not

to eliminate the human programmer, but instead to complement his or her

expertise, with sound and efficient computational techniques, when possible.

To this end, we make contributions in two specific domains.

Program debugging — the process of fault localization and error elim-

ination from a program found to be incorrect — typically relies on expert

human intuition and experience, and is often a lengthy, expensive part of the

program development cycle. In the first part of the dissertation, we target

vii

automated debugging of sequential programs. A broad and informal state-

ment of the (automated) program debugging problem is to suitably modify an

erroneous program, say P , to obtain a correct program, say P̂ . This problem

is undecidable in general; it is hard to formalize; moreover, it is particularly

challenging to assimilate and mechanize the customized, expert programmer

intuition involved in the choices made in manual program debugging. Our

first contribution in this domain is a methodical formalization of the program

debugging problem, that enables automation, while incorporating expert pro-

grammer intuition and intent. Our second contribution is a solution frame-

work that can debug infinite-state, imperative, sequential programs written in

higher-level programming languages such as C. Boolean programs, which are

smaller, finite-state abstractions of infinite-state or large, finite-state programs,

have been found to be tractable for program verification. In this dissertation,

we utilize Boolean programs for program debugging. Our solution framework

involves two main steps: (a) automated debugging of a Boolean program, cor-

responding to an erroneous program P , and (b) translation of the corrected

Boolean program into a correct program P̂ .

Shared-memory concurrent programs are notoriously difficult to write,

verify and debug; this makes them excellent targets for automated program

completion, in particular, for synthesis of synchronization code. Extant work

in this domain has focused on either propositional temporal logic specifica-

tions with simplistic models of concurrent programs, or more refined program

models with the specifications limited to just safety properties. Moreover,

viii

there has been limited effort in developing adaptable and fully-automatic syn-

thesis frameworks that are capable of generating synchronization at differ-

ent levels of abstraction and granularity. In the second part of this disser-

tation, we present a framework for synthesis of synchronization for shared-

memory concurrent programs with respect to temporal logic specifications.

In particular, given a concurrent program P composed of synchronization-

free processes, P1,P2, . . . ,PK , and a temporal logic specification φspec describ-

ing their expected concurrent behaviour, we generate synchronized processes,

Ps1 , . . . ,PsK , such that the resulting concurrent program Ps satisfies φspec. We

provide the ability to synthesize readily-implementable synchronization code

based on lower-level primitives such as locks and condition variables. We en-

able synchronization synthesis of finite-state concurrent programs composed

of processes that may have local and shared variables, may be straight-line or

branching programs, may be ongoing or terminating, and may have program-

initialized or user-initialized variables. We also facilitate expression of safety

and liveness properties over both control and data variables by proposing an

extension of propositional computation tree logic.

Most program analyses, verification, debugging and synthesis method-

ologies target traditional correctness properties such as safety and liveness.

These techniques typically do not provide a quantitative measure of the sensi-

tivity of a computational system’s behaviour to unpredictability in the oper-

ating environment. We propose that the core property of interest in reasoning

in the presence of such uncertainty is robustness — small perturbations to the

ix

operating environment do not change the system’s observable behavior sub-

stantially. In well-established areas such as control theory, robustness has al-

ways been a fundamental concern; however, the techniques and results therein

are not directly applicable to computational systems with large amounts of

discretized, discontinuous behavior. Hence, robustness analysis of software

programs used in heterogeneous settings necessitates development of new the-

oretical frameworks and algorithms.

In the third part of this dissertation, we target robustness analysis of

two important classes of discrete systems — string transducers and networked

systems of Mealy machines. For each system, we formally define robustness of

the system with respect to a specific source of uncertainty. In particular, we

analyze the behaviour of transducers in the presence of input perturbations,

and the behaviour of networked systems in the presence of channel perturba-

tions. Our overall approach is automata-theoretic, and necessitates the use

of specialized distance-tracking automata for tracking various distance metrics

between two strings. We present constructions for such automata and use

them to develop decision procedures based on reducing the problem of robust-

ness verification of our systems to the problem of checking the emptiness of

certain automata. Thus, the system under consideration is robust if and only

if the languages of particular automata are empty.

x

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xvi

List of Figures xvii

Part I Introduction 1

Chapter 1. Introduction 2

1.1 Motivation . 2

1.2 Debugging of Sequential Programs 9

1.3 Synchronization Synthesis for Concurrent Programs 13

1.4 Robustness Analysis of Discrete Systems 17

Part II Sequential Program Debugging 21

Chapter 2. Groundwork 24

2.1 Sequential Programs . 24

2.1.1 Program Syntax . 24

2.1.2 Transition Graphs . 26

2.1.3 Program Semantics . 29

2.1.4 Specifications and Program Correctness 31

2.2 Predicate Abstraction and Boolean Programs 32

2.2.1 Predicate Abstraction 34

2.2.2 Boolean Programs . 35

xi

2.3 Program Repair: The Problem 38

2.4 Solution Overview . 40

Chapter 3. Repair of Boolean Programs 42

3.1 Formal Framework . 42

3.2 Step I: Program Annotation 45

3.2.1 Backward Propagation of Postconditions 46

3.2.2 Forward Propagation of Preconditions 51

3.3 Step II: Repair Generation . 56

3.3.1 The Repair Algorithm 58

3.3.2 Algorithm Notes . 67

3.3.3 Annotation and Repair of Programs with Procedures . . 69

Chapter 4. Cost-Aware Program Repair 71

4.1 Formal Framework . 72

4.2 Cost-aware Repair of Boolean Programs 78

4.3 Concretization . 90

4.4 Experiments with a Prototype Tool 94

Chapter 5. Bibliographic Notes 101

Part III Synchronization Synthesis 106

Chapter 6. Synthesis of Low-level Synchronization 109

6.1 Formal Framework . 109

6.1.1 Concurrent Program Model 109

6.1.2 Synchronization Primitives — Locks and Condition Vari-
ables . 113

6.1.3 Specification Language(s) 116

6.2 Motivating Example . 119

6.3 The Synchronization Synthesis Algorithm 124

6.3.1 Synthesis of High-Level Solution 124

6.3.2 Synthesis of Low-level Solution 127

xii

6.3.3 Algorithm Notes . 133

6.4 Experiments . 136

Chapter 7. Generalized Synchronization Synthesis 140

7.1 Formal Framework . 141

7.1.1 A vocabulary L . 141

7.1.2 Concurrent Program Model 144

7.1.3 Specification Language 148

7.2 The Basic Synchronization Synthesis Algorithm 151

7.2.1 Formulation of φP . 152

7.2.2 Construction of Tφ . 153

7.2.3 Obtaining a Model M from Tφ 157

7.2.4 Decomposition of M into Ps1 and Ps2 158

7.2.5 Algorithm Notes . 160

7.3 Extensions . 160

7.3.1 Uninitialized Variables 161

7.3.2 Local Variables . 163

7.3.3 Synchronization using Locks and Condition Variables . . 165

7.3.4 Multiple (K > 2) Processes 166

Chapter 8. Bibliographic Notes 168

Part IV Robustness Analysis 174

Chapter 9. Groundwork 177

9.1 Functional Transducers . 177

9.2 Distance Metrics . 179

9.3 Reversal-bounded Counter Machines 183

9.4 Manhattan Distance-Tracking Automata 185

9.5 Levenshtein Distance-Tracking Automaton 187

xiii

Chapter 10. Robustness Analysis of String Transducers 193

10.1 Robust String Transducers . 193

10.2 Robustness Analysis . 194

10.2.1 Mealy Machines . 198

10.2.2 Functional Transducers 199

Chapter 11. Robustness Analysis of Networked Systems 207

11.1 Robust Networked Systems . 207

11.1.1 Synchronous Networked System 207

11.1.2 Channel Perturbations and Robustness 211

11.2 Robustness Analysis . 213

11.2.1 Robustness Analysis for the Manhattan Distance Metric 214

11.2.2 Robustness Analysis for the Levenshtein Distance Metric 219

Chapter 12. Bibliographic Notes 224

Part V Conclusions 228

Chapter 13. Conclusions 229

13.1 Summary of Contributions . 230

13.1.1 Debugging of Sequential Programs 230

13.1.2 Synchronization Synthesis for Concurrent Programs . . 232

13.1.3 Robustness Analysis of Discrete Systems 235

13.2 Future Work . 237

13.2.1 Debugging of Sequential Programs 237

13.2.2 Synchronization Synthesis for Concurrent Programs . . 240

13.2.3 Robustness Analysis of Discrete Systems 241

Appendix 243

Appendix 1. Select Proofs 244

1.1 Basic Definitions . 244

1.2 Lem. 6.3.1: Constructions and Proofs 247

1.3 Lem. 6.3.2: Constructions and Proofs 258

xiv

Bibliography 262

xv

List of Tables

4.1 Experimental results . 100

6.1 Specification for single-reader, single-writer problem 119

6.2 Formal specification for AGTS program for every process pair
Pk,Ph . 138

6.3 Experimental results . 139

xvi

List of Figures

2.1 Programming language syntax 25

2.2 An example program and its transition graph 27

2.3 Transition rules for (`,Ω, ζ) (`′,Ω′, ζ ′). 30

2.4 An example concrete program P , a corresponding Boolean pro-
gram B and B’s transition graph 37

3.1 Example Boolean program and specification 43

3.2 Precondition and postcondition propagation 46

4.1 An example concrete program P , a corresponding Boolean pro-
gram B and their transition graphs 73

4.2 Definition of JuK(stmt(λ)) . 83

4.3 Definition of sp(JuK(stmt(λ)),Aλ) 85

4.4 Repairing program handmade1 95

4.5 Repairing program handmade2 96

4.6 Repairing program necex6 . 97

4.7 Repairing program necex14 99

6.1 Synchronization-free skeletons of reader P1, writer P2 110

6.2 Synchronization skeletons Ps1 , Ps2 of reader P1, writer P2. . . . 111

6.3 The concurrent program corresponding to Fig. 6.2. The edge
labels indicate which process’s transition is executed next. . . 112

6.4 Syntax and semantics for lock(`){. . .} in process Pk 114

6.5 Syntax and semantics of wait(c,`c) in Pk and notify(c) in Ph 115

6.6 The concurrent program Pc1 ‖ Pc2 120

6.7 The concurrent program Pf1 ‖ P
f
2 122

6.8 Coarse, fine-grained synchronization regions between S1,i−1, S1,i 128

6.9 Airport ground network . 136

6.10 Synchronization-free skeleton for airplane process Pk 136

xvii

7.1 Concurrent program syntax 145

7.2 Example program P and specification φspec 151

7.3 Synchronized concurrent program Ps such that Ps |= φspec . . 159

7.4 Coarse and fine-grained synchronization code corresponding to
an example CCR at location `i1 of P1. Guards Gaux

1,i , Greset
1,i

correspond to all states in M on which stmt(`i1) is enabled,
and there’s an assignment x:=1, x:=0, respectively, along a P1

transition out of the states. 166

9.1 Dynamic programming table emulated by D>2
L . The table t

filled by the dynamic programming algorithm is shown to the
left, and a computation of D>2

L on the strings s = acbcd and
t = ccff is shown to the right. 189

9.2 A transition of D=δ
L , D>δ

L . 191

9.3 Dynamic programming table emulated by D>2
gL . The table t

filled by the dynamic programming algorithm for δ = 2 is shown
to the left, and a computation of D>2

L on the strings s = accca,
t = caca is shown to the right. Here, Σ = {a, b, c}, gdiff(a, b) =
gdiff(b, c) = gdiff(a, #) = 1, gdiff(a, c) = gdiff(b, #) = 2,
gdiff(c, #) = 3 and α = 1. 192

11.1 Networked system . 208

1.1 Partial refined synchronization skeleton corresponding to the
implementation in Fig. 6.8a 248

1.2 A partial representation of M c 260

1.3 Refined synchronization skeleton corresponding to implementa-
tion in Fig. 6.8b . 261

xviii

Part I

Introduction

1

Chapter 1

Introduction

Software systems today are increasingly complex, ubiquitous and

often interact with each other or with the physical world. While

their reliability has never been more critical, these systems remain

vulnerable to the fallibility of human programmers as well as the

unpredictability of their operating environments. The only solution

that holds promise is increased usage of meta-programs to help

analyze, debug and synthesize programs, given a precise character-

ization of reliable program behaviour.

1.1 Motivation

Human programmers are fallible. As a natural consequence, programming

errors, or bugs, are as pervasive as software programs today. Bugs are an-

noying at best, and more often than not, end up affecting the productivity of

both software developers and consumers. Occasionally, bugs lead to system

failures with disastrous consequences, especially when they show up in safety-

critical, mission-critical or economically-vital applications. Examples include

infamous bugs in medical, military, aerospace, financial services and automo-

tive software. One of the first quantitative studies of this problem estimated

2

the annual cost of software bugs in the US to be 59.5 billion dollars [96]!

Besides human error, software systems often grapple with yet another

source of undesirable behaviour. We live in an era where computation does

not exist in a vacuum. Most computational systems interact with a user or

the physical world, or/and, consist of tightly integrated, interacting software

components. An inescapable attribute of such complex, heterogeneous systems

is uncertainty. For example, real-world images handled by image processing

engines are frequently noisy, DNA strings processed by transducers in compu-

tational biology may be incomplete or incorrectly sequenced, text processors

must account for wrongly spelled keywords, the data generated by sensors

in medical devices or automobiles can be corrupted, or the channels between

system components in a networked power plant controller may lose data pack-

ets. Left unchecked, such uncertainty can wreak havoc and lead to highly

unpredictable system behaviour.

Given the ever-increasing sophistication of the operating environments,

and the complexity and pervasiveness of software systems, the problem of un-

reliable program behaviour is likely to persist. The only solution that holds

promise is the one provided jointly by the formal methods, programming lan-

guages and software engineering communities. Summed up simply, their some-

what paradoxical solution is — less dependence on human developers, and

increased usage of meta-programs to help analyze, debug and synthesize pro-

grams, given a precise characterization of reliable program behaviour. This

computational approach to development of reliable programs has proven to be

3

effective in many domains [59, 71, 104, 121]. However, much work remains to

be done.

A typical process of ensuring correctness in existing or evolving software

code, involves an iterative cycle of error detection, fault localization and error

elimination, that ultimately converges to a correct program. Tools based on

model checking [27], static program analyses [51] or dynamic program analyses

[118] have helped automate the process of error detection to a large extent.

However, the process of fault localization and error elimination — also termed

as debugging — continues to rely on expert human intuition and experience,

and is often a lengthy, expensive part of the program development cycle. While

the error detection tools typically provide error traces to substantiate their bug

discoveries, these traces are usually too long to be inspected manually in any

efficient manner. They may be encumbered with unnecessary data and may

provide little insight into the actual location of the error within the system.

There is an evident need for simplifying and automating the essentially

manual process of debugging as much as possible. The study in [96] indicated

that 22.2 billion dollars of the estimated (59.5 billion dollars) annual cost of

software bugs could be eliminated by earlier and more effective identification

and removal of software defects. In today’s multi-core era, software systems

as well as hardware designs are increasingly more complex, errors more subtle,

and productivity more critical. Debugging is a bigger challenge than ever

before. And lest we forget, human debuggers are just as prone to err as human

programmers; there always remains the possibility that a bug fix leads to the

4

introduction of new bugs!

An alternate strategy for developing correct programs is program syn-

thesis. The promise of program synthesis is alluring — skip the iterative error

detection and debugging loop, and instead generate correct-by-construction

programs from specifications of program behaviour and correctness. Unsur-

prisingly, in contrast to automated program debugging, synthesis of programs

from specifications of user intent has always been a popular research area

[47, 59, 102, 120]. The correctness specifications considered have been diverse,

ranging from temporal logic or functional specifications to partial programs or

input-output examples.

Unfortunately, while program synthesis is an exciting theoretical prob-

lem, it has failed to live up to its promise in general. There are niche areas such

as logic synthesis in processor design, synthesis of bit-vector programs, synthe-

sis of standard undergraduate textbook algorithms, e.g., sorting, graph algo-

rithms, mutual exclusion, dining philosophers etc., in which program synthesis

has indeed been successful. However, synthesizing a large piece of software

code from scratch is a computationally intensive task and mandates writing

a very rich and detailed specification. There are far too many design choices:

programming language, data structures, synchronization primitives, program

size, memory usage etc. This necessitates the presence of an expert user to

initialize the synthesizer with the desired parameters and specifications. As

a consequence of all this, in practice, it is often hard to justify synthesizing

software code from scratch over modifying legacy code. The best compromise

5

between the theoretical promise and the practical reality of program synthe-

sis might lie in harnessing synthesis tools for program completion; the more

modest goal here is to focus on partially written programs, and automati-

cally synthesize missing components, that are particularly tricky for a human

programmer to get right.

Most program analyses, verification, debugging and synthesis method-

ologies target traditional correctness properties such as safety and liveness.

These are qualitative assertions about individual program executions, and typ-

ically do not provide a quantitative measure of the sensitivity of a computa-

tional system’s behaviour to uncertainty in the operating environment. For

instance, a program may have a correct execution on every individual input,

but its output may be highly sensitive to even the minutest perturbation in

its inputs. We propose that the core property of interest in reasoning in the

presence of uncertainty is robustness — small perturbations to the operat-

ing environment do not change the system’s observable behavior substantially.

This property is differential in the sense that it relates a range of system ex-

ecutions possible under uncertainty. Development of robust systems demands

a departure from techniques to develop traditionally correct systems, as the

former requires quantitative reasoning about the system behavior. Given the

above, formal reasoning about robustness of systems is a problem of practical

as well as conceptual importance.

The ultimate goal of this dissertation is to enable efficient design and

analysis of reliable programs. The intent is not to eliminate the human pro-

6

grammer, but instead to complement his or her expertise, with sound and

efficient computational techniques, when possible. To accomplish this goal,

we target three specific domains:

1. Debugging of sequential programs,

2. Synchronization synthesis for concurrent programs, and

3. Robustness analysis of discrete systems.

The choice of these domains is not arbitrary. The first two domains

focus on bridging the gap between manual program writing combined with

debugging, and fully automatic synthesis-from-scratch, for traditional correct-

ness properties. As described earlier, the process of ensuring correctness in

manually written software code, involves an iterative cycle of error detection,

followed by debugging. This paves the way for a natural separation of con-

cerns for automated tools. It is, thus, reasonable to assume that the input to

a debugging engine is a program, that has been found to be incorrect by an

error detection engine. We argue that the availability of an incorrect sequen-

tial program as input is easier to justify than the availability of an incorrect

concurrent program. Despite significant advances in software verification and

analyses techniques that have made it possible to detect bugs in many software

programs, it is still easier to detect bugs in sequential programs than in con-

current programs. Concurrent programs, with their interacting components,

are notorious for exhibiting heisenbugs [70] that are difficult to detect, repro-

duce and of course debug. Thus, automated debugging of sequential programs

7

is, arguably, a more plausible goal than automated debugging of concurrent

programs.

Concurrent programs, on the other hand, are excellent targets for auto-

mated synthesis, in particular, for synthesis of synchronization code. Insidious

synchronization errors are often the source of common concurrency bugs such

as deadlocks, races, starvation and resource access violations. It is conceivable

that one can simplify the design and analysis of (shared-memory) concurrent

programs by, first, manually writing synchronization-free concurrent programs,

followed by, automatically synthesizing the synchronization code necessary for

ensuring the programs’ correct concurrent behaviour.

Our third domain targets robustness analysis of discrete software sys-

tems, modeled using transducers, with respect to various sources of uncer-

tainty. Since development of robust software systems is a nascent area, in this

dissertation, we focus on formalizing the notion of robustness and developing

algorithms to verify robustness of certain classes of discrete systems. We be-

lieve this exercise will help us analyze a larger class of systems, and develop

synthesis or perhaps debugging tools for guaranteeing robust behaviour in the

future.

In what follows, we present an overview of the particular challenges

faced in each of these domains, our overall approach for tackling these chal-

lenges, and an outline of this dissertation’s chapters.

8

1.2 Debugging of Sequential Programs

Challenges. Historically, research in formal and semi-formal methods for de-

bugging programs (sequential or concurrent) has not garnered as much main-

stream interest as research in error detection, verification or even synthesis.

Perhaps the problem has been both underrated, as well as perceived to be un-

suitable for automation. Indeed, the debugging problem is hard to formalize.

Limiting our attention to sequential programs, there can be multiple types of

programming errors — arithmetic errors (division by zero, arithmetic overflow

or underflow, lack of arithmetic precision due to rounding), non-termination

(infinite loops, infinite recursion), conceptual errors, syntax errors, type errors

etc. There can be multiple ways to fix a bug — changing the program locally,

disallowing certain program inputs, clever usage of key data structures etc.

Local changes to a program can also be done in several ways — insertion,

deletion, modification or swapping of statements. Thus, one cannot expect a

uniform formulation of or solution to the debugging problem. Moreover, it is

particularly challenging to assimilate and mechanize the customized, expert

human intuition involved in the choices made in manual program debugging.

A broad and informal statement of the (automated) program debugging

problem is to compute a correct program P̂ that is obtained by suitably mod-

ifying an erroneous program P . Since this requires computation of a correct

program, and the problem of verification of an arbitrary program is undecid-

able, the problem of program debugging is also undecidable in general.

9

Our Approach. This dissertation presents a methodical formulation and so-

lution framework for the program debugging problem that strives to address

the above challenges. We assume that, along with an erroneous program P , we

are given a set U of update schemas. An update schema compactly describes a

class of permissible modifications of a statement in P ; for example, the update

schema assign 7→ assign permits replacement of an assignment statement

with any another assignment statement, and can be applied to the assign-

ment statement x := y to get other assignment statements such as x :=x + y,

y :=x+ 1 etc. Update schemas enable us to refine the formulation of the pro-

gram debugging problem — the goal is now to compute a correct program P̂

that is obtained from P by applying suitable update schemas from U to the

statements in P . Observe that, while a typical debugging routine begins with

fault localization and is followed by error elimination, our update schema-

based formulation obviates the need for a separate fault localization phase.

We directly focus on error elimination by identifying program statements that

are repairable, i.e., may be modified by applying a permissible update schema

in order to obtain a correct P̂ .

Our solution framework targets imperative, sequential programs writ-

ten in higher-level programming languages such as C. As stated earlier, the

verification and debugging problems for such programs in undecidable in gen-

eral. Verification tools such as SLAM [13], SLAM2 [10], BLAST [65] and

SATABS [26] routinely use predicate abstraction [56] to generate abstract pro-

grams, called Boolean programs, for analyzing such infinite-state programs.

10

Boolean programs, which are equivalent in expressive power to pushdown sys-

tems, enjoy nice computational properties such as decidability of reachability

and termination [12]. Thus, Boolean programs are more tractable for verifi-

cation, and as we demonstrate in this dissertation, tractable for debugging as

well.

Thus, besides P and U , our framework also requires a Boolean program

B which demonstrates the incorrectness of P with an abstract error trace fea-

sible in P . Given all these inputs, our predicate abstraction-based solution

framework for computation of a suitable repaired program P̂ involves two

main steps: (a) automated repair of the Boolean program B using permissible

update schemas to get B̂, and (b) concretization of B̂ to obtain P̂ .

Dissertation Layout. We present our treatment of debugging of sequential

programs in Part II of this dissertation.

In Chapter 2, we begin by presenting the syntax, semantics and relevant

correctness specifications of a simplified, C-like programming language. We

then review the technique of predicate abstraction-refinement and describe

Boolean programs. We end with a formal description of the program debugging

problem and an overview of our solution framework.

In Chapter 3, we present a simple and efficient algorithm for repairing

a class of Boolean programs that meet some syntactic requirements. In this

chapter, program correctness is specified using a precondition and a postcondi-

11

tion, describing the initial states and final states, respectively, of the program.

The algorithm draws on standard techniques from predicate calculus to obtain

annotations for the program statements, by propagating the given precondi-

tion and postcondition through each program statement. These annotations

are then used to inspect program statements for repairability and compute

a repair if possible. We show that our algorithm can guarantee the correct-

ness and termination of the resulting Boolean program, and can always find a

suitable repaired Boolean program, under certain assumptions.

The method presented in Chapter 3 is efficient, but cannot handle pro-

grams with arbitrary recursion. Moreover, the method focuses on Boolean

programs which can be repaired by modifying exactly one statement using an

update schema from U .

In Chapter 4, we generalize the method presented in Chapter 3 in sev-

eral ways. We present a framework that can handle programs with arbitrary

recursion, and can generate repaired programs by modifying multiple state-

ments of the original erroneous program. In this chapter, program correctness

is specified using assertions included in the program body, specifying the de-

sired states at various points of program execution. Our framework can handle

multiple assertions — even if only a single assertion violation was detected in

the original program, the computed repaired program is guaranteed to sat-

isfy all assertions. Our framework is cost-aware — given a user-defined cost

function, that charges each application of an update schema to a program

statement some user-defined cost, and a repair budget, the framework com-

12

putes a repaired program whose total modification cost does not exceed the re-

pair budget; we postulate that this cost-aware formulation, along with update

schemas, is a flexible and convenient way of incorporating expert programmer

intent and intuition in automated program debugging. Besides presenting a

generalized algorithm for repairing Boolean programs in Chapter 4, we also

describe strategies to translate the repairs computed in Boolean programs to

corresponding repairs for the original C program. In particular, we include

strategies to ensure the readability of the repaired program using user-defined

expression templates. These two steps together enable predicate abstraction-

based repair of infinite-state programs. We demonstrate the efficacy of our

overall framework by repairing C programs using a prototype tool.

We conclude Part II with a discussion of related work in Chapter 5.

1.3 Synchronization Synthesis for Concurrent Programs

Challenges. Early approaches to synthesis of synchronization for concurrent

programs were first developed in [47, 91]. These papers focused on proposi-

tional temporal logic specifications and restricted models of concurrent pro-

grams such as synchronization skeletons. Synchronization skeletons that sup-

press data variables and data manipulations are often inadequate abstractions

of real-world concurrent programs. While finite-state real-world programs can,

in principle, be tackled using propositional temporal logic, it can be quite

cumbersome to express properties over functions and predicates of program

variables using propositional temporal logic. Recent synthesis approaches use

13

more sophisticated program models and permit specifications involving data

variables. However, these approaches are typically applicable only for safety

properties, and entail some possibly restrictive assumptions. For instance, it

is almost always assumed that all data variables are initialized within the pro-

gram to specific values, thereby disallowing any kind of user or environment

input to a concurrent program. The presence of local data variables is also

rarely accounted for or treated explicitly. Finally, there has been limited effort

in developing adaptable synthesis frameworks that are capable of generating

synchronization at different levels of abstraction and granularity.

Our Approach. In this dissertation, we present a flexible framework for syn-

thesis of synchronization for shared-memory concurrent programs with respect

to temporal logic specifications, which generalizes the approach of [47] in sev-

eral ways. We provide the ability to synthesize more readily-implementable

synchronization code based on lower-level primitives such as locks and con-

dition variables. We also enable synchronization synthesis for more general

programs and properties.

Given a concurrent program P composed of synchronization-free pro-

cesses, P1,P2, . . . ,PK , and a temporal logic specification φspec describing the

expected concurrent behaviour, our goal is to obtain synchronized processes,

Ps1 , . . . ,PsK , such that the concurrent program Ps resulting from their asyn-

chronous composition satisfies φspec. This is effected in several steps in our

proposed approach. The first step involves automatic generation of a tempo-

14

ral logic formula φP given P1, . . . ,PK , specifying the concurrency and opera-

tional semantics of these unsynchronized processes. The second step involves

construction of a tableau Tφ, for φ given by φP ∧ φspec. If the overall specifi-

cation is found to be satisfiable, the tableau yields a global model M , based

on P1, . . . ,PK such that M |= φ. The next step entails decompositon of M

into the desired synchronized processes Ps1 , . . . ,PsK with synchronization in

the form of guarded commands or conditional critical regions CCRs. The

final step involves a correctness-preserving mechanical compilation of the syn-

thesized guarded commands into synchronization code based on lower-level

primitives such as locks and condition variables.

Dissertation Layout. We present our approach to synthesis of synchroniza-

tion for concurrent programs in Part III of this dissertation.

In Chapter 6, we present our first generalization of the approach of

[47]. Similar to [47], the framework synthesizes synchronization skeletons

given a propositional temporal logic specification of their desired concurrent

behaviour. However, in addition to synthesizing high-level synchronization

actions in the form of guarded commands, the proposed framework has the

ability to perform a correctness-preserving mechanical compilation of guarded

commands into synchronization code based on lower-level primitives such as

locks and condition variables. We provide the ability to synthesize coarse-

grained synchronization code with a single lock for controlling access to shared

variables and condition variables, or fine-grained synchronization code with

15

separate locks for controlling access to shared variables and condition vari-

ables. It is up to the user to choose an appropriate granularity of atomicity

that suitably balances the trade-off between concurrency and overhead for a

particular application/system architecture. This is an important feature, as

programmers often restrict themselves to using coarse-grained synchronization

for its inherent simplicity. In fact, manual implementations of synchronization

code using wait/notify operations on condition variables are particularly hard

to get right in the presence of multiple locks. We establish the correctness

of both translations — guarded commands to coarse-grained synchronization

and guarded commands to fine-grained synchronization — with respect to a

useful subset of propositional computation temporal logic (CTL) that includes

both safety and liveness properties.

We further establish soundness and completeness of the compilation,

and use our prototype tool to successfully synthesize synchronization code for

concurrent Java programs such as an airport ground traffic simulator program,

readers-writers and dining philosophers.

In Chapter 7, we generalize the approach of [47] to a richer class of

programs and specifications. We present a framework that supports finite-state

concurrent programs composed of processes that may have local and shared

variables, may have a linear or branching control-flow and may be ongoing

or terminating. We focus on programs that are closed systems, without any

interaction with an external environment once execution begins. Note that

these include programs in which an environment or user sets the initial values

16

of the program variables. We propose an extension to propositional CTL that

facilitates expression of safety and liveness properties over control and data

variables, such as AG (v1 = µ ⇒ AF(loc2 = `2 ∧ v2 = µ+ 1)) (if at any point

in an execution, the value of variable v1 is µ, it is inevitable that control in

process P2 reaches location `2, wherein the value of variable v2 is µ+ 1).

We describe our adaptation of the tableau construction algorithm for

propositional CTL to enable handling our extended specification language.

When there exist environment-initialized variables, we present an initial brute-

force solution for modifying the basic approach to ensure that Ps satisfies φspec

for all possible initial values of such variables. Also, we address the effect of

local variables on the permitted behaviours in Ps due to limited observability

of global states, and discuss solutions. Finally, we adapt the compilation pre-

sented in Chapter 6 to synthesize synchronization based on locks and condition

variables for this richer class of programs and specifications.

We conclude Part III with a discussion of related work in Chapter 8.

1.4 Robustness Analysis of Discrete Systems

Challenges. In well-established areas such as control theory, robustness has

always been a fundamental concern; in fact, there is an entire sub-area of

control theory — robust control [78] — that extensively studies this prob-

lem. However, as robust control typically involves reasoning about continuous

state-spaces, the techniques and results therein are not directly applicable to

computational systems with large amounts of discretized, discontinuous be-

17

havior. Moreover, uncertainty in robust control refers to differences between

mathematical models and reality; thus robust control focuses on designing

controllers that function properly in the presence of perturbation in various

system parameters (as opposed to perturbation in the inputs or in the internal

channels of a networked system).

Robustness analysis of discrete systems, such as finite-state transition

systems, has only recently begun to gain attention. Various notions of ro-

bustness for transducers were first proposed in a series of papers [22, 24, 88].

These papers mainly reason about programs that manipulate numbers (as op-

posed to strings or sequences of numbers). While there is emerging work in

quantitative formal reasoning about the robustness of cyber-physical systems,

the problem of reasoning about robustness with respect to errors in networked

communication has been largely ignored. This is unfortunate as communica-

tion between different computation nodes is a fundamental feature of many

modern systems. In particular, it is a key feature in emerging cyber-physical

systems [98, 99] where runtime error-correction features for dealing with un-

certainty may not be an option.

Our Approach. In this dissertation, we target robustness analysis of two

important classes of discrete systems — string transducers and networked sys-

tems of Mealy machines. For each system, we formally define robustness of the

system with respect to a specific source of uncertainty. In particular, we ana-

lyze the behaviour of transducers in the presence of input perturbations, and

18

the behaviour of networked systems in the presence of channel perturbations.

Our overall approach is automata-theoretic, and necessitates the use

of specialized distance-tracking automata for tracking various distance metrics

between two strings. We present constructions for such automata and use

them to develop decision procedures based on reducing the problem of robust-

ness verification of our systems to the problem of checking the emptiness of

certain automata. Thus, the system under consideration is robust if and only

if the language of a particular automaton is empty.

Dissertation Layout. We present our approach to robustness analysis of

discrete systems in Part IV of this dissertation.

In Chapter 9, we define the transducer models and distance metrics con-

sidered in Part IV. Since some of our automata are reversal-bounded counter

machines, we review such machines in this chapter. Finally, we present con-

structions for various distance-tracking automata required in Part IV.

In Chapter 10, we target robustness analysis of string transducers with

respect to input perturbations. A function encoded as a transducer is de-

fined to be robust if for each small (i.e., bounded) change to any input string,

the change in the transducer’s output is proportional to the change in the

input. Changes to input and output strings are quantified using weighted

generalizations of the Levenshtein and Manhattan distances over strings. Our

(automata-theoretic) decision procedures for robustness verification with re-

19

spect to the generalized Manhattan and Levenshtein distance metrics are in

PSpace and ExpSpace, respectively. For transducers that are Mealy ma-

chines, the decision procedures given these metrics are in NLogspace and

PSpace, respectively.

In Chapter 11, we target robustness analysis of networked systems,

when the underlying network is prone to errors. We model such a system N

as a set of processes that communicate with each other over a set of internal

channels, and interact with the outside world through a fixed set of input

and output channels. We focus on network errors that arise from channel

perturbations, and assume that we are given a worst-case bound δ on the

number of errors that can occur in the internal channels of N . We say that

the system N is (δ, ε)-robust if the deviation of the output of the perturbed

system from the output of the unperturbed system is bounded by ε.

We study a specific instance of this problem when each process is a

Mealy machine, and the distance metric used to quantify the deviation from

the desired output is either the Manhattan or the Levenshtein distance. We

present efficient automata-theoretic decision procedures for (δ, ε)-robustness

for both distance metrics.

We conclude Part IV with a discussion of related work in Chapter 12.

20

Part II

Sequential Program Debugging

21

In Chapter 1, we have seen that there is a need for automating the essentially

manual process of program debugging as much as possible. We have also

noted that sequential programs are more credible candidates for automated

program debugging than concurrent programs, and have identified some of

the challenges in the area.

In this part of the dissertation, we present a formal definition and

solution framework for the problem of automated debugging of sequential

programs. Our problem formulation obviates the need for a separate fault

localization phase, and instead, directly focuses on error elimination or pro-

gram repair. Our solution framework targets imperative, sequential programs

written in programming languages such as C, and is based on predicate ab-

straction. We assume that we are given an erroneous concrete program P , a

corresponding Boolean program B which exhibits an abstract error trace fea-

sible in P and a set of permissible update schemas U . Given these inputs, we

first compute a correct Boolean program B̂ by applying a set of permissible

update schemas to B. We then concretize the repaired Boolean program to

obtain a correct concrete program P̂ .

In Chapter 2, we lay the groundwork by fixing the syntax, seman-

tics and correctness specifications of a simplified, C-like programming lan-

guage. We review the technique of predicate abstraction-refinement and define

Boolean programs. We present a formal definition of the program debugging

problem and an overview of our solution framework. In Chapter 3, we focus

on the first step of our overall approach: we present a simple and efficient

22

algorithm targeting Boolean programs that meet some syntactic requirements

and can be repaired by a single application of an update schema from U . We

show that our algorithm can guarantee the correctness and termination of

the repaired Boolean program. In Chapter 4, we generalize our Boolean pro-

gram repair approach to repair arbitrary Boolean programs using simultaneous

applications of multiple update schemas. We also present strategies for con-

cretization of repaired Boolean programs to enable predicate abstraction-based

repair of concrete programs. Finally, we conclude Part II with a discussion of

related work in Chapter 5.

23

Chapter 2

Groundwork

Overview. In this chapter, we begin by presenting the syntax, semantics and

correctness of a simplified, C-like programming language. We review the tech-

nique of predicate abstraction-refinement which can be used for model checking

programs written in this language. We then describe Boolean programs, which

are abstract programs obtained through predicate abstraction-refinement. We

conclude the chapter with a formal definition of the program repair problem

and an overview of our solution framework.

2.1 Sequential Programs

2.1.1 Program Syntax

For the technical presentation in this part of the dissertation, we fix a simplified

syntax for sequential programs. A partial definition of the syntax is shown

in Fig. 2.1. In the syntax, v denotes a variable, 〈type〉 denotes the type of

a variable, F denotes a procedure, ` denotes a statement label or location,

〈expr〉 denotes a well-typed expression, and 〈bexpr〉 denotes a Boolean-valued

expression.

Thus, a (sequential) program consists of a declaration of global vari-

24

〈pgm〉 ::= 〈vardecl〉 〈proclist〉
〈vardecl〉 ::= decl v : 〈type〉; | 〈vardecl〉 〈vardecl〉
〈proclist〉 ::= 〈proc〉 〈proclist〉 | 〈proc〉
〈proc〉 ::= F (v1, . . . , vk) begin 〈vardecl〉 〈stmtseq〉 end
〈stmtseq〉 ::= 〈labstmt〉 ; 〈stmtseq〉
〈labstmt〉 ::= 〈stmt〉 | ` : 〈stmt〉
〈stmt〉 ::= skip | v1, . . . , vm := 〈expr1〉, . . . , 〈exprm〉

| if (〈bexpr〉) then 〈stmtseq〉 else 〈stmtseq〉 fi
| while (〈expr〉) do 〈stmt〉 od | assume (〈bexpr〉)
| callF (〈expr1〉, . . . , 〈exprk〉) | return
| goto `1 or . . . or `n | assert (〈bexpr〉)

Figure 2.1: Programming language syntax

ables, followed by a list of procedure definitions; a procedure definition consists

of a declaration of local variables, followed by a sequence of (labeled) state-

ments; a statement is a skip, (parallel) assignment, conditional, loop, assume,

(call-by-value) procedure call, return, goto or assert statement.

We make the following assumptions: (a) there is a distinguished initial

procedure main, which is not called from any other procedure, (b) all variable

and formal parameter names are globally unique, (c) the number of actual

parameters in a procedure call matches the number of formal parameters in

the procedure definition, (d) goto statements are not used arbitrarily; they

are used only to simulate the flow of control in structured programs, (e) the

last statement in the loop body of every while statement is a skip statement,

and (e) 〈type〉 includes integers and Booleans.

Note that the above syntax does not permit return values from pro-

cedures. However, return values can be easily modeled using extra global

25

variables. Hence, this syntax simplification does not affect the expressivity of

the programming language. Indeed, the above syntax is quite general.

Notation. Let us fix some notation before we proceed. For program P , let

{F0, . . . , Ft} be its set of procedures with F0 being the main procedure, and

let GV (P) denote the set of global variables. For procedure Fi, let Si and Li

denote the sets of statements and locations, respectively, and let FVi and LVi

denote the sets of formal parameters and local variables, respectively, with

FVi ⊆ LVi. Let V (P) = GV (P) ∪
⋃t
i=1 LVi denote the set of variables of P ,

and L(P) =
⋃t
i=1 Li denote the set of locations of P . For a location ` within

a procedure Fi, let inscope(`) = GV (P) ∪ LVi denote the set of all variables

in P whose scope includes l. We denote by stmt(`), formal(`) and local(`)

the statement at ` and the sets of formal parameters and local variables of the

procedure containing `, respectively. We denote by entryi ∈ Li the location

of the first statement in Fi. When the context is clear, we simply use V , L

instead of V (P), L(P) etc.

2.1.2 Transition Graphs

In addition to a textual representation, we will often find it convenient to use

a transition graph representation of programs, as shown in the example in

Fig. 2.2. The transition graph representation of P , denoted G(P), comprises a

set of labeled, rooted, directed graphs G0, . . . ,Gt, which have exactly one node,

err, in common. Informally, the ith graph Gi captures the flow of control in

procedure Fi with its nodes and edges labeled by locations and corresponding

26

main() {
int x;
`1 : if (x ≤ 0)
`2 : while (x < 0){
`3 : x := x+ 2;
`4 : skip;

}
else

`5 : if (x == 1)
`6 : x := x− 1;
`7 : assert (x > 1);

}
(a) P

`1

`2

`3

`4

`5

`6

`7

err exit

assume (x ≤ 0)

assume (x < 0)

x := x+ 2

assume (x > 0)

assume (x == 1)

assume
(x
≥

0) as
su
me

(x
6=

1)

x := x− 1

(b) G(P)

Figure 2.2: An example program and its transition graph

statements of Fi, respectively. To be more precise, Gi = (Ni, Labi, Ei), where

the set of nodes Ni, given by Li ∪ exiti ∪ err, includes a unique entry node

entryi, a unique exit node exiti and the error node err, the set of labeled edges

Ei ⊆ Ni × Labi ×Ni is defined as follows: for all `, `′ ∈ Ni, (`, ς, `′) ∈ Ei iff:

- stmt(`) is an assignment, assume (g) or callF (e1, . . . , ek) statement, `′

is the next sequential location1 in Fi after ` and ς = stmt(`), or,

- stmt(`) is a skip statement and either (a) stmt(`) is the last statement

in the loop body of a statement `′ : while (g) and ς is the empty label,

1The next sequential location of the last statement in the then or else branch of a con-
ditional statement is the location following the conditional statement. The next sequential
location of the last statement in the main procedure is exit0.

27

or, (b) `′ is the next sequential location in Fi after ` and ς is the empty

label, or,

- stmt(`) is if (g), and either (a) `′, denoted Tsucc(`), is the location

of the first statement in the then branch and ς = assume (g), or, (b)

`′, denoted Fsucc(`), is the location of the first statement in the else

branch and ς = assume (¬g), or,

- stmt(`) is while (g), and either (a) `′, denoted Tsucc(`), is the location

of the first statement in the while loop body and ς = assume (g), or,

(b) `′, denoted Fsucc(`), is the next sequential location in Fi after the

end of the while loop body and ς = assume (¬g), or,

- stmt(`) is assert (g), and either `′, denoted Tsucc(`), is the next sequen-

tial location in Fi after ` and ς is the empty label, or, (b) `′, denoted

Fsucc(`), is the node err and ς is the empty label, or,

- stmt(`) is a goto statement that includes the label `′, and ς is the empty

label, or,

- stmt(`) is a return statement, `′ = exiti and ς = return.

Let succ(`) denote the set {`′ : (`, ς, `′) ∈ Ei} for some i ∈ [0, t].

A path π in Gi is a sequence of labeled connected edges; with some

overloading of notation, we denote the sequence of statements labeling the

edges in π as stmt(π). Not that every node in Gi is on some path between

entryi and exiti.

28

2.1.3 Program Semantics

Given a set Vs ⊆ V of variables, a valuation Ω of Vs is a function that maps

each variable in Vs to an appropriate value of its type. Ω can be naturally

extended to map well-typed expressions over variables to values.

An operational semantics can be defined for our programs by formal-

izing the effect of each type of program statement on a program configura-

tion. A configuration η of a program P is a tuple of the form (`,Ω, ζ), where

` ∈
⋃t
i=0Ni, Ω is a valuation of the variables in inscope(`)2 and ζ is a stack

of elements. Each element of ζ is of the form (˜̀, Ω̃), where ˜̀ ∈ Li for some

i and Ω̃ is a valuation of the variables in local(˜̀). A program state is a pair

of the form (`,Ω), where ` and Ω are as defined above; thus a program state

excludes the stack contents. A configuration (`,Ω, ζ) of P is called an initial

configuration if ` = entry0 is the entry node of the main procedure and ζ is

the empty stack. We use η η′ to denote that P can transition from con-

figuration η = (`,Ω, ζ) to configuration η′ = (`′,Ω′, ζ ′); the transitions rules

for each type of program statement at ` and for exit nodes of procedures are

presented in Fig. 2.3.

Let us take a closer look at the last two transition rules in Fig. 2.3

- the only transition rules that affect the stack contents. Upon execution of

the statement call Fj(e1, . . . , ek) in program configuration (`,Ω, ζ), control

moves to the entry node of the called procedure Fj; the new valuation Ω′ of

2For ` = exiti, inscope(`) = GV ∪ LVi, and for ` = err, inscope(`) is undefined.

29

Cases (`,Ω, ζ) (`′,Ω′, ζ ′) if:

stmt(`):

skip
`′ = succ(`), Ω′ = Ω and ζ ′ = ζ

return

goto `1 or . . . or `n `′ ∈ succ(`), Ω′ = Ω and ζ ′ = ζ
assume g Ω(g) = true, `′ = succ(`), Ω′ = Ω and ζ ′ = ζ
if g either Ω(g) = true, `′ = Tsucc(`), Ω′ = Ω and ζ ′ = ζ, or,
while g Ω(g) = false, `′ = Fsucc(`), Ω′ = Ω and ζ ′ = ζ
assert g either Ω(g) = true, `′ = Tsucc(`), Ω′ = Ω and ζ ′ = ζ, or,

Ω(g) = false and `′ = Fsucc(`) = err
v1, . . . , vm :=
e1, . . . , em

`′ = succ(`),
∀i ∈ [1,m] : Ω′(vi) = Ω(ei),
∀v 6∈ {v1, . . . , vm} : Ω′(v) = Ω(v) and
ζ ′ = ζ

callFj(e1, . . . , ek) `′ = entryj ,
∀vi ∈ formal(`′) : Ω′(vi) = Ω(ei),
∀v ∈ GV (P) : Ω′(v) = Ω(v) and
ζ ′ = (succ(`),∆).ζ, where ∀v ∈ local(`) : ∆(v) = Ω(v)

`: exitj `′ = `ret,
∀v ∈ local(`′) : Ω′(v) = ∆(v),
∀v ∈ GV (P) : Ω′(v) = Ω(v) and
ζ = (`ret,∆).ζ ′

Figure 2.3: Transition rules for (`,Ω, ζ) (`′,Ω′, ζ ′).

program variables is constrained to agree with Ω on the values of all global

variables, and maps the formal parameters of Fj to the values of the actual

arguments according to Ω; finally, the element (succ(`),∆) is pushed onto the

stack, where succ(`) is the location to which control returns after Fj completes

execution and ∆ is a valuation of all local variables of the calling procedure,

as recorded in Ω. The last transition rule in Fig. 2.3 captures the return of

control to the calling procedure, say Fc, after completion of execution of a

called procedure, say Fj; the top of the stack element (`ret,∆) is removed and

is used to retrieve the location `ret of Fc to which control must return as well

the valuation ∆ of the local variables of Fc; the new valuation Ω′ of program

30

variables is constrained to agree with Ω on the values of all global variables,

and to agree with ∆ on the values of all local variables of Fc.

An execution path of program P is a sequence of configurations, η

η′ η′′ . . ., obtained by repeated application of the transition rules from

Fig. 2.3, starting from an initial configuration η. Note that an execution path

may be finite or infinite. The last configuration (`,Ω, ζ) of a finite execution

path may be a terminating configuration with ` = exit0, or an error configura-

tion with ` = err or a stuck configuration. An execution path ends in a stuck

configuration η if none of the transition rules from Fig. 2.3 are applicable to η.

In particular, notice that a transition from configuration (`,Ω, ζ) with stmt(`)

being assume (g) is defined only when Ω(g) = true.

2.1.4 Specifications and Program Correctness

In this part of the dissertation, a specification for a sequential program P

is either (a) a precondition, postcondition pair, or (b) a set of assertions. A

precondition, denoted ϕ, represents the expected set of initial program states,

and is a quantifier-free, first order expression capturing the initial values of the

program variables in inscope(entry0). A postcondition, denoted ψ, represents

the set of desired final states upon completion of execution of P , and is a

quantifier-free, first order expression relating the initial and final values of the

program variables in inscope(entry0). An assertion in P , is a statement of

the form ` : assert (g), with g being a quantifier-free, first order expression

representing the expected values of the program variables in inscope(`) at `.

31

We will use the term assertion to denote both the statement ` : assert (g) as

well as the expression g. We say a program configuration (`,Ω, ζ) satisfies a

precondition, postcondition or assertion, if the embedded variable valuation Ω

satisfies the same.

Given a program P and a precondition, postcondition pair (ϕ, ψ), P is

said to be partially correct iff the Hoare triple {ϕ}P{ψ} is valid, i.e., iff every

finite execution path of P , begun in an initial configuration satisfying ϕ, ends

in a terminating configuration satisfying ψ. P is said to be totally correct iff the

Hoare triple 〈ϕ〉P〈ψ〉 is valid, i.e., iff every execution path, begun in an initial

configuration satisfying ϕ, is finite and ends in a terminating configuration

satisfying ψ.

Given a program P annotated with a set of assertions, P is partially

correct iff every finite execution path of P ends in a terminating configuration.

P is totally correct iff every execution path is finite and ends in a terminating

configuration.

Unless otherwise specified, an incorrect program is one that is not par-

tially correct.

2.2 Predicate Abstraction and Boolean Programs

The problem of program verification - checking correctness of a program or

program model with respect to a specification - is an undecidable problem in

general. Model checking is a fully automatic program verification technique,

32

initially proposed as a sound and complete algorithm for checking correct-

ness of finite-state program models with respect to propositional temporal

logic specifications. Model checking algorithms have since been devised for

certain classes of infinite-state programs and various specification languages.

The main challenge in model checking algorithms, which can be informally

described as sophisticated algorithms for exhaustive graph search, is the state

explosion problem: this problem essentially refers to the enormous number

of program states or configurations that need to be examined for verifying

correctness. Thus, even when the underlying problem is decidable, a naive

application of model checking may often be intractable.

The term abstraction is used to refer to a collection of techniques that

enables model checking of infinite-state or large finite-state programs by reduc-

ing them to smaller finite-state programs. In this context, the original program

is termed the concrete program and the reduced program is called the abstract

program. The basic idea in the reduction is to compute an approximation of

the concrete program by omitting certain details, while preserving information

relevant for verifying the given specification. A conservative abstraction of a

concrete program P is an over-approximation of the behaviour of P in the

sense that for every concrete execution path in P , there exists a corresponding

abstract execution path. For certain classes of specifications such as safety

properties - something bad does not happen - this means that if the abstract

program is successfully model checked, the concrete program P is guaranteed

to be correct. However, if the abstract program is found to violate the spec-

33

ification, the concrete program may or may not be correct. In particular, a

counterexample path to an error state in the abstract program may be spu-

rious,i.e., it may not correspond to an actual path in P . Thus, the goal is

to find an abstract program which is precise enough to verify correctness or

exhibit a non-spurious counterexample path, while being amenable to model

checking. The standard solution is counterexample-guided abstraction refine-

ment (CEGAR), which iteratively refines an initial abstraction by analyzing

and eliminating spurious abstract counterexample paths.

2.2.1 Predicate Abstraction

Predicate abstraction is an effective abstraction technique for model check-

ing infinite-state sequential programs with respect to safety properties. This

technique computes a finite-state, conservative abstraction of a concrete pro-

gram P by partitioning P ’s state space based on the valuation of a finite

set {φ1, . . . , φr} of predicates. The resulting abstract program is termed a

Boolean program B: the control-flow of B is the same as that of P and the set

{b1, . . . , br} of variables of B are Boolean variables, with each bi representing

the predicate φi for i ∈ [i, r]. Given a concrete program P , the overall method

proceeds as follows. In step one, an initial Boolean program B is computed

and in step two, B is model-checked with respect to its specification. If B

is found to be correct, the method concludes that P is correct. Otherwise,

an abstract counterexample path leading to some violated assertion in B is

computed and examined for feasibility in P . If found feasible, the method ter-

34

minates, reporting an error in P . If found infeasible, in step three, B is refined

into a new Boolean program B′ that eliminates the spurious counterexample.

Thereafter, steps two and three are repeated, as needed. Note that the overall

method is incomplete - it may not always be able to possible to compute a

suitable refinement that eliminates a spurious counterexample or to check if

an abstract counterexample is indeed spurious.

In our work, the interesting case is when the method terminates report-

ing an error. Henceforth, we fix a concrete program P , and a corresponding

Boolean program B that exhibits a non-spurious counterexample path. Let

{φ1, . . . , φr} denote the set of predicates used in the abstraction of P into B,

where each predicate is a quantifier-free order expression over the variables of

P . Let {b1, . . . , br} denote the corresponding Boolean variables of B. Let γ

denote the mapping of Boolean variables to their respective predicates: for

each i ∈ [1, r], γ(bi) = φi. The mapping γ can be extended in a standard way

to expressions over the Boolean variables.

2.2.2 Boolean Programs

Boolean programs (see Fig. 2.4b for a Boolean program corresponding to the

program in Fig. 2.2a, generated using SATABS [26]) are sequential programs

with a syntax similar to that in Fig. 2.1, with two main differences: (a) all

variables and formal parameters are Boolean, and (b) all expressions - 〈expr〉,

〈bexpr〉 - are Boolean expressions defined as follows:

35

〈bexpr〉 ::= ∗ | 〈detbexpr〉
〈detbexpr〉 ::= true | false | b

| ¬〈detbexpr〉 | 〈detbexpr〉 ⇒ 〈detbexpr〉
| 〈detbexpr〉 ∨ 〈detbexpr〉 | 〈detbexpr〉 ∧ 〈detbexpr〉
| 〈detbexpr〉 = 〈detbexpr〉 | 〈detbexpr〉 6=
〈detbexpr〉,

where b is a Boolean variable. Thus, a Boolean expression is either a deter-

ministic Boolean expression or the expression ∗, which nondeterministically

evaluates to true or false3. We assume that ∗ expresses a fair nondeter-

ministic choice, i.e., ∗ does not permanently evaluate to the same value. We

assume that Boolean expressions in assume (〈bexpr〉) and assert (〈bexpr〉)

statements are always deterministic.

The transition graph and operational semantics of Boolean programs

can be defined in a manner similar to that of concrete sequential programs

(see Fig. 2.4 for a Boolean program and its transition graph representation).

The main modifications are as follows. In defining the set of labeled edges Ei

of graph Gi = (Ni, Labi, Ei) in the transition graph representation G(B) of B,

for ` ∈ Ni with stmt(`) given by if (∗) or while (∗), Tsucc(`), Fsucc(`) are

defined as in Sec. 2.1.2, but the labels ς1, ς2 in (`, ς1, T succ(`)), (`, ς2, Fsucc(`))

are each set to assume (true). For stmt(`) given by if (∗) or while (∗), we

say (`,Ω, ζ) (`′,Ω′, ζ ′) if `′ ∈ succ(`), Ω′ = Ω and ζ ′ = ζ. For stmt(`)

3In practice, a nondeterministic Boolean expression is any Boolean expression containing
∗ or the expression choose(e1, e2), with e1, e2 being deterministic Boolean expressions (if
e1 is true, choose(e1, e2) evaluates to true, else if e2 is true, choose(e1, e2) evaluates
to false, else choose(e1, e2) evaluates to ∗). While we handle arbitrary nondeterministic
Boolean expressions in our prototype tool (see Sec. 4.4), we only consider ∗ expressions in
our exposition for simplicity.

36

main() {
int x;
`1 : if (x ≤ 0)
`2 : while (x < 0){
`3 : x := x+ 2;
`4 : skip;

}
else

`5 : if (x == 1)
`6 : x := x− 1;
`7 : assert (x > 1);

}
(a) P

main() {
/∗γ(b0) = x ≤ 1, γ(b1) = x == 1, γ(b2) = x ≤ 0∗/
Bool b0, b1, b2 := ∗, ∗, ∗;
`1 : if (¬b2) then goto `5;
`2 : if (∗) then goto `0;
`3 : b0, b1, b2 := ∗, ∗, ∗;
`4 : goto `1;
`0 : goto `7;
`5 : if (¬b1) then goto `7;
`6 : b0, b1, b2 := ∗, ∗, ∗;
`7 : assert (¬b0);

}
(b) B

`1

`2

`3

`4

`0

`5

`6

`7

err exit

assume (b2)

assume (true)

b0, b1, b2 := ∗, ∗, ∗

assume (¬b2)

assume (b1)

assume (true)

as
su
me

(¬
b1

)

b0, b1, b2 := ∗, ∗, ∗

(c) G(B)

Figure 2.4: An example concrete program P , a corresponding Boolean program
B and B’s transition graph

37

given by the assignment statement b1, . . . , bj, . . . , bm := e1, . . . , ∗, . . . , em, we

say (`,Ω, ζ) (`′,Ω′, ζ ′) if `′ = succ(`), ζ ′ = ζ, ∀i ∈ {1, . . . , j−1, j+1, . . . ,m] :

Ω′(bi) = Ω(ei), ∀v 6∈ {b1, . . . , bm} : Ω′(v) = Ω(v), and either Ω′(bj) = true or

Ω′(bj) = false. This transition rule can be extended to handle other scenarios

such as assignment statements with multiple ∗ expressions in the RHS, and

call statements with ∗ expressions in the actual arguments.

In specifying correctness for Boolean programs, we interpret the non-

determinism in them as Dijkstra’s demonic nondeterminism [36]. Thus, given

a program B and a precondition, postcondition pair (ϕ, ψ), B is said to be

partially correct iff every finite execution path, begun in an initial configu-

ration satisfying ϕ ends in a terminating configuration satisfying ψ, for all

nondeterministic choices that B might make. B is said to be totally correct iff

every execution path, begun in an initial configuration satisfying ϕ, is finite

and ends in a terminating configuration satisfying ψ, for all nondeterministic

choices that B might make. Given a program B annotated with a set of as-

sertions, B is partially correct iff every finite execution path of B ends in a

terminating configuration for all nondeterministic choices that B might make.

B is totally correct iff every execution path is finite and ends in a terminating

configuration, for all nondeterministic choices that B might make.

2.3 Program Repair: The Problem

Let Σ denote the set of statement types in program P . For example, for

programs with just assignment and skip statements, Σ = {assign, skip}.

38

Given a statement s, let τ(s) be an element of Σ denoting the statement type

of s. Let U = {u0, u1, . . . , ud} be a set of permissible, statement-level update

schemas: u0 = id is the identity update schema that maps every statement to

itself, and ui, i ∈ [1, d], is a function σ 7→ σ̂, σ, σ̂ ∈ Σ \ {assert}, that maps

a statement type to a statement type. For each update schema u, given by

σ 7→ σ̂, we say u can be applied to statement s to get statement ŝ if τ(s) = σ;

τ(ŝ) is then given by σ̂. For example, u, given by assign 7→ assign, can

be applied to the assignment statement ` : x := y to get other assignment

statements such as ` : x :=x+y, ` : y :=x+1 etc. Notice that update schemas

in U do not affect the label of a statement, and that we do not permit any

modification of an assert statement.

We extend the notion of a statement-level update to a program-level

update as follows. For programs P , P̂ , let the respective sets of locations be

L, L̂ and let stmt(`), ŝtmt(`) denote the respective statements at location `.

Let RU ,L : L → U be an update function that maps each location of P to an

update schema in U . We say P̂ is a RU ,L-update of P iff L = L̂ and for each

` ∈ L, ŝtmt(`) is obtained by applying RU ,L(`) on stmt(`).

Given an incorrect program P4 and a set of permissible, statement-level

update schemas U , the goal of automated program repair is to compute P̂ such

that:

4Since total correctness of programs is generally harder to check and verify than partial
correctness, in the problem definition, we accept programs that have been shown to be not
partially correct. We can obviously also accept programs that are known to be not totally
correct.

39

1. P̂ is correct, and,

2. P̂ is some RU ,L-update of P .

We emphasize the importance of formulating the program repair prob-

lem with respect to a set U of update schemas. Without such a set, there

would be no restriction on the relation of the repaired program P̂ to the in-

correct program P ; in particular, P̂ could be any correct program constructed

from scratch, without using P at all. Moreover, the set U , which is provided

by the user/developer, helps capture some of the expert programmer intuition

about the types of programming errors and fixes to expect and explore in a

specific automated program repair application. This not only helps generate

a repaired program similar to what the programmer may have in mind, but

also helps reduce the search space for repaired programs.

2.4 Solution Overview

We present a predicate abstraction-based solution framework for automated

repair of a concrete program P . Recall that we had fixed a Boolean pro-

gram B such that B is obtained from P via iterative predicate abstraction-

refinement and B exhibits a non-spurious counterexample path. Besides P

and U , additional inputs to our framework are: the Boolean program B and

the corresponding function γ that maps Boolean variables to their respective

predicates. The computation of a suitable repaired program P̂ involves two

main steps:

40

1. Automated repair of B to obtain B̂, and

2. Concretization of B̂ to obtain P̂ .

The problem of automated repair of a Boolean program B can be defined

in a manner identical to the problem definition in Sec. 2.3. Concretization

of B̂ involves mapping each modified statement of B̂ into a corresponding

statement of P using the function γ. In the following chapters, we describe

different algorithms for tackling each step.

41

Chapter 3

Repair of Boolean Programs

Overview. In this chapter, we present a simple and efficient algorithm for

automatic repair of Boolean programs that meet some syntactic requirements

and can be repaired by a single application of an update schema. Our ap-

proach targets total correctness with respect to a specification in the form

of a precondition, postcondition pair, is sound and is complete under certain

assumptions.

3.1 Formal Framework

In this chapter, we fix the following restrictions on the syntax of Boolean

programs, described in Sec. 2.2.2: (a) there are no assume, goto or assert

statements, and (b) there are no recursive procedure calls. Further, in this

chapter, we make a distinction between an if statement - if (g) - and an

entire conditional statement - if (g) Sif else Selse fi, where Sif, Selse are

sequences of (labeled) statements; we denote the latter statement type as cond.

Similarly, we make a distinction between a while statement - while (g) - and

an entire loop statement - while (g) do Sloop od, where Sloop is a sequence of

(labeled) statements; we denote the latter statement type as loop. Thus, the

42

ϕ : true
b1 := b1 ⊕ b2;
b2 := b1 ∧ b2;
b1 := b1 ⊕ b2;

ψ : b2[end] = b1[init] ∧ b2[end] = b1[init]

Figure 3.1: Example Boolean program and specification

set of statement types in the Boolean programs of this chapter is given by: Σ

= {skip, assign, if, cond, while, loop, call, return}.

We assume that program correctness is specified using a precondition,

postcondition pair (ϕ, ψ). In particular, we specify total correctness of a

Boolean program B using the Hoare triple 〈ϕ〉 B 〈ψ〉. Thus, B is totally correct

iff every execution path, begun in an initial configuration satisfying ϕ, is finite

and ends in a terminating configuration satisfying ψ, for all nondeterministic

choices that B might make.

Example. We refer the reader to Fig. 3.1 for a Boolean program which is sup-

posed to swap the values in the variables b1 and b2. The program is incorrect.

We fix the following set of permissible, statement-level update schemas

for the Boolean programs of this chapter:

U = {id, assign 7→ skip, cond 7→ skip, loop 7→ skip,

assign 7→ assign, if 7→ if, while 7→ while}.

A single application of an update schema from U is thus a deletion of an

assignment, conditional or loop statement (i.e., replacement by a skip state-

ment), or replacement of an assignment statement with another assignment

43

statement, or modification of the guard of a conditional or loop statement.

For this chapter, we adapt the problem definition of Sec. 2.3 as follows.

Given a precondition, postcondition pair (ϕ, ψ), a Boolean program B such

that {ϕ}B {ψ} is not valid, and the set U of update schemas defined above,

the goal is to compute B̂ such that:

1. 〈ϕ〉 B̂ 〈ψ〉 is valid, and,

2. there exists RU ,L : L → U :

(a) B̂ is some RU ,L-update of B, and

(b) RU ,L(`) 6= id for exactly one ` ∈ L.

Thus, in this chapter, we only target Boolean programs that can be repaired by

a single application of an update schema. Our solution to the above problem

has two main steps.

1. We first annotate the program text by propagating ϕ and ψ through each

program statement.

2. We use these annotations to inspect statements for repairability, and

compute a repair if possible.

In the following sections, we explain each of these steps in detail. For

ease of exposition, we first describe our algorithm for a program without any

procedure calls, and then outline an extension of the approach to programs

with procedure calls in Sec. 3.3.3.

44

3.2 Step I: Program Annotation

Let B be a single procedure program with a set L = {1, . . . , n} of locations

and a set V = {b1, . . . br} of Boolean program variables. Propagation of the

pre-condition ϕ and the post-condition ψ through program statements is based

on the techniques used for Hoare logic [37, 67]. We denote the precondition

ϕ by ϕ[0], and the preconditions propagated forward through the statements

stmt(1), . . . , stmt(n) by ϕ[1], . . . , ϕ[n], respectively. Similarly, we denote the

postcondition ψ by ψ[n], and the postconditions propagated back through

statements stmt(n), . . . , stmt(1) by ψ[n− 1], . . . , ψ[0], respectively.

To aid efficient computation and storage of propagated preconditions

and postconditions, we create copies of the program variables to represent

variable valuations at certain program locations of interest. We use the copy

V [init] of the program variables to represent the initial variable values and

the copy V [end] to represent the variable values after execution of stmt(n).

Further, the variables valuations before and after execution of any statement in

the program are represented using the copies V [curr] and V [next], respectively.

Henceforth, for clarity, an expression e over V [curr], V [next] is sometimes

denoted by e[curr], e[next], respectively.

We refer the reader to Fig. 3.2 for the indexed and annotated version

of the Boolean program from Fig. 3.1. Observe that the precondition ϕ is

an expression over V [init], the postcondition ψ is an expression over V [init]

and V [end], all propagated preconditions ϕ[1], . . . , ϕ[n] are expressions over

V [init] and V [next] and all propagated postconditions ψ[n − 1], . . . , ψ[0] are

45

Precondition propagation

ϕ[0] : true

ϕ[1] : b1[next] = b1[init]⊕ b2[init]
∧ b2[next] = b2[init]

ϕ[2] : b1[next] = b1[init]⊕ b2[init]
∧ b2[next] = ¬b1[init] ∧ b2[init]

ϕ[3] : b1[next] = b1[init] ∧ ¬b2[init]
∧ b2[next] = ¬b1[init] ∧ b2[init]

Incorrect program

b1[next] := b1[init]⊕ b2[init];

b2[next] := b1[curr] ∧ b2[curr];

b1[next] := b1[curr]⊕ b2[curr];

ψ[0] : b2[init] = b1[init] ∧ ¬b2[init]
∧ b1[init] = ¬b1[init] ∧ b2[init]

ψ[1] : b2[init] = b1[curr] ∧ ¬b2[curr]
∧ b1[init] = b1[curr] ∧ b2[curr]

ψ[2] : b2[init] = b1[curr]⊕ b2[curr]
∧ b1[init] = b2[curr]

ψ[3] : b1[end] = b2[init]

∧ b2[end] = b1[init]

Postcondition propagation

Figure 3.2: Precondition and postcondition propagation

expressions over V [init] and V [curr]. We emphasize that our propagation tech-

niques, combined with the absence of ∗ expressions in ϕ[0] and ψ[n], ensure the

absence of ∗ expressions in all propagated preconditions and postconditions.

3.2.1 Backward Propagation of Postconditions

Backward propagation of a postcondition ψ[`] through stmt(`) corresponds

to computing ψ[` − 1] such that the Hoare triple 〈ψ[`− 1]〉 stmt (`)〈ψ[`]〉 is

true. In other words, ψ[` − 1] is the set of all variable valuations such that

execution of stmt(`) begun in any state satisfying ψ[` − 1] is guaranteed to

terminate in a state satisfying ψ[`], for all (nondeterministic) choices made

46

by stmt(`). Thus, ψ[` − 1] is essentially Dijkstra’s weakest precondition [37],

wp(stmt(`), ψ[`]). Given a statement stmt(`) and a postcondition ψ[`] - an

expression over V [next] and V [init] - we compute ψ[`− 1] = wp(stmt(`), ψ[`])

- an expression over V [curr] and V [init] - using the following inductive rules:

1. skip.

The weakest precondition of ψ[`] over a skip statement is essentially

the same as ψ[`], except each occurrence of variable bi[next] in ψ[`] is

replaced with bi[curr], for all i ∈ [1, r]. Thus, we have:

ψ[`− 1] = ψ[`][∀i ∈ [1, r] : bi[next]/bi[curr]],

where the notation A[b/e] represents the expression obtained by replac-

ing all occurrences of b in A by e.

2. Assignment statement: b1, . . . , bm := e1, . . . , em.

Let us rewrite this as: b1[next], . . . , bm[next] := e1[curr], . . . , em[curr].

The weakest precondition over an assignment statement is computed

by replacing each variable bi[next] in ψ[`] with its assigned expression

ei[curr] for i ∈ [1,m], and replacing all other variables bj[next] in ψ[`]

with bj[curr]. Thus, the resulting expression ψ[` − 1] is an expression

over V [curr] and V [init], given by:

ψ[`− 1] = ψ[`][∀i ∈ [1,m] : bi[next]/ei[curr],

∀i 6∈ [1,m] : bi[next]/bi[curr]].

47

If for some j, ej[curr] is the nondeterministic expression ∗, the weakest

precondition is computed as the conjunction of the weakest preconditions

over the statements:

b1[next], . . . , bm[next] := e1[curr], . . . , false, . . . , em[curr], and

b1[next], . . . , bm[next] := e1[curr], . . . , true, . . . , em[curr].

For multiple nondeterministic expressions in the RHS of the assignment

statement, the weakest precondition can be similarly computed as the

conjunction of the weakest preconditions over all possible assignment

statements obtained by substituting each ∗ expression with either false

or true.

3. Sequential composition: stmt(`− 1); stmt(`)).

The weakest precondition over a sequence stmt(`−1); stmt(`)) of state-

ments is computed by first propagating ψ[`] through stmt(`) to get

wp(stmt(`), ψ[`]), followed by propagating wp(stmt(`]), ψ[`]) through

stmt(`− 1) to obtain the required weakest precondition:

wp(stmt(`− 1); stmt(`), ψ[`]) = wp(stmt(`− 1), wp(stmt(`), ψ[`])).

For proper bookkeeping, for each i ∈ [1, r], all occurrences of bi[curr]

in the expression for wp(stmt(`), ψ[`]) are swapped with bi[next] before

propagating through stmt(`− 1).

4. Conditional statement: if (g) then Sif else Selse fi.

We rewrite this as: if (g[curr]) then Sif else Selse fi. The weakest

precondition over a conditional statement is given by the the weakest

48

precondition over the sequence Sif of statements if the guard g is true,

and by the weakest precondition over the sequence Selse if g is false:

ψ[`− 1] = g[curr]⇒ wp(Sif, ψ[`]) ∧ ¬g[curr]⇒ wp(Selse, ψ[`]).

If g = ∗, the weakest precondition is given by the conjunction of the

weakest preconditions over Sif and Selse: wp(Sif, ψ[`])∧wp(Selse, ψ[`]).

5. Loop statement: while (g) do Sloop od.

The weakest postcondition over a loop statement is computed as a fix-

point over the weakest preconditions over each loop iteration. We define

the weakest precondition of the ith loop iteration, wp(Siloop, ψ[`]), as the

set of variable valuations such that execution of the loop statement be-

gun in any state satisfying wp(Siloop, ψ[`]) is guaranteed to terminate in

a state satisfying ψ[`] after executing the loop at most i times. This is

computed as follows:

wp(Siloop, ψ[`]) =
i∨

j=0

Yj,

where, Y0 = ψ[`] ∧ ¬g,

Yj = g ∧ wp(Sloop, Yj−1).

Y0 represents the set of variable valuations that never enter the loop and

satisfy ψ[`]. Yj represents the set of variable valuations that enter the

loop and exit it after exactly j loop iterations, terminating in a state

satisfying ψ[`]. To keep the above exposition clean, we have not made

the variable copies (curr, next) explicit. Note that each Yj is computed

49

in terms of variables in V [curr], which are then swapped with their

respective copies in V [next] before computing wp(Sloop, Yj).

Since Boolean programs have a finite number of variable valuations and

the above weakest preconditions wp(S0
loop, ψ[`]), wp(S1

loop, ψ[`]), . . . are

monotonically increasing sets, the Knaster-Tarski Theorem [67] guaran-

tees that this computation terminates in a fixpoint with wp(SIloop, ψ[`])

= wp(SI+1
loop, ψ[`]), for some I. The weakest precondition over the loop

statement stmt(`), which corresponds to all variable valuations which

enter the loop and eventually exit it in a state satisfying ψ[`], is thus

given by:

ψ[`− 1] = wp(SIloop, ψ[`]) =
I∨
j=0

Yj.

If g = ∗, then we define a different set of iterants Zj, which corre-

spond to variable valuations that exit the loop in a state satisfying ψ[`]

in the jth loop iteration when g evaluates to false. We remind the

reader that ∗ expresses fair choice between true and false. Hence, g

is guaranteed to evaluate to false eventually. The weakest precondi-

tion, which corresponds to all variable valuations that exit the loop in a

state satisfying ψ[`] for all values of the guard, is given by the fixpoint:

ψ[`− 1] =
∧I
j=0 Zj, where, Z0 = ψ[`], Zj = wp(Sloop, Zj−1).

In the event that wp(stmt(`), ψ[`]) evaluates to false for any statement

stmt(`), our algorithm aborts propagation of postconditions, and proceeds

to the next phase — precondition propagation.

50

3.2.2 Forward Propagation of Preconditions

Forward propagation of a precondition ϕ[` − 1] through a statement stmt(`)

involves computing ϕ[`] such that the Hoare triple 〈ϕ[`− 1]〉 stmt(`) 〈ϕ[`]〉 is

true. In other words, ϕ[`] represents the smallest set of variable valuations

such that execution of stmt(`), begun in any state satisfying ϕ[`−1], is guaran-

teed to terminate in one of them for all (nondeterministic) choices that stmt(`)

might make. We call this set the strongest postcondition 1, sp(stmt(`), ϕ[`−1]).

In this work, precondition propagation involves recording the value of

each program variable in terms of the initial values of the variables, along

with the conditions imposed by the program’s control-flow. Let us assume

that ϕ[`− 1] is a Boolean formula of the form2:

ϕ[`− 1] = ρ[init] ∧
∧
i∈[1,r]

bi[curr] = ξi[init],

where each ρ[init] is a Boolean expression over V [init] representing the path

condition imposed by the program control-flow and each ξi[init] is a Boolean

expression over V [init] representing bi in terms of the initial values of the

program variables. In particular, note that if each variable bi is initialized

to some value initvali in a program, the precondition ϕ for the program can

1 Traditionally, the definition of the strongest postcondition (sp) is the dual of the weak-
est liberal precondition (wlp) - these predicate transformers are used in the context of partial
correctness and do not concern themselves with program termination [37]. Hence, the tradi-
tional sp should ideally be called the strongest liberal postcondition. In our work, we define
strongest postcondition to be the dual of the weakest precondition for total correctness.

2In general, as we will see, ϕ[` − 1] is a disjunction over Boolean formulas of this form;
sp(stmt(`), ϕ[` − 1]) can then be obtained by computing a disjunction over the strongest
postconditions obtained by propagating each such Boolean formula through stmt(`).

51

be written as an expression of this form: ρ[init] ∧
∧
i∈[1,r] bi[curr] = initvali.

Given a statement stmt(`) and a precondition ϕ[` − 1] - an expression over

V [init] and V [curr] as above - we compute ϕ[`] = sp(stmt(`), ϕ[` − 1]) - an

expression over V [init] and V [next] of the same form - using the inductive

rules enumerated below. In what follows, for an expression e[curr], we find

it convenient to use a special notation, e[curr/init] to denote the expression

e[curr][∀i ∈ [1, r] : bi[curr]/ξi[init]] obtained by substituting each occurrence

of variable bi[curr] in e by its corresponding expression ξi[init] from ϕ[`− 1].

Thus, e[curr/init] is an expression over V [init].

1. skip.

The strongest postcondition of ϕ[`−1] over a skip statement is given by:

ϕ[`] = ϕ[`− 1][∀i ∈ [1, r] : bi[curr]/bi[next]].

Equivalently, ϕ[`] = ρ[init] ∧
∧
i∈[1,r] bi[next] = ξi[init].

2. Assignment statement: b1, . . . , bm := e1, . . . , em.

The strongest postcondition sp(x:=e, δ) for an assignment statement —

x:=e, is given by ∃y : δ[x/y] ∧ x = e[x/y] [37]. Here, y represents the

unknown value of x prior to the assignment. This necessitates existential

quantification over y to obtain the postcondition. Our use of variable

copies enables us to preserve necessary history information and avoid

52

existential quantification. Thus, we have:

ϕ[`] = ρ[init] ∧
∧

i∈[1,m]

bi[next] = ei[curr] ∧∧
i 6∈[1,m]

bi[next] = bi[curr].

We replace all occurrences of each variable bi[curr] in the above expres-

sion with the corresponding ξi[init] expression from ϕ[` − 1] to obtain

the following equivalent expression for ϕ[`] over V [init] and V [next]:

ϕ[`] = ρ[init] ∧
∧

i∈[1,m]

bi[next] = ei[curr/init] ∧∧
i 6∈[1,m]

bi[next] = ξi[init].

For nondeterministic expressions in the RHS of the assignment state-

ment, the strongest postcondition is computed as the disjunction of

the strongest postconditions over all possible assignment statements ob-

tained by substituting each ∗ expression with either false or true.

3. Sequential composition: stmt(`− 1); stmt(`)).

The rule for propagation of the precondition ϕ[`−1] through a sequence

of statements is similar to the rule for propagation of a postcondition:

sp(stmt(`− 1); stmt(`), ϕ[`− 1]) = sp(s[`+ 1], sp(stmt(`), ϕ[`− 1])).

As before, for proper bookkeeping, all occurrences of variables bi[next] in

the expression for sp(stmt(`), ϕ[`− 1]) are swapped with bi[curr] before

propagating through stmt[`+ 1].

53

4. Conditional statement: if (g) then Sif else Selse fi.

The strongest postcondition of a conditional statement is computed as

the following disjunction:

ϕ[`] = sp(Sif, ϕ[`− 1] ∧ g[curr/init]) ∨

sp(Selse, ϕ[`− 1] ∧ ¬g[curr/init]).

If g = ∗, the strongest postcondition is computed as the disjunction

of the strongest postconditions over Sif and Selse: sp(Sif, ϕ[` − 1]) ∨

sp(Selse, ϕ[`− 1]).

5. Loop statement: while (g) do Sloop od.

Similar to postcondition propagation, precondition propagation of loop

statements involves fixpoint computation over the sp operator. We define

the strongest postcondition of the ith loop iteration, sp(Siloop, ϕ[` − 1]),

as the smallest set of variable valuations in which execution of the loop

body is guaranteed to terminate, in at most i iterations, starting in any

state satisfying ϕ[`− 1]. This is computed as follows:

sp(Siloop, ϕ[`− 1]) =
i∨

j=0

(Yj ∧ ¬g),

where, Y0 = ϕ[`− 1],

Yj = sp(Sloop, Yi−1 ∧ g).

Note that, as before, each Yj is computed in terms of variables in V [next]

(and V [init]), which are then swapped with their respective copies in

54

V [curr] before computing sp(Sloop, Yj−1∧g). Let us suppose the fixpoint

computation terminates after I iterations. The strongest postcondition

for the loop statement, which corresponds to the smallest set of variable

valuations such that the loop, when begun in any state satisfying ϕ[`−1]

is guaranteed to terminate in one of them, is thus given by:

ϕ[`] = sp(SIloop, ϕ[`− 1])

=
I∨
j=0

(Yj ∧ ¬g)

= ¬g ∧ (ϕ[`− 1] ∨
I∨
j=1

sp(Sloop, Yj−1 ∧ g)).

If g = ∗, the strongest postcondition is expressed as the fixpoint: ϕ[`] =∨I
j=0 Zi, where Z0 = ϕ[`− 1] and Zj = sp(Sloop, Zj−1).

The strongest postcondition of a loop statement is undefined if there

exists some variable valuation in ϕ[` − 1], starting from which there

exists some non-terminating execution of the loop. Hence, the above

computation for the strongest postcondition of a loop is accompanied

by a check for termination for all variable valuations satisfying ϕ[`− 1].

The termination check can be done in multiple ways. One approach is

to propagate the prospective strongest postcondition computed above,

back through the loop, and check if the weakest precondition so obtained

contains ϕ[`−1]. If this check is false, it implies the existence of states

in ϕ[`− 1] that do not terminate.

If the strongest postcondition sp(stmt(`), ϕ[` − 1]) evaluates to false or is

55

undefined for any statement stmt(`), our algorithm aborts propagation of pre-

conditions, and proceeds to the next phase — repair generation.

3.3 Step II: Repair Generation

We now present an algorithm to repair an annotated program B that does not

satisfy its specification (〈ϕ〉 B 〈ψ〉 is false). Before proceeding, we provide an

alternate, equivalent characterization of our notion of correctness in Lem. 3.3.1

and then establish an important result in Lem. 3.3.2.

Lem. 3.3.1 is stated without proof. The first part of the lemma is

standard [37], and the second part of the lemma follows from our definition of

strongest postconditions.

Lemma 3.3.1. Characterization of total correctness:

For any statement s in program B,

〈ϕ〉 s 〈ψ〉 ≡ ϕ⇒ wp(s, ψ),

〈ϕ〉 s 〈ψ〉 ≡

{
sp(s, ϕ)⇒ ψ, when sp(s, ϕ) is defined,

false, otherwise.

As described in Sec. 3.2, we annotate each program statement stmt(`)

in B with a propagated precondition ϕ[`− 1] and a propagated postcondition

ψ[`]. This provides us with n local Hoare triples, 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉, for

` ∈ [1, n]. In the following lemma, we establish an interesting relation between

the local Hoare triples and the Hoare triple for the entire program. This lemma

is the basis for our repair algorithm. We claim that 〈ϕ〉 B 〈ψ〉 is false if and

56

only if all the local Hoare triples are false. Further, all the local Hoare triples

are false if and only if any one local Hoare triple is false.

Lemma 3.3.2. For a Boolean program B composed of a sequence of n state-

ments, the following expressions are equivalent when all strongest postcondi-

tions ψ[1], ψ[2], . . . , ψ[n] are defined:

〈ϕ〉 B 〈ψ〉,

∃` ∈ [1, n] : 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉,

∀` ∈ [1, n] : 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉.

Proof. We first prove an equivalence between the second and third expressions.

Let stmt(` − 1); stmt(`); stmt(` + 1) be a sequence of any three consecutive

statements of program B. Consider the Hoare triple, 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉.

We have:

〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉

≡ ϕ[`− 1]⇒ wp(stmt(`), ψ[`]) (Lem. 3.3.1)

≡ sp(stmt(`− 1), ϕ[`− 2])⇒ ψ[`− 1] (by definition)

≡ 〈ϕ[`− 2]〉 stmt(`− 1) 〈ψ[`− 1]〉 (Lem. 3.3.1).

Similarly, we can show 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉 ≡ 〈ϕ[`]〉stmt(` + 1)〈ψ[`+ 1]〉.

Extending this result to program statements preceding stmt(` − 1) and suc-

ceeding stmt(`+ 1), we arrive at an equivalence between the second and third

expressions.

57

We prove an equivalence between the first and third expressions as

follows:

〈ϕ〉 B 〈ψ〉

≡ ϕ⇒ wp(B, ψ) (Lem. 3.3.1)

≡ ϕ[0]⇒ wp(stmt(1); stmt(2); . . . ; stmt(n), ψ)

≡ ϕ[0]⇒ wp(stmt(1); stmt(2); . . . ; stmt(n− 1), ψ[n− 1])

≡ . . .

≡ ϕ[0]⇒ wp(stmt(1), ψ[1])

≡ 〈ϕ[0]〉 stmt(1) 〈ψ[1]〉 (Lem. 3.3.1).

A similar equivalence can be obtained between 〈ϕ〉 B 〈ψ〉, and every local Hoare

triple 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉, ` ∈ [2, n].

3.3.1 The Repair Algorithm

A consequence of Lemma 3.3.2 is that if the `th Hoare triple is made true

by repairing stmt(`), then the program so obtained satisfies the specifica-

tion. Hence, our repair strategy proceeds by examining program statements

in some specific order to identify potential candidates for repair. If prop-

agation of postconditions is aborted due to an empty weakest precondition

for statement stmt(`), we check for repairable statements among the state-

ments stmt(`), stmt(` + 1), . . . , stmt(n). Similarly, if propagation of precon-

ditions is aborted due to an undefined or empty strongest postcondition for

58

statement stmt(`), we check for repairable statements among the statements

stmt(0), stmt(1), . . . , stmt(`).

Recall that the set of permissible update schemas is:

U = {id, assign 7→ skip, cond 7→ skip, loop 7→ skip,

assign 7→ assign, if 7→ if, while 7→ while}.

A single application of an update schema from U is thus a deletion or a specific

modification of an assignment, conditional or loop statement. We assume that

we have a set of statements (by default, the set of all n statements) of B to

be inspected for repairability, in some predecided order. For every statement

stmt(`) to be inspected, we pose a query to check if stmt(`) can be repaired

by a single application of an update schema from U . If the query returns

true for any statement, we proceed to synthesize a repair and declare success.

If not, we proceed to the next statement in the given order. If none of the

statements can be repaired, we report failure in repairing the program given

the current constraints. In what follows, we explain how to formulate Query

for each permissible update schema and synthesize the corresponding repair:

Statement Deletion. Before checking if stmt(`) can be repaired by modify-

ing it, we first do a simple check to see if it can be repaired by deleting it. We

can do this by formulating Query as the following quantified Boolean formula

(QBF):

∀b[init] ∈ V [init] : ϕ[`− 1]⇒ ψ[`][∀i ∈ [1, r] : bi[curr]/bi[next]]. (3.1)

59

This QBF checks if the local Hoare triple given by 〈ϕ[`− 1]〉 stmt(`) 〈ψ[`]〉

can be made true if stmt(`) is deleted. If this QBF is true, we return a new

repaired program B̂ with stmt(`) replaced by skip. If this QBF is false, we

proceed to check if stmt(`) can be repaired by modifying it.

Assignment Statement Modification. Suppose stmt(`) is an assignment

statement, b1, . . . , bm := e1, . . . , em. Let ŝtmt(`) : b1, . . . , bm := ê1, . . . , êm

denote a potential repair for stmt(`), assigning expression êi to variable bi for

each i ∈ [1,m]. We check for the existence of a suitable ŝtmt(`) by formulating

Query as the following QBF:

∀b[init] ∈ V [init] ∃z1, . . . , zm : ϕ[`− 1]⇒ ψ̂[`− 1], (3.2)

where zi represents a valuation of the unknown expression êi for each i ∈ [1,m]

and ψ̂[` − 1] = wp(b1, . . . , bm := z1, . . . , zm, ψ[`]). Thus, Query poses the

question: does there exist a valuation zi of variable bi, for i ∈ [1,m], which

makes the local Hoare triple 〈ϕ[`− 1]〉 b1, . . . , bm := z1, . . . , zm 〈ψ[`]〉 true.

If the above QBF evaluates to true, the next key step is to obtain

expressions for ê1, . . . , êm in terms of variables in V [curr]. In general, one

can derive such expressions from the certificates of validity generated by a

QBF solver. In what follows, we outline a way to compute a solution for the

expressions without using a QBF solver.

Let us first derive our solution for an assignment to a single variable;

thus, stmt(`) is the statement b := e, ŝtmt(`) is the statement b := ê and z

60

represents a valuation of ê. Let us denote the expression ϕ[` − 1] ⇒ ψ̂[` − 1]

by T . Let T |z, T |¬z denote the positive, negative cofactors of T w.r.t. z,

i.e. the expressions obtained by substituting all occurrences of z in T by

true, false, respectively. When the QBF in (3.2) evaluates to true, for each

initial valuation of the program variables, ∃z : T is true, i.e., T is true for

z = true or for z = false. Thus, (a) T is true and z = true, in which case,

T = T |z = true (and the value of T |¬z doesn’t matter), or, (b) T is true and

z = false, in which case, T = T |¬z = true (and T |z doesn’t matter). Let

us set T |¬z = false in case (a) and set T |z = true in case (b). This fixes

two possible solutions (of many): either z = T |z or z = ¬T |¬z can serve as a

witness to the validity of the QBF in (3.2) and could yield ê.

One can extend the above solution to parallel assignments using similar

reasoning. For instance, for assignments to 2 variables, z1 = T |z1z2 ∨ T |z1¬z2

and z2 = T |z1z2 ∨ T |¬z1z2 form a witness to the validity of the QBF in (3.2)

and could yield ê1, ê2, respectively.

Note, however, that the expressions T |z, T |z1z2 etc. contain variables

from both V [init] and V [curr]. Hence the repair algorithm tries to express

variables in V [init] in terms of variables in V [curr]. If this is feasible, the

repaired expressions, ê1, . . . , êm, are obtained solely in terms of variables from

V [curr]. If this cannot be done, the repair algorithm suggests adding at most

m new constants, binit1, binit2, . . . , binitm, to store the initial values of the

program variables. Note that this is the only time the repair algorithm suggests

addition of constants or insertion of statements. The following lemma states

61

the soundness of the above repair generation.

Lemma 3.3.3. When the QBF in (3.2) is true, replacing the statement

stmt(`): b1, . . . , bm := e1, . . . , em by ŝtmt(`): b1, . . . , bm := ê1, . . . , êm, with

ê1, . . . , êm obtained as above, makes the Hoare triple 〈ϕ[`− 1]〉 ŝtmt(`) 〈ψ[`]〉

true.

Conditional Statement Modification. Suppose stmt(`) is a conditional

statement, if (g) then Sif else Selse fi. Query for stmt(`) checks for the

possibility of repairing one of three options - the guard, a statement in Sif,

or a statement in Selse. Note that repairing the guard corresponds to an

application of the update schema if 7→ if, while repairing a statement in

Sif or Selse may involve any update schema in U that may be applied to the

statements in Sif, Selse.

Let ŝtmt(`): if (ĝ) then Sif else Selse fi denote a potential repair

that modifies the guard in stmt(`). We check for the existence of such a

ŝtmt(`) by formulating a QBF similar to (3.2):

∀b[init] ∈ V [init] ∃z : ϕ[`− 1]⇒ ψ̂[`− 1], (3.3)

where z represents a valuation of the unknown expression ĝ, and ψ̂[` − 1] =

wp(if (z) thenSif elseSelse fi, ψ[`]). If the QBF is true, we can derive ĝ as

before from, say, the positive cofactor of the expression ϕ[` − 1] ⇒ ψ̂[` − 1].

If the QBF is not true, we make two separate sets of queries to check if a

statement in Sif or in Selse can be repaired using some permissible update

62

schema to make the corresponding local Hoare triples true. Thus, for every

statement stmt in Sif and every potential repair ŝtmt corresponding to an

applicable update schema from U , we formulate a similar QBF; if any of the

QBFs is true, we compute ŝtmt, thereby yielding a modified Ŝif. If none

of the QBFs is true, we repeat the process for every statement in Selse and

attempt to compute a modified Ŝelse that makes the local Hoare triple true.

The following lemma states the soundness of the above repair generation.

Lemma 3.3.4. When the QBF in (3.3) is true, replacing the conditional

statement stmt(`): if (g) then Sif else Selse fi by the statement ŝtmt(`):

if (ĝ) then Sif else Selse fi, with ĝ obtained as above, makes the Hoare

triple 〈ϕ[`− 1]〉 ŝtmt(`) 〈ψ[`]〉 true. When the query for repairing a statement

in Sif, Selse is true, replacing stmt(`) by ŝtmt(`): if (g) then Ŝif else Selse

fi, ŝtmt(`): if (g) then Sif else Ŝelse fi, respectively makes the Hoare triple

〈ϕ[`− 1]〉 ŝtmt(`) 〈ψ[`]〉 true.

Loop Statement Modification. Suppose stmt(`) is a loop statement, while

(g) do Sloop od. Query for a loop statement checks for the possibility of re-

pairing either the loop guard or a statement in Sloop. Query and repair for

loop statements have an additional responsibility of ensuring termination of

the repaired loop, and hence, differ from the versions we have seen so far.

Let us first focus on repairing the loop guard. Recall that before check-

ing if stmt(`) can be repaired by modifying it, we first check if it can be

repaired by deleting it. Hence, in what follows, we can assume that the loop

63

statement cannot be repaired by deleting it. Thus, some states satisfying the

precondition ϕ[`− 1] must enter the loop, i.e., any repair ĝ for the loop guard

must include some states satisfying ϕ[`−1]. Consider the terminating fixpoint

over the monotonically decreasing sets,
∧
j Yj, where:

Y0 = ϕ[`− 1] ∧ ¬ψ[`],

Yj = sp(Sloop, Yj−1) ∧ ¬ψ[`].

This fixpoint represents the set of all states that satisfy the precondition ϕ[`−

1], but not the postcondition ψ[`], enter the loop, execute it iteratively and

never satisfy the postcondition ψ[`] on completion of a loop execution. Suppose

this fixpoint does not evaluate to false. On the one hand, the loop guard ĝ

that can repair the loop statement must include the states satisfying this non-

empty fixpoint, as these states do not satisfy ψ[`] on exiting the loop. On the

other hand, ĝ cannot include the set of states satisfying this fixpoint as such

states will never transition into states that can exit the loop while satisfying

ψ[`]. Thus, the states from this set cannot belong to either ĝ or ¬ĝ, leading

to a contradiction.

Hence, if a loop statement cannot be repaired by deleting it, a choice

for a loop guard that can help repair the loop statement exists if and only if

the above fixpoint is empty.

Assuming that the above fixpoint is empty, consider the fixpoint over

the monotonically increasing sets
∨
j Yj, where each Yj is defined the same

as above. By construction, this fixpoint accumulates all states that satisfy

64

the precondition, enter the loop, but do not satisfy the postcondition ψ[`] on

completion of a loop execution. If we select the loop guard to be this fixpoint,

then any state that exits the loop is forced to satisfy ψ[`] by construction.

Thus each iterant of this fixpoint accumulates states that are chosen by the

guard to execute the loop during that iteration. Moreover, since the fixpoint

over
∧
j Yj is known to be empty, we can be assured that there are no states

in ĝ that belong to a non-terminating execution. Note that g is not false as

the first iterant Y0 = ϕ[`− 1] ∧ ¬ψ[`] is required to be non-empty. If Y0 were

empty or false, the QBF in (3.1) is true as ϕ[`− 1]⇒ ψ[`]. Hence, the loop

statement could have been repaired by deleting it, thereby contradicting our

earlier assumption. The soundness of our repair choice for the loop guard is

stated in the following lemma.

Lemma 3.3.5. Let Y0 = ϕ[`− 1] ∧ ¬ψ[`] and Yj = sp(Sloop, Yj−1) ∧ ¬ψ[`].

When stmt(`): while (g) do Sloop od cannot be repaired by deleting it, replac-

ing stmt(`) with ŝtmt(`): while (ĝ) do Sloop od, where ĝ is the fixpoint over

the sets
∨
j Yj, makes the Hoare triple 〈ϕ[`− 1]〉 ŝtmt(`) 〈ψ[`]〉 true if and only

if the fixpoint
∧
j Yj evaluates to false.

If the fixpoint over
∧
j Yj is not false, the loop guard cannot be re-

paired; we then formulate a set of queries to check if any statement in Sloop can

be repaired. To keep the exposition simple, we show how to formulate a query

for checking if an assignment statement in Sloop can be repaired. The method

extends inductively to inner conditional and loop statements. Let stmt(p) be

65

an assignment statement in Sloop. As before, let ŝtmt(p) denote a potential

repair for stmt(`). Let Ŝloop denote the updated loop body. Query returns

true if the following QBF is true, and false otherwise:

∀b[init] ∈ V [init] ∃z1, . . . , zm : ϕ[`− 1]⇒ ψ̂[`− 1],

where each zi is as before and ψ̂[`−1] is the weakest precondition of Ŝloop with

respect to ψ[`]. To compute this weakest precondition, we compute a fixpoint

as outlined in Sec. 3.2.1, noting that each iterant of the fixpoint, and hence,

the final fixpoint would be an expression over the variables z1, . . . , zm, V [init]

and V [curr]. If the QBF is true, we can derive z1, . . . , zm from the cofactors

of ϕ[`− 1]⇒ ψ̂[`− 1] as before. Since the weakest precondition computation

guarantees termination, the repaired loop is guaranteed to terminate. If the

QBF is not true, we attempt to repair another statement within the loop

body. The soundness of this repair strategy is stated in the following lemma.

Lemma 3.3.6. If Query for repairing statement stmt(p) in the loop body of

stmt(`): while (g) do Sloop od is true, then replacing stmt(`) by ŝtmt(`):

while (g) do Ŝloop od, where Ŝloop is the updated loop body with stmt(p) re-

placed with ŝtmt(p) and ŝtmt(p) is computed as outlined above, makes the

Hoare triple 〈ϕ[`− 1]〉 ŝtmt(`) 〈ψ[`]〉 true.

Example: In the annotated program from Fig. 3.2, the QBF for the 2nd state-

ment evaluates to true, and generates the expected repair: b2[next] := b1[curr]⊕

b2[curr]; for the program.

66

3.3.2 Algorithm Notes

Correctness. The following theorem states that our algorithm is sound and

complete with respect to our repair constraints.

Theorem 3.3.7. Given a precondition, postcondition pair (ϕ, ψ), a Boolean

program B such that 〈ϕ〉 B 〈ψ〉 is not valid, and the set of permissible, statement-

level update schemas given by:

U = {id, assign 7→ skip, cond 7→ skip, loop 7→ skip,

assign 7→ assign, if 7→ if, while 7→ while},

if there exists a Boolean program B̂ such that 〈ϕ〉 B̂ 〈ψ〉 is valid, and B̂ can be

obtained by a single application of an update schema from U , our algorithm

finds one such B̂. If our algorithm finds a B̂, then 〈ϕ〉 B̂ 〈ψ〉 is guaranteed to be

valid and B̂ is guaranteed to differ from B in exactly one statement, with the

statement modification corresponding to an application of an update schema

from U .

Proof. The soundness result follows from Lem. 3.3.1, Lem. 3.3.2, Lem. 3.3.3,

Lem. 3.3.4, Lem. 3.3.5 and Lem. 3.3.6. The completeness result is a direct

consequence of our query formulation, which checks for the existence of ex-

actly one statement modification corresponding to an application of an update

schema from U .

We emphasize that by completeness, we refer to the completeness of

our algorithm for repair of Boolean programs. When the algorithm is used for

67

predicate abstraction-based repair of concrete programs, the overall algorithm

can no longer be complete. Given the repair constraints, it may be possible

to repair a concrete program P , but it may not be possible to repair the cor-

responding Boolean program B to eliminate all its spurious counterexample

paths.

Complexity Analysis. All fixpoint computations in our algorithm can be

done in time exponential in the number of program variables in the worst-

case. Moreover, the Query function for assignment and conditional statements

involves checking validity of a QBF with exactly two alternating quantifiers

and lies in the second polynomial hierarchy, i.e., it is ΣP
2 -complete in the

number of program variables. All other operations like swapping of variables,

substitution, Boolean manipulation and cofactor computation can be done in

either constant time or time exponential in the number of program variables

in the worst-case.

Thus, the worst-case complexity of our algorithm is exponential in the

number of program variables. In practice, most of these computations can be

done very efficiently using BDDs. The initial results obtained from a prelimi-

nary implementation of our algorithm that uses a Java-based BDD library [131]

have been promising. Use of BDDs allows symbolic storage and efficient ma-

nipulation of preconditions and postconditions as well as efficient computation

of fixpoints. The forall and exist methods for BDDs facilitate computing

validity of a desired QBF and hence enable the Query check. Similarly, the

68

repair operation can be performed easily by computing the requisite cofactor

of a BDD.

3.3.3 Annotation and Repair of Programs with Procedures

Our algorithm can be extended to programs containing non-recursive pro-

cedure calls. The basic idea is to use procedure summaries to characterize

the effect of a procedure. Let F be a procedure in program B, with a set

FV = {β1, . . . , βk} of formal parameters, a set LV of local variables not in-

cluded in FV , and a sequence S of statements. Let GV [before] and GV [after]

be two copies of the set GV of global variables to represent the global vari-

able valuations before and after execution of F , respectively. Let GV [curr]

and GV [next] be two copies of GV , as used earlier in this chapter, to aid

propagation within the procedure

Annotation. The backward summary of F , denoted ∆−F , is an expression

over variables in FV , GV [before] and GV [after]. ∆−F can be computed by

eliminating all local variables in LV from the weakest precondition of the

predicate
∧
bi∈GV bi[before] = bi[after], over the procedure body S [9]. The

forward summary of F , denoted ∆+
F , is also an expression over FV , GV [before]

and GV [after]. ∆+
F can be computed from the strongest postcondition of the

predicate
∧
bi∈GV bi[curr] = bi[before], over the procedure body S, based on

the rules described in Sec. 3.2.2, to first yield an expression over variables in

GV [next], GV [before], FV and LV . ∆+
F is then obtained by replacing the

variables in GV [next] with their copies in GV [after] and eliminating all local

69

variables in LV .

∆−F , ∆+
F are used at each call-site of F during postcondition, precondi-

tion propagation, respectively. Let stmt(`): callF (α1, . . . , αk). To propagate

of ψ[`] - an expression over V [next] and V [init] - back through stmt(`) to

compute ψ[`− 1] - an expression over V [curr] and V [init], the global variable

valuations in ψ[`] are matched up with those after execution of F , all global

variables in GV [before] in ∆−F are replaced with their copies in GV [curr], and

the formal parameters of F are replaced with the corresponding actual pa-

rameters. To propagate of ϕ[`− 1] - an expression over V [curr] and V [init] -

forward through stmt(`) to compute ϕ[`] - an expression V [next] and V [init],

we essentially do a conjunction of ∆+
F and ϕ[` − 1], taking care to match up

appropriate copies of global variables, and replace all formal parameters of F

with the corresponding actual parameters.

Since we preclude recursive calls, the call-graph for our programs is

acyclic, and hence can be sorted in reverse topological order. We compute

procedure summaries in this order to ensure that the summaries are always

available at the call-site of each function.

Repair. To repair a statement within procedure F , we proceed as before,

first attempting to replace the statement by skip, failing which, attempting to

modify the statement by replacing expressions with fresh variables (z1, z2 etc.).

Note however that once a procedure is considered for repair, the procedure

summaries need to be recomputed and the program needs to be re-annotated,

before we can solve for the fresh variables.

70

Chapter 4

Cost-Aware Program Repair

Overview. In this chapter, we propose cost-aware repair of programs an-

notated with assertions. We present an algorithm that can repair erroneous

Boolean programs by modifying them in multiple locations such that the total

modification cost does not exceed a specified repair budget; our algorithm for

Boolean program repair is sound and complete for partial correctness. We also

describe strategies for concretization of repaired Boolean programs to enable

predicate abstraction-based repair of concrete programs. We demonstrate the

efficacy of our overall framework by repairing C programs using a prototype

tool.

In Chapter 3, we focused on repairing a class of Boolean programs using a sin-

gle application of a permissible update schema. In this chapter, we generalize

the earlier method in several ways. We present a predicate abstraction-based

framework for repairing infinite-state programs, annotated with multiple as-

sertions, and with possibly recursive procedures, with respect to partial cor-

rectness1. Along with a repaired program, the framework also generates a

1Our approach can be extended to handle total correctness as well.

71

proof of correctness consisting of inductive assertions. The methodology pre-

sented in this chapter can repair programs by modifying them in multiple

program locations, and can ensure the readability of the repaired program us-

ing user-defined expression templates. Last, but not the least, the framework

is cost-aware - given a user-defined cost function, that charges each appli-

cation of an update schema to a program statement some user-defined cost,

and a repair budget, the framework computes a repaired program whose total

modification cost does not exceed the repair budget; we postulate that this

cost-aware formulation is a flexible and convenient way of incorporating expert

programmer intent and intuition in automated program debugging.

4.1 Formal Framework

Recall the example from Chapter 2, shown here in Fig. 4.1. In this chapter,

we will use the transition graph representation of programs. As can be seen

from Fig. 4.1b and Fig. 4.1d, it suffices to consider the set of statement types

given by: Σ = {skip, assign, assume, assert, call, return, goto}. Observe

that the Boolean expressions in the assume statements labeling the edges in

the transition graphs are always deterministic. Thus, a concrete program

contains no nondeterministic expressions, and a Boolean program contains

nondeterministic expressions only in the RHS of assignment statements2.

2We remind the reader that our prototype tool (see Sec. 4.4) can handle arbitrary nonde-
terministic Boolean expressions, and not just ∗ expressions. Also, our tool accepts Boolean
programs with if statements (the tool we use for predicate abstraction encodes all while
statements using conditional and goto statements).

72

main() {
int x;
`1 : if (x ≤ 0)
`2 : while (x < 0){
`3 : x := x+ 2;
`4 : skip;

}
else

`5 : if (x == 1)
`6 : x := x− 1;
`7 : assert (x > 1);

}
(a) P

`1

`2

`3

`4

`5

`6

`7

err exit

assume (x ≤ 0)

assume (x < 0)

x := x+ 2

assume (x > 0)

assume (x == 1)

assume
(x
≥

0) as
su
me

(x
6=

1)

x := x− 1

(b) G(P)

main() {
/ ∗ γ(b0) = x ≤ 1 ∗ /
/ ∗ γ(b1) = x == 1 ∗ /
/ ∗ γ(b2) = x ≤ 0 ∗ /
Bool b0, b1, b2 := ∗, ∗, ∗;
`1 : if (¬b2) then goto `5;
`2 : if (∗) then goto `0;
`3 : b0, b1, b2 := ∗, ∗, ∗;
`4 : goto `1;
`0 : goto `7;
`5 : if (¬b1) then goto `7;
`6 : b0, b1, b2 := ∗, ∗, ∗;
`7 : assert (¬b0);

}
(c) B

`1

`2

`3

`4

`0

`5

`6

`7

err exit

assume (b2)

assume(T)

b0, b1, b2 := ∗, ∗, ∗

assume (¬b2)

assume (b1)

assume(T)

as
su
me

(¬
b 1

)

b0, b1, b2 := ∗, ∗, ∗

(d) G(B)

Figure 4.1: An example concrete program P , a corresponding Boolean program
B and their transition graphs

73

We assume that program correctness is specified using a set of assert

statements of the form ` : assert (g), included in the program. Recall that a

program annotated with a set of assertions is partially correct iff every finite

execution path of P ends in a terminating configuration. The program is

totally correct iff every execution path is finite and ends in a terminating

configuration. While the approach presented in this chapter can be extended

to handle total correctness, we only present a treatment of partial correctness

here; henceforth, correctness and partial correctness are used interchangeably.

In this chapter, we fix the following set of permissible update schemas

for programs:

U = {id, assign 7→ assign, assign 7→ skip, assume 7→ assume,

call 7→ call, call 7→ skip}.

Let cU ,L : U × L → N be a cost function that maps a tuple, consisting

of a statement-level update schema u and a location ` of P , to a certain

cost. Thus, cU ,L(u, `) is the cost of applying update schema u to stmt(`).

We impose an obvious restriction on cU ,L: ∀` ∈ L : cU ,L(id, `) = 0. Recall

that RU ,L : L → U denotes an update function that maps each location of

P to an update schema in U . Since we have already fixed the set U and the

set L of locations of program P (or equivalently, of Boolean program B3), we

3In general, as can be seen from Fig. 4.1, L(B) can be a superset of L(P). However, the
extraneous locations in L(B) contain skip or goto statements and are hence, irrelevant for
repair in our work.

74

henceforth use c, R instead of cU ,L, RU ,L, respectively, The total cost, Costc(R),

of performing an R-update of P is given by
∑

`∈L c(R(`), `).

For this chapter, we adapt the problem definition of Sec. 2.3 as follows.

Given an incorrect concrete program P annotated with assertions, a set of

permissible, statement-level update schemas U , a cost function c and a repair

budget δ, the goal of cost-aware program repair is to compute P̂ such that:

1. P̂ is correct, and,

2. there exists R:

(a) P̂ is some R-update of P , and

(b) Costc(R) ≤ δ.

In addition to the above problem, we propose another problem as fol-

lows. Let T = {T1, . . . , Th} be a set of templates or grammars, each repre-

senting a syntactical restriction for the modified expressions in P̂ . The syntax

of an example template, say T1, defining Boolean-valued linear arithmetic ex-

pressions over the program variables, denoted 〈blaexpr〉, is shown below:

〈blaexpr〉 ::= atom | (〈blaexpr〉) | ¬〈blaexpr〉 | 〈blaexpr〉 ∧ 〈blaexpr〉
〈atom〉 ::= 〈laterm〉 〈cmp〉 〈laterm〉
〈laterm〉 ::= const | var | const× var | 〈laterm〉+ 〈laterm〉
〈cmp〉 ::= = | < | ≤.

In the above, const and var denote integer-valued or real-valued constants

and program variables, respectively. Expressions such as v1 + 2 × v2 ≤ v3,

75

(v1 < v2) ∧ (v3 = 3) etc., that satisfy the syntactical requirements of the

template T1, are said to belong to the language of the template, denoted L(T1).

Let ET ,L : L → T , be a function that maps each location of P to a tem-

plate in T . Let E(stmt(`)) denote a set that includes all expressions in certain

statement types and be defined as follows: if stmt(`) is v1, . . . , vm := e1, . . . , em,

E(stmt(`)) = {e1, . . . , em}, else if stmt(`) is callFj(e1, . . . , ek), E(stmt(`)) =

{e1, . . . , ek}, else if stmt(`) is assume (g), E(stmt(`)) = {g} else, E(stmt(`)) is

the empty set.

Given ET ,L, along with (incorrect) P , U , c and δ, the goal of template-

based, cost-aware program repair is to compute P̂ such that:

1. P̂ is correct, and,

2. there exists R:

(a) P̂ is some R-update of P ,

(b) Costc(R) ≤ δ, and

(c) for each location `:

R(`) 6= id ⇒ ∀e ∈ E(ŝtmt(`)) : e ∈ L(ET ,L(`)).

We have already emphasized the benefits of formulating the program

repair problem with respect to a set U of update schemas in Sec. 2.3. We

conjecture that an insightful choice for the cost function c can further help

prune the search space for repaired programs and help incorporate expert

76

user intuition and intent in automatic program repair. Exploration of suitable

cost-functions is beyond the scope of this dissertation. For now, we would only

like to emphasize that our cost-function is quite flexible, and can be used to

constrain the computation of P̂ in diverse ways. For example, the user can

choose to search for P̂ that differs from P in at most δ statements by defining

c as:

∀` ∈ L, u ∈ U : u 6= id ⇒ c((u, `)) = 1.

Or, the user can choose to search for P̂ that does not modify any statement

within a trusted procedure Fi by defining c as:

∀` ∈ L, u ∈ U :u 6= id ∧ ` ∈ Li ⇒ c((u, `)) = N and

u 6= id ∧ ` 6∈ Li ⇒ c((u, `)) = 1,

where N is some prohibitively large number. Or, the user can choose to favor

the application of a particular update schema, say u1, over others by defining

c as:

∀` ∈ L, u ∈ U :u 6= id and u 6= u1 ⇒ c((u, `)) = N and

u = u1 ⇒ c((u, `)) = 1,

where N is some prohibitively large number, and so on. Similarly, insightful

templates choices can help guide the search for repairs based on user input.

As outlined in Sec. 2.4, our solution to the above program repair prob-

lems is based on predicate abstraction. Thus, in addition to the above inputs,

77

our framework requires (a) a Boolean program B such that B is obtained from

P via iterative predicate abstraction-refinement and B exhibits a non-spurious

counterexample path, and (b) the corresponding function γ that maps Boolean

variables to their respective predicates. The computation of a suitable repaired

program P̂ involves two main steps:

1. Cost-aware repair of B to obtain B̂, and

2. Concretization of B̂ to obtain P̂ .

Recall that a Boolean program B, annotated with a set of assertions, is (par-

tially) correct iff every finite execution path of B ends in a terminating con-

figuration for all nondeterministic choices that the program might make. The

problem of cost-aware repair of a Boolean program B can be defined in a man-

ner identical to cost-aware repair of a concrete program P . Concretization

of B̂ involves mapping each statement of B̂ that has been modified by RU ,L

into a corresponding statement of P , using the function γ. For template-based

repair of P , the concretization needs to ensure that the modified expressions

of P meet the syntactic requirements of the corresponding templates. In the

following sections, we describe these two steps in detail.

4.2 Cost-aware Repair of Boolean Programs

Our solution to cost-aware repair of a Boolean program B relies on automat-

ically computing inductive assertions, along with a suitable B̂, that together

78

certify the partial correctness of B̂. In what follows, we explain our adaptation

of the method of inductive assertions [52,90] for cost-aware program repair4.

Cut-set. Let N = N0 ∪ . . . ∪ Nt be the set of nodes in G(B), the transition

graph representation of B. We define a cut-set Λ ⊆ N as a set of nodes,

called cut-points, such that for every i ∈ [0, t]: (a) entryi, exiti ∈ Λ, (b) for

every edge (`, ς, `′) ∈ Ei where ς is a procedure call, `, `′ ∈ Λ, (c) for every

edge (`, ς, `′) ∈ Ei where ς is an assert statement, `, `′ ∈ Λ, and (d) every

cycle in Gi contains at least one node in Λ. A pair of cut-points `, `′ in some

Gi is said to be adjacent if every path from ` to `′ in Gi contains no other

cut-point. A verification path is any path from a cut-point to an adjacent

cut-point; note that there can be more than one verification path between two

adjacent cut-points.

For example, the set {`1, `2, `7, exit} is a valid cut-set for Boolean pro-

gram B in Fig. 4.1. The verification paths in G(B) corresponding to this cut-set

are as follows:

1. `1
assume (b2)−−−−−−→ `2

2. `2
assume (T)−−−−−→ `3

b0,b1,b2 := ∗,∗,∗−−−−−−−−→ `4 −→ `2

3. `2
assume (T)−−−−−→ `0 −→ `7

4To certify total correctness, we can additionally compute ranking functions and use the
method of well-founded sets along with the method of inductive assertions.

79

4. `1
assume (¬b2)−−−−−−−→ `5

assume (¬b1)−−−−−−−→ `7

5. `1
assume (¬b2)−−−−−−−→ `5

assume (b1)−−−−−−→ `6
b1,b1,b2 := ∗,∗,∗−−−−−−−−→ `7

6. `7
assert (¬b0)−−−−−−−→ exit5

Inductive assertions. We denote an inductive assertion associated with cut-

point ` in Λ by I`. Informally, an inductive assertion I` has the property that

whenever control reaches ` in any program execution, I` must be true for

the current values of the variables in scope. Thus, for a Boolean program,

an inductive assertion I` is in general a Boolean formula over the variables

whose scope includes `. To be precise, I` is a Boolean formula over Vs[`],

where Vs[`] denotes an `th copy of the subset Vs of the program variables, with

Vs = GV ∪ formal(`) if ` ∈ {exit1, . . . , exitt}, and Vs = inscope(`) otherwise.

Thus, except for the main procedure, the inductive assertions at the exit nodes

of all procedures exclude the local variables declared in the procedure. Let IΛ

denote the set of inductive assertions associated with all the cut-points in Λ.

Verification conditions. A popular approach to verification of sequential,

imperative programs is to compute IΛ such that IΛ satisfies a set of constraints

called verification conditions. Let π be a verification path in Gi, from cut-

point ` to adjacent cut-point `′. The verification condition corresponding to

5Labeling this edge with assert (¬b0) is a slight abuse of the semantics of an assert
statement. Our justification is that the constraints formulated later in this section require
that the assertion is true whenever control reaches location `7 in an execution path.

80

π, denoted V C(π), is essentially the Hoare triple 〈I`〉 stmt(π) 〈I`′〉, where

stmt(π) is the sequence of statements labeling π. When I`, I`′ are unknown,

V C(π) can be seen as a constraint encoding all possible solutions for I`, I`′

such that: every program execution along path π, starting from a set of variable

valuations satisfying I`, terminates in a set of variable valuations satisfying

I`′ . Note that the definitions of cut-sets and adjacent cut-points ensure that

we do not have to worry about non-termination along verification paths.

From Lem. 3.3.1 we know that the Hoare triple 〈I`〉 stmt(π) 〈I`′〉 can be

defined using weakest preconditions or strongest postconditions. In this chap-

ter, as we will see shortly, we find it convenient to use strongest postconditions.

Program verification using the inductive assertions method. Given a

program B annotated with assertions, and a set Λ of cut-points, B is partially

correct if one can compute a set IΛ of inductive assertions such that: for ev-

ery verification path π between every pair `, `′ of adjacent cut-points in G(B),

V C(π) is valid.

Cost-aware repairability conditions. Let C :
⋃t
i=0Ni → N be a function

mapping locations to costs. We find it convenient to use C` to denote the value

C(`) at location `. We set Ientry0 = true and C` = 0 if ` ∈ {entry0, . . . , entryt}.

Informally, C` with ` ∈ Ni can be seen as recording the cumulative cost of ap-

plying a sequence of update schemas to the statements in procedure Fi from

location entryi to `. Thus, for a specific update function R with cost function

81

c, Cexit0 records the total cost Costc(R) of performing an R-update of the pro-

gram. Given a verification path π in Gi, from cut-point ` to adjacent cut-point

`′, we extend the definition of V C(π) to define the cost-aware repairability

condition corresponding to π, denoted CRCPC(π). CRCPC(π) can be seen as

a constraint encoding all possible solutions for inductive assertions I`, I`′ and

update functions RU ,L, along with associated functions C, such that: every

program execution that proceeds along path π via statements modified by ap-

plying the update schemas in RU ,L, starting from a set of variable valuations

satisfying I`, terminates in a set of variable valuations satisfying I`′ , for all

nondeterministic choices that the program might make along π.

Before we proceed, recall that I` is a Boolean formula over Vs[`], with

Vs = GV ∪ formal(`) if ` ∈ {exit1, . . . , exitt}, and Vs = inscope(`) oth-

erwise. Thus, for all locations λ 6= `′ in verification path π from ` to `′,

Vs = inscope(λ). In what follows, the notation JuK(stmt(λ)) represents the

class of statements that may be obtained by applying update schema u on

stmt(λ), and is defined for our permissible update schemas in Fig. 4.2. Here,

f, f1, f2 etc. denote unknown Boolean expressions6, over the variables in

inscope(λ). Note that the update schema assign 7→ assign, modifies any

assignment statement, to one that assigns unknown Boolean expressions to all

variables in Vs.

6To keep our exposition simple, we assume that these unknown Boolean expressions
are deterministic. However, in our prototype tool (see Sec. 4.4), we also have the ability to
compute modified statements with nondeterministic expressions such as ∗ or choose(f1, f2).

82

u JuK(stmt(λ))
id stmt(λ)
assign 7→ skip skip

assume 7→ skip skip

call 7→ skip skip

assign 7→ assign b1, . . . , b|Vs| := f1, . . . , f|Vs|
assume 7→ assume assume f
call 7→ call call Fj(f1, . . . , fk),

where stmt(λ): call Fj(e1, . . . , ek)

Figure 4.2: Definition of JuK(stmt(λ))

We now define CRCPC(π). There are three cases to consider.

1. stmt(π) does not contain a procedure call or assert statement:

Let Aλ denote an assertion associated with location λ in π. CRCPC(π)

is given by the (conjunction of the) following set of constraints:

A` = I`

A`′ ⇒ I`′ (4.1)∧
`�λ≺`′

∧
u∈Ustmt(λ)

R(λ) = u ⇒ Cλ′ = Cλ + c(u, λ) ∧

Aλ′ = sp(JuK(stmt(λ)),Aλ).

In the above, ≺ denotes the natural ordering over the sequence of loca-

tions in π with λ, λ′ denoting consecutive locations, i.e., λ′ ∈ succ(λ).

The notation Ustmt(λ) ⊆ U denotes the set of all update schemas in U

which may be applied to stmt(λ). The notation sp(JuK(stmt(λ)),Aλ)

denotes the strongest postcondition of the assertion Aλ over the class

83

of statements JuK(stmt(λ)). While the strongest postcondition compu-

tation described below is similar to the presentation in Sec. 3.2.2, there

are some differences. Here, we use multiple variable copies - a copy

Vs[λ] for each location λ in π - instead of just the two variable copies

Vs[curr], Vs[next] used in Sec. 3.2.2. Note that we could have expressed

the strongest postcondition computation here using just two variable

copies as well. The choice to have multiple variable copies reflects the

design choice that was made in our prototype tool.

Let us assume that Aλ is a Boolean formula of the form7:

Aλ = ρ[`, λ̀] ∧
∧
b∈Vs

b[λ] = ξ[λ̀], (4.2)

where λ̀, λ are consecutive locations in π with λ ∈ succ(λ̀), ρ[`, λ̀] is a

Boolean expression over all variable copies Vs[µ], ` � µ � λ̀, representing

the path condition imposed by the program control-flow, and ξ[`] is a

Boolean expression over Vs[λ̀] representing the λth copy of each variable

b in terms of the λ̀th copy of the program variables. Note that A` = I`

is of the form ρ[`].

Given Aλ of the form in (4.2), sp(JuK(stmt(λ)),Aλ) is defined in Fig. 4.3.

Observe that sp(JuK(stmt(λ)),Aλ) is a Boolean formula of the same form

as (4.2), over variable copies from Vs[`] to Vs[λ
′]. For the entries assume g

7In general, Aλ is a disjunction over Boolean formulas of this form; sp(JuK(stmt(λ)),Aλ)
can then be obtained by computing a disjunction over the strongest postconditions obtained
by propagating each such Boolean formula through JuK(stmt(λ) using the rules in Fig. 4.3.

84

JuK(stmt(λ)) sp(JuK(stmt(λ)),Aλ)
skip

ρ[`, λ̀] ∧
∧
b∈Vs b[λ

′] = b[λ]
goto

assume g g[λ] ∧ ρ[`, λ̀] ∧
∧
b∈Vs b[λ

′] = b[λ]

assume f f [λ] ∧ ρ[`, λ̀] ∧
∧
b∈Vs b[λ

′] = b[λ]

b1, . . . , bm := e1, . . . , em
ρ[`, λ̀] ∧

∧
bi∈Vs,i∈[1,m] bi[λ

′] = ei[λ] ∧∧
bi∈Vs,i 6∈[1,m] bi[λ

′] = bi[λ]

b1, . . . , b|Vs| := f1, . . . , f|Vs| ρ[`, λ̀] ∧
∧
bi∈Vs bi[λ

′] = fi[λ]

Figure 4.3: Definition of sp(JuK(stmt(λ)),Aλ)

and b1, . . . , bm := e1, . . . , em, the expressions g, e1, . . . , em are known be-

forehand (these entries correspond to u = id). For the entries assume f

and b1, . . . , b|Vs| := f1, . . . , f|Vs|, the expressions f, f1, . . . , f|Vs| are un-

known (these entries correspond to u = assume 7→ assume and u =

assign 7→ assign, respectively). Notation such as f [λ] denotes that f is

an unknown Boolean expression over Vs[λ]. For nondeterministic expres-

sions in the RHS of an assignment statement b1, . . . , bm := e1, . . . , em, the

strongest postcondition is computed as the disjunction of the strongest

postconditions over all possible assignment statements obtained by sub-

stituting each ∗ expression with either false or true.

Thus, to summarize, the set of constraints in (4.1) encodes all I`, C`, I`′ ,

85

C`′ and RU ,L such that: if RU ,L is applied to the sequence of statements

stmt(π) to get some modified sequence of statements, say ŝtmt(π), and

program execution proceeds along ŝtmt(π), then sp(ŝtmt(π), I`) ⇒ I`′ ,

and C`′ equals the cumulative modification cost, counting up from C`.

2. stmt(π) contains a procedure call, say call Fj(e1, . . . , ek):

The path π, given by (`, call Fj(e1, . . . , ek), `
′), is a verification path of

length 1. Suppose the formal parameters of Fj are b1, . . . , bk. CRCPC(π)

is then given by the following set of constraints:

R = id ⇒ C`′ = C` + Cexitj ∧

I` ⇒ Ientryj [
∧

i∈[1,k]

bi[entryj]/ei[`]] ∧

Iexitj [
∧

i∈[1,k]

bi[exitj]/ei[`
′]] ⇒ I`′

R = call 7→ skip ⇒ C`′ = C` + c(call 7→ skip, `) ∧ (4.3)

I`′ = I`[
∧

i∈[1,k]

bi[`]/bi[`
′]]

R = call 7→ call ⇒ C`′ = C` + Cexitj + c(call 7→ call, `) ∧

I` ⇒ Ientryj [
∧

i∈[1,k]

bi[entryj]/fi[`]] ∧

Iexitj [
∧

i∈[1,k]

bi[exitj]/fi[`
′]] ⇒ I`′

For R = id, the constraints involve replacing the entrythj , exitthj copies

of the formal parameters in Ientryj , Iexitj with the corresponding actual

parameters e1, . . . , ek expressed over the `th, `′th copies of the program

86

variables, respectively. For R = call 7→ call, a similar substitution

is performed, except the actual parameters are unknown expressions

f1, . . . , fk. Finally, for R = call 7→ skip, the inductive assertion es-

sentially stays the same, with variable copies appropriately adjusted. C`′

is in general the sum of C`, the cumulative modification cost Cexitj of

procedure Fj, and the cost of applying the update schema in question.

3. stmt(π) contains an assert statement, say assert g:

Again, π, given by (`, assert g, `′), is a verification path of length 1, and

CRCPC(π) is given by the following set of constraints:

I`[
∧

i∈[1,|Vs|]

bi[`]/bi[tmp]] ⇒ g[
∧

i∈[1,|Vs|]

bi/bi[tmp]]

I`[
∧

i∈[1,|Vs|]

bi[`]/bi[tmp]] ⇒ I`′ [
∧

i∈[1,|Vs|]

bi[`
′]/bi[tmp]]

C`′ = C`.

In the above, we uniformly convert the expressions I`, g and I`′ into

expressions over some temporary copy of the program variables to enable

checking the implications (informally, these implications are I` ⇒ g and

I` ⇒ I`′).

Cost-aware Boolean program repair. Given a cut-set Λ of G(B), let ΠΛ

be the set of all verification paths between every pair of adjacent cut-points

in Λ. Given incorrect program B annotated with assertions, the set U , cost

function c and repair budget δ, we say B is repairable within budget δ if given

87

a cut-set Λ in G, one can compute a set IΛ of inductive assertions, an update

function R, along with models for all unknown expressions associated with

applications of update schemas in R, and the valuations of a cumulative-cost-

recording function C such that: Cexit0 ≤ δ, for every verification path π ∈ ΠΛ,

CRCPC(π) is valid and some other constraints are met. Mathematically, B is

repairable within budget δ if the following formula is true:

∃Unknown ∀V ar : Cexit0 ≤ δ ∧
∧
π∈ΠΛ

CRCPC(π) ∧ AssumeConstraints,

(4.4)

where Unknown is the set of all unknowns and V ar is the set of all Boolean

program variables and their copies used in encoding each CRCPC(π). The

set of unknowns includes the inductive assertions in IΛ, update function R,

unknown expressions f, f1 etc. associated with applying the update schemas

in R and valuations at each program location of the function C. Finally,

AssumeConstraints ensures that any modifications to the guards of assume

statements corresponding to the same conditional statement are consistent.

Thus, for every pair of updated assume (f1), assume (f2) statements labeling

edges starting from the same node in the transition graph, the uninterpreted

functions f1, f2 are constrained to satisfy f1 = ¬f2.

If the above formula is true, then we can extract models for all the

unknowns from the witness to the satisfiability of the formula: ∀V ar : Cexit0 ≤

δ ∧
∧
π∈ΠΛ

CRCPC(π) ∧ AssumeConstraints. In particular, we can extract

an R and the corresponding modified statements to yield a correct Boolean

88

program B̂. The following theorem states the correctness and completeness of

the above algorithm for repairing Boolean programs for partial correctness.

Theorem 4.2.1. Given an incorrect Boolean program B annotated with as-

sertions, the set of U of permissible, statement-level update schemas given by:

U = {id, assign 7→ assign, assign 7→ skip, assume 7→ assume,

call 7→ call, call 7→ skip},

a cost function c and repair budget δ,

1. if there exists a partially correct Boolean program B̂ such that B̂ is an

R-update of B for some R with Costc(R) ≤ δ, the above extension of the

method of inductive assertions finds one such B̂; if there exists a unique

B̂, then the method finds it,

2. if the above method finds a B̂, then it can be guaranteed that B̂ is partially

correct and that there exists R such that B̂ is an R-update of B and

Costc(R) ≤ δ.

Proof. Note that the formula (4.4) is a ∃∀ formula over Boolean variables

(Boolean program variables and their copies), unknown Boolean expressions

over these Boolean variables (inductive assertions and expressions in modified

program statements), sequences of update schemas (update functions) and

corresponding sequences of integer costs (valuations of C). The number of

Boolean variables is finite and hence, the number of unknown Boolean expres-

sions over them is finite. There are a finite number of update functions drawn

89

from finite sequences of update schemas in the finite set U , and a corresponding

finite number of C functions, with Centry0 set to 0. Besides these (4.4) includes

Boolean operators, the + operator and a finite number of integer constants

(corresponding to the cost function c). Clearly, the truth of the formula in

(4.4) is decidable. In particular, the formula has a finite number of models.

Given a set U of update schemas, the completeness of our method

follows from the completeness of Floyd’s inductive assertions method and the

decidability of the formula in (4.4).

The soundness of our method follows from the soundness of Floyd’s

inductive assertions method.

4.3 Concretization

We now present the second step in our framework for computing a concrete

repaired program P̂ . In what follows, we assume that we have already ex-

tracted models for B̂ and IΛ. Recall that γ denotes the mapping of Boolean

variables to their respective predicates: for each i ∈ [1, |V (B)|], γ(bi) = φi.

The mapping γ can be extended in a standard way to map expressions over

the Boolean variables in V (B) to expressions over the concrete program vari-

ables in V (P).

Concretization of B̂. The goal of concretization of a repaired Boolean pro-

gram B̂ is to compute a corresponding repaired concrete program P̂ . This

90

involves computing a mapping, denoted Γ, from each modified statement of

B̂ into a corresponding modified statement in the concrete program. In what

follows, we define Γ for each type of modified statement in B̂. Let us fix our

attention on a statement at location `, with Vs(B), Vs(P) denoting the set of

abstract, concrete program variables, respectively, whose scope includes `. Let

r = |Vs(B)| and q = |Vs(P)|.

1. Γ(skip) = skip

2. Γ(assume (g)) = assume (γ(g))

3. Γ(call Fj(e1, . . . , ek) = call Fj(γ(e1), . . . , γ(ek))

4. The definition of Γ for an assignment statement is non-trivial. In fact,

in this case, Γ may be the empty set, or may contain multiple concrete

assignment statements.

We say that an assignment statement b1, . . . , br := e1, . . . , er in B is

concretizable if one can compute expressions f1, . . . , fq over Vs(P), of

the same type as the concrete program variables v1, . . . , vq in Vs(P),

respectively, such that a certain constraint is valid. To be precise,

b1, . . . , br := e1, . . . , er in B is concretizable if the following formula is

true:

∃f1, . . . , fq ∀v1, . . . , vq :
r∧
i=1

γ(bi)[v1/f1, . . . , vq/fq] = γ(ei) (4.5)

Each quantifier-free constraint γ(bi)[v1/f1, . . . , vq/fq] = γ(ei) above es-

sentially expresses the concretization of the abstract assignment bi = ei.

91

The substitutions v1/f1, . . . , vq/fq reflect the new values of the concrete

program variables after the concrete assignment v1, . . . , vq := f1, . . . , fq.

If the above formula is true, we can extract models expr1, . . . , exprq for

f1, . . . , fq, respectively, from the witness to the satisfiability of the inner

∀-formula. We then say:

v1, . . . , vq := expr1, . . . , exprq ∈ Γ(b1, . . . , br := e1, . . . , er).

Note that, in practice, for some i ∈ [1, q], expri may be equivalent to

vi, thereby generating a redundant assignment vi := vi. The parallel

assignment can then be compressed by eliminating each redundant as-

signment. In fact, it may be possible to infer some such vi without using

(4.5) by analyzing the dependencies of concrete program variables on

the predicates in {φ1, . . . , φr} that are actually affected by the Boolean

assignment in question; this exercise is beyond the current scope of this

work.

Template-based concretization of B̂. Recall that ET ,L(`), associated with

location `, denotes a user-supplied template from T , specifying the desired

syntax of the expressions in any concrete modified statement at `. Hence-

forth, we use the shorthand E(`) for ET ,L(`). We find it helpful to illustrate

template-based concretization using an example template. Let us assume that

for each concrete program variable v ∈ V (P), v ∈ N ∪ R. We fix E(`) to

(Boolean-valued) linear arithmetic expressions over the program variables, of

92

the form c0 + Σq
p=1cp ∗ vp ≤ 0, for assume and call statements, and (integer

or real-valued) linear arithmetic terms over the program variables, of the form

c0 + Σq
p=1cp ∗ vp, for assignment statements. Let us assume that the param-

eters c0, c1, . . . , cq ∈ R. Given E(`), let ΓE(`) denote the mapping of abstract

statements into concrete statements compatible with E(`). We can define ΓE(`)

for each type of modified statement in B̂ as shown below. The basic idea is

to compute suitable values for the template parameters c0, . . . , cq that satisfy

certain constraints. Note that, in general, ΓE(`) may be the empty set, or may

contain multiple concrete statements.

1. ΓE(`)(skip) = skip

2. The statement assume (g) is concretizable if the following formula is

true:

∃c, . . . , cq ∀v1, . . . , vq : (c0 + Σq
p=1cp ∗ vp ≤ 0) = γ(g). (4.6)

If the above formula is true, we extract values from the witness to the

satisfiability of the inner ∀-formula, and say,

c0 + Σq
p=1cp ∗ vp ≤ 0 ∈ ΓE(`)(assume (g)).

3. Similarly, the statement call Fj(e1, . . . , ek) is concretizable if the fol-

lowing formula is true:

∃c1,0, . . . , ck,q ∀v1, . . . , vq :
k∧
i=1

((ci,0 + Σq
p=1ci,p ∗ vp ≤ 0) = γ(ei)).

93

If the above formula is true, we can extract values from the witness

to the satisfiability of the inner ∀-formula to generate a concrete call

statement in ΓE(`)(call Fj(e1, . . . , ek)).

4. The statement b1, . . . , br := e1, . . . , er is concretizable if the formula in

(4.7) is true. For convenience, let hj = cj,0 + Σq
p=1cj,p ∗ vp, for j ∈ [1, q].

∃c1,0, . . . , cr,q ∀v1, . . . , vq :
r∧
i=1

γ(bi)[v1/h1, . . . , vq/hq] = γ(ei). (4.7)

If the above formula is true, we can extract values from the witness to

the satisfiability of the inner ∀-formula to generate a concrete assignment

statement in ΓE(`)(b1, . . . , br := e1, . . . , er).

Concretization of inductive assertions. The concretization of each induc-

tive assertion I` ∈ IΛ is simply γ(I`).

4.4 Experiments with a Prototype Tool

We have built a prototype tool for repairing Boolean programs. The tool

accepts Boolean programs generated by the predicate abstraction tool SA-

TABS (version 3.2) [26] from sequential C programs. In our experience,

we found that for C programs with multiple procedures, SATABS generates

(single procedure) Boolean programs with all procedure calls inlined within

the calling procedure. Hence, we only perform intraprocedural analysis in

this version of our tool. The set of update schemas handled currently is

{id, assign→ assign, assume→ assume}; we do not permit statement dele-

tions. We set the costs c(assign→ assign, `) and c(assume→ assume, `) to

94

handmade1 :

int main() {
int x;
`1 : while (x < 0)
`2 : x := x+ 1;
`3 : assert (x > 0);

}

Boolean program vars/predicates:

1. γ(b0) = x ≤ 0

Boolean program repair:

1. Change guard for stmt(`1) from ∗ to b0

Concrete program repair:

1. Change guard for stmt(`1) to x ≤ 0

Figure 4.4: Repairing program handmade1

some large number for every location ` where we wish to disallow statement

modifications, and to 1 for all other locations. We initialize the tool with a

repair budget of 1. We also provide the tool with a cut-set of locations for its

Boolean program input.

Given the above, the tool automatically generates an SMT query cor-

responding to the inner ∀-formula in (4.4). When generating this repairability

query, for update schemas involving expression modifications, we stipulate

every deterministic Boolean expression g be modified into an unknown deter-

ministic Boolean expression f (as described in Fig. 4.2), and every nondeter-

ministic Boolean expression be modified into an unknown nondeterministic

expression of the form choose(f1, f2). The SMT query is then fed to the

95

handmade2 :

int main() {
int x;
`1 : if (x ≤ 0)
`2 : while (x < 0){
`3 : x := x+ 2;
`4 : skip;

}
else

`5 : if (x == 1)
`6 : x := x− 1;
`7 : assert (x > 1);

}

Boolean program vars/predicates:

1. γ(b0) = x ≤ 1

2. γ(b1) = x == 1

3. γ(b2) = x ≤ 0

Boolean program repair:

1. Change guard for stmt(`1) from b2 to b0 ∨ b1 ∨ ¬b2

2. Change guard for stmt(`2) from ∗ to b0 ∨ b1 ∨ b2

Concrete program repair:

1. Change guard for stmt(`1) to true

2. Change guard for stmt(`2) to x ≤ 1

Figure 4.5: Repairing program handmade2

SMT-solver Z3 (version 4.3.1) [94]. The solver either declares the formula to

be satisfiable, and provides models for all the unknowns, or declares the for-

mula to be unsatisfiable. In the latter case, we can choose to increase the

repair budget by 1, and repeat the process.

Once the solver provides models for all the unknowns, we can extract

96

necex6 :

int x, y;

int foo(int ∗ptr) {
`4 : if (ptr == &x)
`5 : ∗ptr := 0;
`6 : if (ptr == &y)
`7 : ∗ptr := 1;
return 1;

}

int main() {
`1 : foo (&x);
`2 : foo (&y);
`3 : assert (x > y);

}

Boolean program vars/predicates:

1. γ(b0) = y < x

2. γ(b1) = &y == ptr

3. γ(b2) = &x == ptr

Boolean program repair:

1. Change stmt(`7) from b0 := ∗ to b0 := b0 ∨ b1 ∨ b2

Concrete program repair:

1. Change stmt(`7) to ∗ptr := − 1

Figure 4.6: Repairing program necex6

a repaired Boolean program. Currently, the next step — concretization —

is only partly automated. For assignment statements, we manually formulate

SMT queries corresponding to the inner ∀-formula in (4.5), and feed these

queries to Z3. If the relevant queries are found to be satisfiable, we can obtain

a repaired C program. If the queries are unsatisfiable, we attempt template-

97

based concretization using linear-arithmetic templates. We manually formu-

late SMT queries corresponding to the inner ∀-formulas in (4.6) and (4.7), and

call Z3. In some of our experiments, we allowed ourselves a degree of flexibility

in guiding the solver to choose the right template parameters.

We describe our experiments with four C programs in Fig. 4.4, Fig. 4.5,

Fig. 4.6 and Fig. 4.7. The first two programs are handmade, with the second

one being the same as the one shown in Fig. 4.1. The next two programs are

mutations of two programs drawn from the NEC Laboratories Static Analysis

Benchmarks [97].

We emphasize that the repairs for the respective Boolean programs

(not shown here due to lack of space) are obtained automatically. The con-

cretization of the repaired Boolean program in Fig. 4.4 was trivial – it only

involved concretizing the guard b0 corresponding to the statement at location

`1. Concretization of the repaired Boolean program in Fig. 4.5 involved con-

cretizing two different guards, b0∨ b1∨¬b2 and b0∨ b1∨ b2, corresponding to

the statements at locations `1 and `2, respectively. We manually simplified the

concretized guards to obtain the concrete guards true and x ≤ 1, respectively.

Concretization of the repaired Boolean program in Fig. 4.6 involved concretiz-

ing the assignment statement at location `7. We manually formulated an SMT

query corresponding to the formula in (4.5), after simplifying γ(b0∨ b1∨ b2) to

y < x and restricting the LHS of stmt(`7) in the concrete program to remain

unchanged. The query was found to be satisfiable, and yielded −1 as the RHS

of the assignment statement in the concrete program. We repeated the above

98

necex14 :

int main() {
int x, y;
int a[10];
`1 : x := 1U;
`2 : while (x ≤ 10U) {
`3 : y := 11− x;
`4 : assert (y ≥ 0 ∧ y < 10);
`5 : a[y] := − 1;
`6 : x := x+ 1;
}

}

Boolean program vars/predicates:

1. γ(b0) = y < 0

2. γ(b1) = y < 10

Boolean program repair:

1. Change stmt(`3) from b0, b1 := ∗, ∗ to b0, b1 := F, T

Concrete program repair:

1. Change stmt(`3) to y := 10− x

Figure 4.7: Repairing program necex14

exercise to concretize the assignment statement at location `3 in Fig. 4.7, and

obtained y := 0 as the repair for the concrete program. Unsatisfied by this re-

pair, we formulated another SMT query corresponding to the formula in (4.7),

restricting the RHS of stmt(`3) to the template −x + c, where c is unknown.

The query was found to be satisfiable, and yielded c = 10.

Notice that our tool can repair diverse programs — programs containing

loops, multiple procedures and pointer and array variables. Also, our tool can

repair programs in multiple locations, and can repair assignment, conditional

99

Table 4.1: Experimental results

Name LoC(P) LoC(B) V (B) B-time Que-time Sol-time
handmade1 6 58 1 0.180s 0.009s 0.012s
handmade2 16 53 3 0.304s 0.040s 0.076s
necex6 24 66 3 0.288s 0.004s 0.148s
necex14 13 60 2 0.212s 0.004s 0.032s
tcas1 283 856 49 17m58.675s 0.308s > 5h

and loop statements.

In Table 4.1, we enumerate the time taken for each individual step

involved in generating a repaired Boolean program. The columns labeled

LoC(P) and LoC(B) enumerate the number of lines of code in the original C

program and the Boolean program generated by SATABS, respectively. The

column labeled V (B) enumerates the number of variables in each Boolean pro-

gram. The column B-time enumerates the time taken by SATABS to generate

each Boolean program, the column Que-time enumerates the time taken by

our tool to generate each repairability query and the column Sol-time enumer-

ates the time taken by Z3 to solve the query. The total time taken for the

programs handmade1, handmade2, necex6 and necex14 was negligible. The

current version of the tool has scalability limitations for Boolean programs

with a large number of variables and nondeterministic expressions. This is

seen in the last row of the table for an attempted repair of a program from

the Traffic Collision Avoidance System (TCAS) benchmark suite [39].

100

Chapter 5

Bibliographic Notes

There is a diverse body of work on automated repair and synthesis of software

programs as well as hardware circuits, geared towards guaranteeing various

correctness criteria. In what follows, we mainly review relevant work on auto-

mated repair and synthesis of sequential, imperative software programs.

Program repair. Early proposals for program repair were based on computing

repairs as winning strategies in finite-state games [75] and pushdown games

[57]. The work in [57] was the first to use Boolean programs for repairing

infinite-state systems. The approach, however, only targeted partial correct-

ness, and had formidable complexity (doubly exponential in the number of

program variables). In contrast, our approach from Chapter 3 (also presented

in [109]) targeted repair of (a large subset of) Boolean programs with respect

to total correctness, and had tractable complexity (similar to model checking

Boolean programs). Both these initial explorations into predicate-abstraction-

based repair of infinite-state programs, however, shared two main limitations

- a restrictive single-fault model, and failure to address the problem of read-

ability of the generated repairs. These limitations are partially addressed in

101

a recent abstract interpretation-based approach [87], that can repair multi-

ple, diverse faults in C# programs. While this approach only targets par-

tial correctness, its efficacy within the .NET framework is impressive, and

its applicability to other programming environments is worth exploring. The

approach presented in Chapter 4 (also presented in [110]) addresses these limi-

tations within an arguably more formal and flexible framework. In particular,

our approach presents a sound and complete algorithm for repairing Boolean

programs with multiple faults and assertions guided by user-defined update

schemas, costs and repair budgets. Our approach has the ability to ensure the

readability of the repaired program using user-defined expression templates,

and generates a proof of correctness along with a repaired program.

An alternate approach that does not rely on abstract interpretations of

concrete programs was proposed recently in [81]. It encodes the repair prob-

lem as a constraint-solving problem using symbolic execution, and uses SMT

reasoning to search for repairs satisfying user-defined templates. We remark

that the templates are needed not only for ensuring readability of the gener-

ated repairs, but also for ensuring tractability of their inherently undecidable

repair generation query. The technique does not produce an explicit proof

of correctness for the repaired program, can only generate repairs for faulty

expressions and is limited to handling partial correctness, due to the bounded

semantics associated with symbolic execution. While the work presented in

Chapter 4 focuses on partial correctness as well, it can be extended to handle

total correctness by computing ranking functions along with inductive asser-

102

tions.

Besides the above, there have been proposals for program repair based

on mutations and genetic algorithms [2,30,55], principles drawn from artificial

intelligence [20,33,34,135], for UNITY programs [42], programs equipped with

contracts [130], Kripke structures [6, 135], reactive programs [20, 128], digital

circuits (see [76] for a survey), and programs with data structure manipula-

tions [35,113,133]. There are also customized program repair engines [112] for

grading and feedback generation for programming assignments.

Partial Program Synthesis. Techniques for program completion and synthe-

sis, based on user-supplied program schemas [28], program sketches [115,116]

and scaffolds [117], or for restricted domains [82] can also be adapted for

use for program repair. Sketching does not handle loops precisely due to

its inherent bounded semantics, and does not explicitly generate a proof of

correctness. The scaffold or template-based program synthesis framework of

[117] is perhaps the closest to our own framework. Given a scaffold consisting

of a functional specification, domain constraints for the program expressions,

the structure of the program flowgraph and some other resource constraints,

the framework attempts to synthesize a program, along with a proof of total

correctness consisting of program invariants and ranking functions for loops.

The proof objects - invariants and ranking functions - are drawn from a proof

domain, chosen by the user. In particular, the framework has the ability to

synthesize invariants over predicate abstraction and linear arithmetic domains,

103

and ranking functions over some restricted numeric domains. We emphasize

that our framework is self-reliant and only interacts with a user for the cost

function and for improving the readability of the generated repairs; all predi-

cates involved in the generation of the repaired Boolean program and its proof

are discovered automatically. In contrast, the framework of [117] heavily relies

on users to provide expressive templates and domains for invariants.

Fault Localization. In addition to the above work, a multitude of algorithms

[11, 21, 38, 50, 58, 74, 77, 105, 134] have been proposed for error explanation,

diagnosis and localization based on analyzing error traces. Often,these tech-

niques try to localize faults by finding correct program traces most similar

to an incorrect counterexample trace. Even though many of these techniques

operate on the premise of a single-fault assumption, and we believe searching

for repairable statements or program fragments is a more formal approach to

program debugging than many of the proposed fault localization heuristics,

some fault localization techniques can definitely be used as a preprocessing

step for our framework. Finally, there’s a significant body of work on algorith-

mic debugging [111] (see [71] for a survey), which attempts to localize faults

in programs by asking a series of questions to a programmer and utilizing the

(yes/no) answers to guide the search.

Quantitative Approaches. Quantitative synthesis, whose overall goal, is similar

to cost-aware program repair was proposed in [15] in the context of reactive

104

systems. The repair approaches in [87,130] have the ability to rank generated

repairs based on various criteria. The work in [81] includes a notion of minimal

diagnoses, which is subsumed by our cost-aware framework.

105

Part III

Synchronization Synthesis

106

In Chapter 1, we have seen that error detection and debugging in concurrent

programs are particularly challenging tasks. This makes concurrent programs

excellent targets for automated program completion, in particular, for syn-

thesis of synchronization code. Following the foundational work in [47], we

assert that one can simplify the design and analysis of (shared-memory) con-

current programs by, first, manually writing synchronization-free concurrent

programs, followed by, automatically synthesizing the synchronization code

necessary for ensuring the programs’ correct concurrent behaviour.

In this part of the dissertation, we present a framework for synthesis of

synchronization for shared-memory concurrent programs with respect to tem-

poral logic specifications. Our framework generalizes the approach of [47] in

several ways. We provide the ability to synthesize more readily-implementable

synchronization code based on lower-level primitives such as locks and condi-

tion variables. We also extend the approach of [47] to enable synchronization

synthesis for more general programs and properties.

In Chapter 6, we present our first generalization. Similar to [47], our

framework accepts unsynchronized sequential process skeletons, along with a

specification in propositional temporal logic of their desired concurrent be-

haviour, and synthesizes high-level synchronization actions in the form of

guarded commands. In addition, our framework has the ability to perform a

correctness-preserving compilation of guarded commands into coarse-grained

or fine-grained synchronization code based on locks and condition variables.

In Chapter 7, we present a framework that supports finite-state concur-

107

rent programs composed of processes that may have local and shared variables,

may have a linear or branching control-flow, may be ongoing or terminating,

and may have program-initialized or user-initialized variables. The specifica-

tion language is an extension of propositional CTL that enables easy specifi-

cation of safety and liveness properties over control and data variables. The

framework also supports synthesis of synchronization at different levels of ab-

straction and granularity.

We conclude this part with a discussion of related work in Chapter 8.

108

Chapter 6

Synthesis of Low-level Synchronization

Overview. In this chapter, we present a framework that takes unsynchro-

nized sequential process skeletons along with a propositional temporal logic

specification of their global concurrent behaviour, and automatically gener-

ates a concurrent program with synchronization code ensuring correct global

behaviour. The synthesized synchronization code can be coarse-grained or

fine-grained, and is based on locks and condition variables. The method is

fully automatic, sound and complete.

6.1 Formal Framework

In this section, we define the model of concurrent programs, the synchroniza-

tion primitives and the specification language(s) relevant to this chapter.

6.1.1 Concurrent Program Model

We focus on nonterminating concurrent programs P , consisting of a fixed, fi-

nite number of sequential processes P1, . . . ,PK running in parallel. Similar

to [47], we use process skeletons as abstractions of the constituent sequential

processes. A process skeleton can be obtained from a process by suppressing

109

P1() {
while(true) {
Execute code region ncs1;

Execute code region try1;

Execute code region cs1;

}}
P2() {
while(true) {
Execute code region ncs2;

Execute code region try2;

Execute code region cs2;

}}
(a)

ncs1 try1 cs1

ncs2 try2 cs2

(b)

Figure 6.1: Synchronization-free skeletons of reader P1, writer P2

all computation details that are irrelevant for synchronization. This abstrac-

tion is justified by the observation that for most concurrent programs, the

regions of code in each process responsible for interprocess synchronization

can be cleanly isolated from the regions of code in each process responsible for

sequential application-oriented computations. This makes it possible to syn-

thesize synchronization without specifying the internal structure and intended

application of the regions of sequential code in concurrent programs.

A synchronization-free or unsynchronized process skeleton consists of

sequential code regions, wherein each code region may in reality represent a

(suppressed) sequential block of code. As an example, we refer the reader to

the synchronization-free skeletons for a reader process P1 and a writer pro-

cess P2 in the single-reader, single-writer example shown in Fig. 6.1a. Both

the reader and writer process skeletons have three sequential code regions —

‘noncritical’ (ncs), ‘trying’ (try) and ‘critical’ (cs). The diagrams shown in

110

ncs1 try1 cs1

ncs2 try2 cs2

ncs2?

ncs1 ∨ try1?

Figure 6.2: Synchronization skeletons Ps1 , Ps2 of reader P1, writer P2.

Fig. 6.1b encode the control flow between these code regions as state-transition

diagrams with three states - ncs, try and cs. Thus, each node/state in the

state-transition diagram representation of a process skeleton corresponds to a

unique code region and each edge/transition corresponds to a flow of control

between code regions. The initial states ncs1, ncs2 of P1, P2, respectively

are identified with incoming pointers as shown. Note that we focus on non-

terminating programs, and hence require that each node in a process has an

outgoing edge. We often use states and their corresponding code regions in-

terchangeably. Further note that each code region can always be instantiated

with its suppressed sequential code block to obtain the complete process. We

only require that each suppressed sequential code block terminates. In this

chapter, we use process, skeleton and process skeleton interchangeably.

The synchronization skeleton Psk corresponding to an unsynchronized

process skeleton Pk also includes labels on the transitions between the code

regions, as shown, for example, in Fig. 6.2. Each transition label is used to en-

force some conditional synchronization constraint, and is a guarded command

111

ncs1 ncs2

try1 ncs2 ncs1 try2

cs1 ncs2 try1 try2 ncs1 cs2

cs1 try2 try1 cs2

1 2

1 2 1 2

2 2 1

1 2

1 2

Figure 6.3: The concurrent program corresponding to Fig. 6.2. The edge labels
indicate which process’s transition is executed next.

of the form G?→ A, with an enabling condition G, evaluated atomically, and

a corresponding set of actions A to be performed atomically if G evaluates to

true. An omitted guard is interpreted as true in general.

A concurrent program P = P1 ‖ . . . ‖ PK composed of K processes can

be viewed as a state-transition diagram1 with a set of global states and a set

of transitions between them (see Fig. 6.3 for a representation of the concur-

rent program corresponding to the synchronization skeletons in Fig. 6.2). A

global state is composed of individual process states (i.e., current code regions)

S1, . . . ,SK and the values of shared synchronization variables x1, . . . , xm (this

tuple is often denoted as x̄). An initial global state is composed of the initial

1To help distinguish between the state-transition diagrams associated with individual
processes and concurrent programs, we use oval and rectangular shapes to represent their
respective states.

112

process states and the initial values of the x̄ variables. A guard in the syn-

chronization skeleton of a process is a predicate on these global states, and an

action is a parallel assignment statement that updates the values of the shared

synchronization variables.

We model parallelism in the usual way by the nondeterministic in-

terleaving of the atomic transitions of the synchronization skeletons of the

processes. Hence, at each step of the computation, some process with an en-

abled transition is nondeterministically selected to be executed next. There

exists a transition in the concurrent program P from a current global state

(S1, . . . ,Sk, . . . ,SK , x1, . . . , xm) to a next state (S1, . . . ,S
′
k, . . . ,SK , x

′
1, . . . , x

′
m)

iff there exists a corresponding labeled transition Sk
G?→A−−−−→ S′k in the synchro-

nization skeleton for process Pk such that the guard G is true in the current

global state, and the action A results in the new valuation x′1, . . . , x
′
m of the

shared synchronization variables.

6.1.2 Synchronization Primitives — Locks and Condition Variables

Besides using guarded commands to provide high-level synchronization, we

use locks and condition variables as lower-level synchronization primitives in a

concurrent program. Each such primitive is meant to be used in a synchroniza-

tion region preceding every code region in a synchronized process skeleton. In

this subsection, we define each of these primitives using shared synchronization

variables.

To be able to accommodate these primitives, we need to make small

113

Pk() {
lock(l) {
...

}
}

si si si+1 si+1
` = 0?→ `:=k . . . `:=0

Figure 6.4: Syntax and semantics for lock(`){. . .} in process Pk

modifications to our concurrent program model. In particular, we use a

Boolean shared variables si to label the state corresponding to code region Si

of a process skeleton. The global state of a concurrent program is composed of

the values of all these Boolean shared variables, along with the shared synchro-

nization variables as before. The labels on the transitions in a synchronization

skeleton are guarded commands as before, but the guards are predicates on

the global state comprised of shared variables, and the actions are parallel

assignments statements updating the values of all shared variables. There is

another important difference in the structure of a synchronization skeleton

based on these synchronization primitives. In order to enable expression of

multiple lower-level synchronization actions (within a synchronization region)

that are equivalent to a single high-level synchronization action, we permit a

sequence of labeled transitions between two code regions of a process. For this

reason, we typically refer to the synchronization skeletons based on locks and

condition variables as refined synchronization skeletons.

Locks: We express locks syntactically, as shown in Fig. 6.4 (in a manner sim-

ilar to Java’s synchronized keyword), wherein ‘{’ denotes lock acquisition, ‘}’

114

Pk() {
lock(`c) {
while (!Gc)

wait(c, `c);
...

}
}

si si

si

si+1 si+1
`c = 0?→ `c:=k

¬Gc?→ `c, ink,c := 0, 1¬ink,c?

Gc?→ · · · `c:=0

Ph() {
lock(`c) {
notify(c);
}
}

sj sj sj sj`c = 0?→ `c:=h ink,c:=0 `c:=0

Figure 6.5: Syntax and semantics of wait(c,`c) in Pk and notify(c) in Ph

denotes lock release, and ` is a lock variable. The value of the lock variable is

assumed to be 0 when the lock is available and k when the lock is acquired by

process Pk. The semantics of locks is expressed in the refined synchronization

skeleton of process Pk as shown in Fig. 6.4. Note that, for brevity, we label

a state with the (single) binary shared variable which is true in it, and leave

out all the false binary shared variables. Acquisition of lock ` in process

Pk is modeled as a labeled transition with the label: ` = 0? → ` := k. After

acquiring the lock, the process may perform various tasks that possible change

its state. Release of lock ` is modeled using the transition label: ` := 0.

Condition variables: The syntax and the semantics of the wait and notify

operations on condition variables, assumed in this work, are shown in Fig. 6.5.

115

Thus, a process Pk first acquires the lock `c, associated with condition vari-

able c, and then checks the predicate Gc corresponding to c. If the predicate

is true, it proceeds with any other task that may need to be performed in the

synchronization region, possibly changing the state of Pk, and releases `c when

done. If Gc is false Pk executes wait(c,`c). In this event, Pk automatically

and atomically releases lock `c and adds itself to a wait queue qk,c of processes

blocking/sleeping on condition variable c. Process Pk can be awakened, or

equivalently, removed from qk,c by a notify(c) operation by some other pro-

cess Ph. Before executing notify(c), process Ph needs to acquire the lock `c

as well. Upon waking up, Pk attempts to reacquire lock `c, and repeats the

entire process. We model addition/removal of process Pk to/from qk,c using a

Boolean variable ink,c as shown in Fig. 6.5.

6.1.3 Specification Language(s)

In this chapter, we focus on propositional temporal logics such as CTL∗ and

its various subsets. The syntax of (propositional) CTL∗ formulas, over a set

AP of atomic propositions, can be defined inductively using a class of state

formulas, evaluated in states, and a class of path formulas, evaluated over

paths as follows:

1. Every atomic proposition p ∈ AP is a state formula.

2. If φ1, φ2 are state formulas, then so are ¬φ1 and φ1 ∧ φ2.

3. If ψ is a path formula, then Eψ is a state formula.

116

4. Any state formula is also a path formula.

5. If ψ1, ψ2 are path formulas, then so are ¬ψ1 and ψ1 ∧ ψ2.

6. If ψ1, ψ2 are path formulas, then so are Xψ1, Xk ψ1
2 and ψ1 Uψ2.

The set of state formulas generated by the above rules constitute the

language CTL∗. We use the following standard abbreviations: φ1 ∨ φ2 for

¬(¬φ1 ∧ ¬φ2), φ1 → φ2 for ¬φ1 ∨ φ2, φ1 ↔ φ2 for (φ1 → φ2) ∧ (φ2 → φ1), Aψ

for ¬E¬ψ, Fψ for trueUψ, and Gψ for ¬F¬ψ.

We define the semantics of a CTL∗ formula over structures, or models,

of the form M = (S,R, L), where S is a set of states, R is a a total, multi-

process, binary relation R = ∪k Rk over S, composed of the transitions Rk of

each process Pk, and L is a labeling function that assigns to each state u ∈ S

a set of atomic propositions from AP true in u. A path in M is an infinite

sequence π = (u1, u2, . . .) of states such that (uj, uj+1) ∈ R, for all j ≥ 1. We

denote by πj the jth state in π, and by πj the suffix path (uj, uj+1, . . .).

The satisfiability of a CTL∗ formula in a state u or path π = (u1, u2, . . .)

of M can be defined as follows:

1. M , u |= p iff p ∈ L(u), for an atomic proposition p.

2. M , u |= ¬φ iff it is not the case that M , u |= φ.

2Xk is a process-indexed nexttime operator, and is typically not included in the definition
of CTL∗

117

3. M , u |= φ1 ∧ φ2 iff M , u |= φ1 and M , u |= φ2.

4. M , u |= Eψ iff for some path π starting at u, M , π |= ψ.

5. M , π |= φ iff M , u1 |= φ, for a state formula φ.

6. M , π |= ¬ψ iff it is not the case that M , π |= ψ.

7. M , π |= ψ1 ∧ ψ2 iff M , π |= ψ1 and M , π |= ψ2.

8. M , π |= Xψ iff M , π2 |= ψ.

9. M , π |= Xk ψ iff (u1, u2) ∈ Rk and M , π2 |= ψ.

10. M , π |= ψ1 U ψ2 iff for some j ≥ 1, M , πj |= ψ2 and for all i < j,

M , πi |= ψ1.

We say M |= φ, if for every u in a set S0 of initial states in M , M , u |= φ.

The language CTL is a subset of CTL∗ obtained by restricting the path

formulas to just Xψ1, Xk ψ1 and ψ1 Uψ2 (i.e., by eliminating syntactic rules

(4) and (5)). The language ACTL is the universal fragment of CTL obtained

by disallowing the E operator, and the language ACTL \ X is the universal

fragment of CTL without the nexttime operator. Finally, the language LTL is

defined by the set of all path formulas generated using the syntactic rules (4),

(5) and (6).

Note that a concurrent program P , as defined in Sec. 6.1.1 can be

viewed as a model M = (S,R, L), with the same set of states and transitions

118

Table 6.1: Specification for single-reader, single-writer problem

Mutual exclusion: AG(¬(cs1 ∧ cs2)).
Absence of starvation for reader, provided
writer remains in ncs:

AG(try1 ⇒ AF(cs1 ∨ ¬ncs2)).

Absence of starvation for writer: AG(try2 ⇒ AFcs2).
Priority of writer over reader for out-
standing requests to enter cs:

AG((try1 ∧ try2)⇒ A[try1 Ucs2]).

as P , and the identity labeling function L that maps a state to itself. Here, the

set AP of atomic propositions is composed of all possible individual process

states/code regions and values of shared variables. Given a CTL∗ specification

φ, we say P |= φ iff for each initial state u ∈ S, M , u |= φ.

6.2 Motivating Example

Let us revisit the single-reader, single-writer example with the synchronization-

free skeletons for the reader process P1 and the writer process P2 as shown

in Fig. 6.1. The desired set of CTL3 properties for the concurrent program

composed of P1 and P2, specifying mutual exclusion and starvation-freedom

for the writer, are shown in Table 6.1. Let us denote the conjunction of these

properties as φspec. It is easy to see that in the absence of synchronization

P1 ‖ P2 6|= φspec. Our goal is to modify P1 and P2 by inserting synchronization

code such that the resulting concurrent program satisfies φspec.

In step one of our approach, we first use the state-transition diagram

representations of P1 and P2 to automatically generate a CTL formula φP ,

3Notice that these properties are all in ACTL \ X.

119

specifying the concurrency model and control-flow of the unsynchronized pro-

cesses. We then use the methodology of [46,47] to: synthesize a global model

M , based on P1 and P2, such that M |= φP ∧ φspec (see Fig. 6.3), and de-

compose M to obtain synchronization skeletons Ps1 and Ps2 (see Fig. 6.2), with

guarded commands labeling the transitions between code regions.

main() {
boolean ncs1 := 1, try1 := 0, cs1 := 0, ncs2 := 1, try2 := 0, cs2 := 0;
lock `, condition variables cvcs1, cvcs2;
Pc1() ‖ Pc2();

}
Pc1() {

while(true) {
Execute code region ncs1;

/* Synchronization region */

lock(`) {
ncs1, try1 := 0, 1;
notify(cvcs2);

}
Execute code region try1;

/* Synchronization region */

lock(`) {
while (!ncs2)

wait(cvcs1,l);
try1, cs1 := 0, 1;

}
Execute code region cs1;

/* Synchronization region */

lock(`) {
cs1, ncs1 := 0, 1;
notify(cvcs2);

}}}

Pc2() {
while(true) {

Execute code region ncs2;

/* Synchronization region */

lock(`) {
ncs2, try2 := 0, 1;

}
Execute code region try2;

/* Synchronization region */

lock(`) {
while (!(ncs1 ∨ try1))

wait(cvcs2,l);
try2, cs2 := 0, 1;

}
Execute code region cs2;

/* Synchronization region */

lock(`) {
cs2, ncs2 := 0, 1;
notify(cvcs1);

}}}

Figure 6.6: The concurrent program Pc1 ‖ Pc2

In the second step of our approach, we mechanically compile the guarded

commands of Ps1 and Ps2 into both coarse-grained and fine-grained synchro-

nization code for P1 and P2. The resulting concurrent programs are shown in

pseudocode in Fig. 6.6 and Fig. 6.7.

As can be seen from the variable declarations of these concurrent pro-

120

grams, we introduce Boolean shared variables, ncs1, try2 etc., to capture the

code regions, ncs1, try2 etc., of each sequential process. We also declare locks

and conditions variables for synchronization. The program Pc1 ‖ Pc2 in Fig. 6.6

has a coarser level of lock granularity with a single lock ` for controlling ac-

cess to the Boolean shared variables and the two condition variables cvcs1 and

cvcs2 . The program Pf1 ‖ P
f
2 in Fig. 6.7 has a finer level of lock granularity

with separate locks, `ncs1 , `try2 etc., for controlling access to the Boolean shared

variables, ncs1, try2 etc., respectively, and separate locks, `cvcs1 and `cvcs2 , for

the two condition variables cvcs1 and cvcs2 , respectively.

The modifications to each process are restricted to insertion of synchro-

nization regions between the sequential code regions of the process. The im-

plementation of a coarse-grained synchronization region for the reader-writer

example involves acquiring the lock ` and checking if the guard G for entering

the next code region is enabled. While the guard is false, the reader/writer

waits for it to become true. This is implemented by associating a condi-

tion variable cv with the guard G: the reader/writer releases the lock ` and

waits till the writer/reader notifies it that G could be true; the reader/writer

then reacquires the lock and rechecks the guard. If the guard G is true, the

reader/writer updates the values of the shared Boolean variables in parallel

to indicate that it is effectively in the next code region, sends a notification

signal to the writer/reader, which may be waiting for this update, and releases

the lock. If the guard for a code region is always true, as is the case for code

region try1 for instance, we do not need to check its guard, and hence, do not

121

need a condition variable associated with its guard.

main() {
boolean ncs1 := 1, try1 := 0, cs1 := 0, ncs2 := 1, try2 := 0, cs2 := 0;
/* Definition of locks in order of predecided lock order */

lock `ncs1, `try1, `cs1, `ncs2, `try2, `cs2;
lock `cvcs1, condition variable cvcs1;
lock `cvcs2, condition variable cvcs2;

Pf1 () ‖ P f2 ();
}

Pf1 () {
while(true) {

Execute code region ncs1;

/* Synchronization region */

lock(`ncs1 , `try1) {
ncs1, try1 := 0, 1;

}
lock(`cvcs2) {

notify(cvcs2);
}
Execute code region try1;

/* Synchronization region */

lock(`cvcs1) {
while (!Guardcs1 ())

wait(cvcs1,`cvcs1);
}
Execute code region cs1;

/* Synchronization region */

lock(`ncs1 , `cs1) {
cs1, ncs1 := 0, 1;

}
lock(`cvcs2) {

notify(cvcs2);
}}}

boolean Guardcs1 () {
lock(`try1 , `cs1 , `ncs2) {

if (ncs2) {
try1, cs1 := 0, 1;
return(true);

}
else return(false);

}}

Pf2 () {
while(true) {

Execute code region ncs2;

/* Synchronization region */

lock(`ncs2 , `try2) {
ncs2, try2 := 0, 1;

}
Execute code region try2;

/* Synchronization region */

lock(`cvcs2) {
while (!Guardcs2 ())

wait(cvcs2,`cvcs2);
}
Execute code region cs2;

/* Synchronization region */

lock(`ncs2 , `cs2) {
cs2, ncs2 := 0, 1;

}
lock(`cvcs1) {

notify(cvcs1);
}}}

boolean Guardcs2 () {
lock(`ncs1 , `try1 , `try2 , `cs2) {

if (ncs1 ∨ try1) {
try2, cs2 := 0, 1;
return(true);

}
else return(false);

}}

Figure 6.7: The concurrent program Pf1 ‖ P
f
2

The implementation of a fine-grained synchronization region is simi-

lar in essence. It differs in the use of multiple locks to control access to the

shared and condition variables, thereby allowing more concurrency. As can be

122

seen in Fig. 6.7, Pf1 and Pf2 evaluate the guard of a code region and update

the Boolean shared variables in a separate subroutine. In this subroutine,

the processes first acquire all necessary locks. The acquisition of locks is in

a strictly nested fashion in a predecided fixed order to prevent deadlocks.

We use lock(`1, `2, . . .){. . .} to denote the nested locks lock(`1){lock(`2){

. . .}}, with `1 being the outermost lock variable. A synchronization region in

the main body of the reader/writer process acquires the relevant lock and calls

its guard-computing subroutine within a while loop till it returns true, after

which it releases the lock. If the subroutine returns false, the process waits

on the associated condition variable. Each notification signal for a condition

variable, on which the other process may be waiting, is sent out by acquir-

ing the corresponding lock. In the event that the guard of a code region is

always true, we do not need a condition variable to control access into the

code region. Hence, instead of using a separate subroutine for performing

the shared variables updates, the updates are done in the main body of the

synchronization region, after acquiring the necessary locks.

Both Pc1 ‖ Pc2 and Pf1 ‖ P
f
2 are correct-by-construction and hence

guaranteed to satisfy φspec ∧ φP . In the following section, we provide a more

detailed description of the algorithms involved in generating Pc1 ‖ Pc2 and

Pf1 ‖ P
f
2 , and establish their correctness.

123

6.3 The Synchronization Synthesis Algorithm

In what follows, we restrict the number of sequential processes to 2 for ease

of exposition. Let us review our problem definition. Given the unsynchro-

nized skeletons of sequential processes P1 and P2, and a temporal specification

φspec of their desired global concurrent behaviour, we wish to automatically

insert synchronization code in P1 and P2, to obtain P1 and P2, such that

P1 ‖ P2 |= φ. We propose an automated framework to do this in two steps.

The first step involves computer-aided construction of a high-level solution

with synchronization actions based on guarded commands. The second step

comprises a correctness-preserving, mechanical translation of the high-level

synchronization actions into synchronization code based on lower-level syn-

chronization primitives such as locks and condition variables. We describe

these steps in more detail in this section.

6.3.1 Synthesis of High-Level Solution

For the first step, we primarily rely on the methodology presented in [46, 47]

to: (1) synthesize a global model M , based on P1 and P2, such that M |= φspec,

and (2) derive the synchronization skeletons, Ps1 and Ps2 from M . The syn-

thesis of a global model requires a specification φP of the concurrency model

and control-flow of the unsynchronized process skeletons, along with the de-

sired global behaviour φspec. In this work, we alleviate the user’s burden of

specification-writing by mainly requiring the user to provide a simple state-

transition diagram representation of the unsynchronized processes. The CTL

124

formula φP , is then automatically inferred as the conjunction of the follow-

ing (classes of) properties (illustrated using our reader-writer example from

Fig. 6.1):

1. Initial condition:

ncs1 ∧ ncs2

2. Each process Pk, for k ∈ {1, 2}, is always in exactly one of its code

regions:

AG(ncsk ∨ tryk ∨ csk) ∧ AG(ncsk ⇒ ¬(tryk ∨ csk)) ∧

AG(tryk ⇒ ¬(ncsk ∨ csk)) ∧ AG(csk ⇒ ¬(ncsk ∨ tryk))

3. At any step, only one process can make a (local) move:

AG(ncs1 ⇒ AX2 ncs1) ∧ AG(try1 ⇒ AX2 try1) ∧ AG(cs1 ⇒ AX2 cs1)

AG(ncs2 ⇒ AX1 ncs2) ∧ AG(try2 ⇒ AX1 try2) ∧ AG(cs2 ⇒ AX1 cs2)

4. Some process can always make a (local) move:

AG(EX1true ∨ EX2true)

Besides the above properties, φP also includes CTL formulas describing

the flow of control between the code regions of each process. These prop-

erties essentially capture two types of transitions between code regions:

5. Any move that a process makes from a current code region is into a

successor code region

6. Any move that a process makes from a current code region is into a

successor code region and such a move is always possible.

125

Notice that property (5) simply identifies a successor code region, while prop-

erty (6), in addition, states that the move into the successor code region can

be made unconditionally, By default, one can assume that all transitions in the

state-transition diagram of a process satisfy the stronger property (6) above.

One may sometimes require a user to identify the transitions that do not sat-

isfy property (6), and instead only satisfy property (5). However, it is typically

possible to automate this classification as well. For our reader-writer exam-

ple, for instance, since the code regions cs1 and cs2 involve a mutual exclusion

property, transitions into these code regions cannot satisfy property (6). Thus,

we have the following additional formulas included in φP for the reader-writer

example, for k ∈ {1, 2}: AG(tryk ⇒ AXk csk), AG(ncsk ⇒ EXk tryk) and

AG(csk ⇒ EXk ncsk)
4.

We refer the interested reader to [47] for further details about the steps

involved in the synthesis of M and Ps1 , Ps2 . For our current purpose, it suf-

fices to recall that the synthesis process may introduce shared synchronization

variables, x̄, and that there may be multiple labeled transitions between two

code regions of a synchronization skeleton.

We would like to remark that the above high-level solution cannot be

extracted by pruning the naive product graph of the local process skeletons.

4Let us clarify the semantic difference between the temporal operators AXk and EXk.
If there exists a state u in model M such that there is no Pk-transition enabled in u,
M , u 6|= EXk true, but M , u |= AXk true. Thus, AXk is a weak nexttime operator, which
only asserts some property of the next state if there exists a next state with a Pk-transition
into it. EXk, on the other hand, is a strong nexttime operator, and also asserts the existence
of a next state with a Pk-transition into it.

126

This is because the product-graph-pruning approach does not introduce any

additional shared synchronization variables that can help ensure fulfillment of

liveness properties.

Notation: In what follows, let P1 have n1 code regions, S1,1, . . . ,S1,n1 , and P2

have n2 code regions, S2,1, . . . ,S2,n2 . We denote the guard and the action in the

jth labeled transition from S1,(i−1) to S1,i in Ps1 as G1,i,j and A1,i,j, respectively.

When helpful, we will explicitly write A1,i,j as x̄ := x̄1,i,j to denote a parallel

assignment to the shared synchronization variables x̄ that results in their new

valuation x̄1,i,j. We denote the disjunction over guards in all labeled transitions

from S1,(i−1) to S1,i as G1,i =
∨
j G1,i,j, and refer to it as the overall guard of

code region S1,i.

6.3.2 Synthesis of Low-level Solution

In the second step of our algorithm, we mechanically compile the guarded com-

mands of Ps1 and Ps2 into coarse-grained or fine-grained synchronization code

for P1 and P2. The resulting processes are denoted as Pc1, Pc2 (coarse-grained)

or Pf1 , Pf2 (fine-grained). In both cases, we first declare Boolean shared vari-

ables, s1,i, s2,r to represent the code regions S1,i, S2,r of each sequential process.

We also declare locks and conditions variables for synchronization. For the pro-

gram Pc1 ‖ P c
2 , which has a coarser level of lock granularity, we declare a single

lock ` for controlling access to shared variables and condition variables. For

the program Pf1 ‖ P
f
2 with a finer level of lock granularity, we declare separate

locks `s1,i , `s2,r and `xq for controlling access to each Boolean shared variable

127

Execute S1,i−1;

lock(`) {
while (!G̃1,i)

wait(cv1,i,`);

if (G̃1,i,1)

x̄ := x̄1,i,1;

. . .
if (G̃1,i,t)

x̄ := x̄1,i,t;

s1,i−1, s1,i := 0, 1;
notify(cv2,r);

. . .
notify(cv2,s);

}
Execute S1,i;

(a) Coarse-grained

Execute S1,i−1;

lock(`cv1,i
) {

while (!Guard1,i)

wait(cv1,i,`cv1,i
);

}
lock(`cv2,r) {

notify(cv2,r);

}
. . .
lock(`cv2,s) {

notify(cv2,s);

}
Execute S1,i;

boolean Guard1,i() {
lock(`s1,i−1

, `s1,i , . . .) {
if (G̃1,i) {
if (G̃1,i,1)

x̄ := x̄1,i,1;

. . .
if (G̃1,i,t)

x̄ := x̄1,i,t;

s1,i−1, s1,i := 0, 1;
return(true);

}
else

return(false);

}}
(b) Fine-grained

Figure 6.8: Coarse, fine-grained synchronization regions between S1,i−1, S1,i

.

s1,i, s2,k, and each shared synchronization variable xq, respectively. We further

define a separate lock `cv1,i
, `cv2,r for each condition variable cv1,i, cv2,r to allow

simultaneous processing of different condition variables.

We refer the reader to Fig. 6.8a for a generalized coarse-grained syn-

chronization region between code regions S1,i−1 and S1,i. The implementation

of a coarse-grained synchronization region involves acquiring the lock l and

checking if the overall guard G1,i for entering the next code region S1,i is en-

abled. While the guard is false, Pc1 waits for Pc2 to be in an enabling code

region. This is implemented by associating a condition variable cv1,i with the

overall guard G1,i of S1,i. If none of the guards of the labeled transitions is

128

true, Pc1 waits till Pc2 notifies it that G1,i could be true. Pc1 then reacquires

the lock ` and rechecks G1,i. If G1,i is true, some individual guard G1,i,j is

true, and Pc1 performs a parallel update to the values of the x̄ variables, as

expressed in the corresponding A1,i,j. Since we cannot modify the code region

S1,i, before proceeding to S1,i, Pc1 also updates the values of the Boolean shared

variables s1,i−1 and s1,i to reflect the code region change. Finally, Pc1 sends a

notification signal corresponding to every guard (i.e. condition variable) of Pc2

which may be changed to true by Pc1’s shared variables updates, and releases

the lock `. Note that if the overall guard for a code region is true, we do not

need to check its guard, and hence, do not need to declare a condition variable

associated with its guard.

While fine-grained locking can typically be achieved by careful defini-

tion and nesting of multiple locks, one needs to be especially cautious in the

presence of condition variables for various reasons. For instance, upon execu-

tion of wait(c,`c) in a nested locking scheme, a process only releases the lock

`c before going to sleep, while still holding all outer locks. This can potentially

lead to a deadlock. The generalized fine-grained synchronization region pre-

ceding S1,i in Pf1 , shown in Fig. 6.8b, circumvents these issues by utilizing a

separate subroutine to evaluate the overall guard G1,i. In this subroutine, Pf1

first acquires all necessary locks, corresponding to all shared variables accessed

in the subroutine. These locks are acquired in a strictly nested fashion and in

a predecided fixed order to prevent deadlocks. The subroutine then evaluates

G1,i and returns its value to the main body of Pf1 . If found true, the sub-

129

routine also performs an appropriate parallel update to the x̄ variables similar

to the coarse-grained case. The synchronization region in the main body of

Pf1 acquires the relevant lock `cv1,i
and calls its guard-computing subroutine

within a while loop till it returns true, after which it releases the lock `cv1,i
.

If the subroutine returns false, the process waits on the associated condition

variable cv1,i. Each notification signal for a condition variable, on which the

other process may be waiting, is sent out by acquiring the corresponding lock.

We show a sketch of the overall algorithm for generating the fine-grained

solution in Algo. 1. The algorithm for generating the coarse-grained solution is

similar (and obviously, simpler). In Lines 2-6, we first declare a Boolean shared

variable s1,i to represent each code region S1,i, and a corresponding lock `s1,i .

Further, since each guard G1,i,j in Ps1 is a predicate over the code regions of P2

and the x̄ variables, we transform each G1,i,j into G̃1,i,j by mapping each S2,r in

G1,i,j to the corresponding Boolean shared variable s2,r. Thus, each G̃1,i,j is a

predicate over the Boolean shared variables and the x̄ variables. We similarly

compute G̃1,i. The algorithm declares a lock `1,i and a condition variable cv1,i,

corresponding to S1,i, only if G̃1,i is not equivalent to true.

Once all shared variable declarations for both processes are completed,

the next step computes the ordered list of lock variables, corresponding to all

shared variables that are accessed in the guarded commands G̃1,i,j? → A1,i,j

labeling the transitions from S1,i−1 to S1,i. The locks are ordered according to

130

a predecided fixed order.

Algorithm 1: Computation of Pf1 , Pf2
Input: Ps1 , Ps2 , predefined lock order LO
begin1

/* Declaration of shared variables */

foreach code region S1,i in Ps1 do2
define Boolean shared var s1,i and lock `s1,i ;3

compute G̃1,i,j for each j and compute G̃1,i;4

if G̃1,i 6≡ true then /* i.e., G̃1,i 6≡
∨
r S2,r */5

define lock `1,i with condition var cv1,i;6

/* Steps not shown: repeat Lines 2-6 for Ps2 */

/* Computation of lock list */

foreach S1,i in Ps1 do7
create ordered list, LockList(S1,i), with locks, corres. to all shared vars to be8
accessed in the synchronization region for S1,i, ordered according to LO ;

/* Computation of notification list */

foreach S1,i in Ps1 do9
foreach cv2,r in Ps2 do10

if (s1,i ⇒ G̃2,r) ∨ (s1,i ∧
∨
p(x̄ = x̄1,i,p) ⇒ G̃2,r) then11

Add cv2,r to NotificationList(S1,i);12

/* Construction of synchronization regions in the main body of Pf1 */

foreach S1,i in Ps1 do13

if G̃1,i 6≡ true then14
print “lock(`1,i) { while (!Guard1,i) wait(cv1,i,`1,i) };”;15

else16
print “lock(”, print ordered list of lock vars from LockList(S1,i), print “){”;17

if only one labeled transition from S1,i−1
At(S1,i)−−−−−−→ S1,i then

print “x̄ := ”, print the valuation of x̄1,i, print “;”;18

else19

foreach labeled transition S1,i−1
G1,i−1,j?→A1,i,j−−−−−−−−−−−−−→ S1,i do20

print “if (”, print the expression G̃1,i,j , print “) x̄ := ”, print the21
valuation of x̄1,i,j , print “;”;

print “s1,i−1, s1,i := 0, 1; }”;22

foreach cv2,k in NotificationList(S1,i) do23
print “lock(`2,k) { notify(cv2,k); }”;24

/* Construction of synchronization subroutines of Pf1 */

foreach S1,i in Ps1 do25

if G̃1,i 6≡ true then26
create subroutine named Guard1,i with a Boolean return value: “boolean27
Guard1,i() {” ;
/* Steps not shown: generate subroutine body, as shown in

Fig. 7.4b, using steps similar to Lines 17-22, ending the

subroutine body by printing the following */

print “return(true); } else return(false); }}”28

/* Steps not shown: repeat Lines 7-28 for Ps2 */

end29

131

We then compute the list of condition variables (Lines 9-12), on which

Pc2 may be waiting, and whose corresponding guards may be changed from

false to true by the shared variable updates done in the synchronization

region for S1,i. This corresponds to the predicate (s1,i ⇒ G̃2,r) ∨ (s1,i ∧∨
p(x̄ = x̄1,i,p) ⇒ G̃2,r). Recall that an arbitrary guard G̃2,r,j of a labeled

transition into S2,r is a disjunction of formulas, where each formula is either

some s1,i, or a conjunction s1,i ∧ x̄ = x̄1,i,p of some s1,i and some pth valuation

of the x̄ variables. Thus, the condition variable cv2,r needs to be notified

only if either the update s1,i := 1 done in the synchronization region for S1,i

makes G̃2,r,j true, or, the update s1,i := 1 in conjunction with some updated

valuation x̄1,i,p of the x̄ variables makes G̃2,r,j true.

Finally, the algorithm synthesizes synchronization regions and syn-

chronization subroutines for both processes, of the form shown in Fig. 6.8b

(Lines 13-28). Note that in the event that the guard of a code region is true,

we do not need a condition variable to control access into the code region.

Hence, instead of using a separate subroutine for performing the shared vari-

ables updates, the updates are done in the main body of the synchronization

region, after acquiring the necessary locks.

We emphasize certain optimizations implemented in our compilations

that potentially improve the performance of the synthesized concurrent pro-

gram: (a) declaration of condition variables only when necessary, (b) inference

of a NotificationList for each synchronization region that avoids sending un-

132

necessary notification signals to the other process, and, (c) use of separate

synchronization subroutines only when necessary.

The fine-grained compilation presented here illustrates the general anat-

omy of a fine-grained solution based on locks and condition variables. While

we associate a lock with each shared variable in our solution, this need not

be the case in general. The number of fine-grained locks to be used can be

reduced, for example, using the approach in [49].

6.3.3 Algorithm Notes

Soundness and Completeness Let M c and M f , be the global models5 cor-

responding to P c
1 ‖ P c

2 and P f
1 ‖ P

f
2 , respectively. We have the following

Correspondence Lemmas:

Lemma 6.3.1. [Coarse-grained Correspondence] Given an ACTL \ X formula

φ, M |= φ ⇒ M c |= φ.

Lemma 6.3.2. [Fine-grained Correspondence] Given an ACTL \X formula φ,

M |= φ ⇒ M f |= φ.

The proofs of the above lemmas are based on carefully establishing

stuttering simulations between the models, and are presented in Appendix 16.

5These global models can be constructed from the concurrent composition of P c1 , P
c
2

and P f1 , P
f
2 , respectively using the semantics of the synchronization primitives, lock(`),

wait(c,`c) and notify(c), as defined in Sec. 6.1.
6While we choose to restrict our attention to the preservation of ACTL \ X formulas in

the above lemmas, we show in Appendix 1 that the translations from M to M c and M f

actually preserve all ACTL∗ \ X properties, as well as CTL∗ properties of the form Aψ or
Eψ, where ψ is an LTL \ X formula.

133

Note that the models are not stuttering bisimilar, and hence our compilations

do not preserve arbitrary CTL \ X properties. This is not a problem, as most

global concurrency properties of interest (see Table 6.1) are expressible in

ACTL \ X.

Theorem 6.3.3. [Soundness]: Given unsynchronized skeletons P1, P2, and

an ACTL \ X formula φspec, if our method generates Pc1, Pc2, or, Pf1 , Pf2 , then

Pc1 ‖ Pc2 |= φspec and Pf1 ‖ P
f
2 |= φspec.

Theorem 6.3.4. [Completeness]: Given unsynchronized skeletons P1, P2, and

an ACTL \ X formula φspec, if the temporal specifications — φP , describing

P1, P2 and the concurrency model, and φspec, describing their intended global

behaviour — are consistent, then our method constructs Pc1, Pc2, and Pf1 , Pf2

such that Pc1 ‖ Pc2 |= φspec and Pf1 ‖ P
f
2 |= φspec.

The soundness follows directly from the soundness of the synthesis of

synchronization skeletons [46, 47], and from the above Correspondence Lem-

mas. The completeness follows from the completeness of the synthesis of

synchronization skeletons for overall consistent specifications and from the

completeness of the compilation of guarded commands to coarse-grained and

fine-grained synchronization code.

Extensions. The framework presented above can be extended in a straight-

forward manner to the synthesis of concurrent programs based on an arbitrary

(but fixed) number K of processes. The synthesis of synchronization skeletons

134

in the first step, based on [47], extends directly to K processes. But since this

involves building a global model M , with size exponential in K, it exhibits a

state explosion problem. There has, however, been work [3, 4] on improving

the scalability of the approach. These algorithms avoid building the entire

global model and instead compose interacting process pairs to synthesize the

synchronization skeletons. Hence, for K > 2 processes, we can use the more

scalable synthesis algorithms to synthesize the synchronization skeletons in the

first step.

The synthesis of coarse-grained synchronization can be directly ex-

tended to handle K > 2 processes by declaring Boolean shared variables and

condition variables (when the guard is not equivalent to true) corresponding

to the code regions of all processes, as before. The basic structure of a syn-

thesized synchronization region remains the same. The notification lists are

also computed as before and now include condition variables associated with

multiple processes, in general. The synthesis of fine-grained synchronization

can similarly be extended to handle K > 2 processes. Note that we never need

to use a notifyAll synchronization primitive, as every condition variable is

associated with a unique code region of a unique process. Further note that

the synthesis of coarse or fine-grained synchronization circumvents the state-

explosion problem for arbitrary K by avoiding construction/manipulation of

the global model.

135

Airport Terminal

Runway 16R

C8

B11
Runway 16L

C3

B2

C4

B7

C5

B9

C6 C7

B10

Figure 6.9: Airport ground network

IAk TLk Lk TCk Ck

TCRk

CRkTBkBkPkTTk

Tk

Figure 6.10: Synchronization-free skeleton for airplane process Pk

6.4 Experiments

Example: Airport Ground Traffic Simulator (AGTS). Let us consider

an example concurrent program, AGTS, based on the case study in [132],

that simulates airport ground traffic network operations. The ground net-

work model resembles the Seattle/Tacoma International Airport with two run-

ways 16R and 16L, used for landing and takeoff, respectively, and is shown

in Fig. 6.9. Each process in the AGTS program simulates the operations of a

single airplane.

136

We assume that we are given the synchronization-free skeleton for the

kth airplane process Pk, as shown in Fig. 6.10. This unsynchronized skeleton

abstracts the actual operations of an airplane, and encodes the control flow

between the code regions of the airplane process as a state-transition diagram,

similar to Fig. 6.1. Thus, as shown in Fig. 6.10, an airplane process Pk is

initially in state InAirk (arriving airplane) or Parkk (departing airplane).

An arriving airplane first attempts to land on runway 16R (TryLandk), then

lands (Landk), attempts to exit on a C taxiway (TryCk), takes a C taxi-

way (Ck), attempts to cross runway 16L (TryCRossk), crosses the runway

(CRossk), attempts to take the corresponding B taxiway (TryBk), takes the

B taxiway (Bk), and finally parks. A departing airplane attempts to takeoff

on runway 16L (TryTakeoffk), takes off (Takeoffk) and is back in air.

Henceforth. we abbreviate the code region names using the corresponding

bold letters. Note that, for simplicity, we restrict our attention to just one C

and one B taxiway in Fig. 6.107.

The AGTS program must guarantee the following properties: (a) Mu-

tual exclusion: No two airplanes can occupy the same runway or taxiway at

the same time, and, an airplane taxi-ing on a C exit can cross runway 16L only

if no airplane is on runway 16L at the moment, (b) Starvation-freedom8: An

airplane that wants to land, take one of the C taxiways, cross runway 16L, or

take one of the B taxiways, eventually succeeds in doing so, and (c) Priority

7While this restriction imposes a linear control flow on our example process Pk, note that
our framework can be extended to handle skeletons with an arbitrary branching structure.

8The case study in [132] focussed on safety properties.

137

Table 6.2: Formal specification for AGTS program for every process pair Pk,Ph
Mutual exclusion:
AG(¬((lk ∨ tck) ∧ (lh ∨ tch)))
AG(¬((ck ∨ tcrk) ∧ (ch ∨ tcrh)))
AG(¬((crk ∨ tbk ∨ tk) ∧ (crh ∨ tbh ∨ th)))
AG(¬(bk ∧ bh))

Starvation-freedom:
AG(tlk ⇒ AF lh) AG(tcrk ⇒ AFcrh)
AG(tck ⇒ AFch) AG(tbk ⇒ AF bh)

Priority of arriving plane over departing plane:
AG((ttk ∧ (tcrh ∨ crh ∨ tbh))⇒ A[ttk U bh])

Starvation-freedom for departing plane, provided arriving plane is not trying to cross or
crossing runway 16L:
AG(ttk ⇒ AF(tk ∨ (tcrh ∨ crh ∨ tbh))).

of arriving airplanes: An airplane that wants to take off can do so only if no

airplane wants to cross or is crossing runway 16L at the moment. We assume

that we are given a formal specification capturing the desired set of properties

(see Table 6.2).

Experimental Results. We have implemented a prototype synthesis tool

[48] in Perl, which automatically compiles synchronization skeletons into con-

current Java programs based on both coarse-grained and fine-grained synchro-

nization. We used the tool successfully to synthesize synchronization code

for the above example AGTS program, with two airplane processes, and for

several configurations of K-process mutual exclusion, readers-writers, dining

philosophers, etc..

Our experiments were run on a quad-core 3.4GHz machine with 4GB

of RAM. The running time of the tool for generating these small examples was

a few milliseconds. We present the normalized running times for some of the

138

Table 6.3: Experimental results

Program Granularity Norm. Run. Time

2-plane AGTS
Coarse 1
Fine 1.47

1-Reader, 1-Writer
Coarse 1
Fine 0.79

2-process Mutex
Coarse 1
Fine 1.08

2-Readers, 3-Writers
Coarse 1
Fine 1.14

generated examples in Table 6.3. Observe that the coarse-grained synchro-

nization version often outperforms the fine-grained synchronization version.

In particular, it suffers significantly in the 2-plane AGTS example due to ex-

cessive locking overhead9.

9For the 2-plane AGTS example, we invoked an additional optimization in the compila-
tion: if the overall guard G̃1,i of a code region S1,i includes more than half the code regions

of P2, instead of using G̃1,i in the coarse-grained and fine-grained compilations, we use the
negation of its conjunction. This helps minimize the number of shared variables accessed
in each synchronization region, and the corresponding locking overhead in the fine-grained
synchronization regions.

139

Chapter 7

Generalized Synchronization Synthesis

Overview. In this chapter, we present a framework that takes a shared-

memory concurrent program composed of unsynchronized processes, along

with a temporal specification of their global concurrent behaviour, and au-

tomatically generates a concurrent program with synchronization ensuring

correct global behaviour. Our methodology supports finite-state concurrent

programs composed of processes that may have local and shared variables,

may be straight-line or branching programs, may be ongoing or terminating,

and may have program-initialized or user-initialized variables. The specifica-

tion language is an extension of propositional CTL that enables easy specifi-

cation of safety and liveness properties over control and data variables. The

framework also supports synthesis of synchronization at different levels of ab-

straction and granularity.

In Chapter 6, we focussed on synthesizing synchronization code for abstract

sequential processes called skeletons. This abstraction is particularly helpful

when one is exclusively interested in properties describing the desired control-

flow and concurrent behaviour of a concurrent program. However, this abstrac-

140

tion, which suppresses all sequential computational details that are irrelevant

for synchronization, is restrictive, when one is interested in properties such as

AG (v1 = µ ⇒ AF(v2 = µ+ 1)), over the values of the data variables in a con-

current program. In this chapter, we generalize both the concurrent program

model as well as the specification language of Chapter 6 to enable synthesis of

synchronization in real-world programs, given temporal logic properties over

both program locations and data variables.

7.1 Formal Framework

In this section, we first establish a vocabulary L of symbols, and then define

our model of concurrent programs and specification language, based on L.

7.1.1 A vocabulary L

Symbols of L: We fix a vocabulary L that includes a set LV of variable sym-

bols (denoted v, v1 etc.), a set LF of function symbols (denoted f , f1 etc.), a

set LB of predicate symbols (denoted B, B1 etc.), and a non-empty set LS of

sorts. LS contains the special sort bool, along with the special sort location.

Each variable v has associated with it a sort in LS, denoted sort(v). Each

function symbol f has an associated arity and a sort: sort(f) for an r-ary

function symbol is an r + 1-tuple < σ1, . . . , σr, σ > of sorts in LS, specifying

the sorts of both the domain and range of f . Each predicate symbol B also

has an associated arity and sort: sort(B) for an r-ary predicate symbol is an

r-tuple < σ1, . . . , σr > of sorts in LS. Constant symbols (denoted c, c1 etc.)

141

are identified as the 0-ary function symbols, with each constant symbol c asso-

ciated with a sort, denoted sort(c), in LS. Proposition symbols are identified

as the 0-ary predicate symbols. The vocabulary L also includes the distin-

guished equality predicate symbol =, used for comparing elements of the same

sort.

Syntax of L-terms and L-atoms: Given any set of variables V ⊆ LV, we

inductively construct the set of L-terms and L-atoms over V , using sorted

symbols, as follows:

- Every variable of sort σ is a term of sort σ.

- If f is a function symbol of sort < σ1, . . . , σr, σ >, and tj is a term of

sort σj for j ∈ [1, r], then f(t1, . . . , tr) is a term of sort σ. In particular,

every constant of sort σ is a term of sort σ.

- If B is a predicate symbol of sort < σ1, . . . , σr >, and tj is a term of

sort σj for j ∈ [1, r], then B(t1, . . . , tr) is an atom. In particular, every

proposition symbol is an atom.

- If t1, t2 are terms of the same sort, t1 = t2 is an atom.

Semantics of L-terms and L-atoms: Given any set of variables V ⊆ LV,

an interpretation I of symbols of L, and L-terms and L-atoms over V is a map

satisfying the following:

142

- Every sort σ ∈ LS is mapped to a nonempty domain Dσ. In particular,

the sort bool is mapped to the Boolean domain Dbool : {true, false},

and the sort location is mapped to a domain of control locations in a

program.

- Every variable symbol v of sort σ is mapped to an element vI in Dσ.

- Every function symbol f , of sort < σ1, . . . , σr, σ > is mapped to a func-

tion f I : Dσ1 × . . . Dσr → Dσ. In particular, every constant symbol c of

sort σ is mapped to an element cI ∈ Dσ.

- Every predicate symbol B of sort < σ1 . . . σr > is mapped to a function

Dσ1 × . . . Dσr → Dbool. Every proposition symbol is mapped to an

element of Dbool.

Given an interpretation I as defined above, the valuation valI [t] of an L-term

t and the valuation valI [G] of an L-atom G are defined as follows:

- For a term t which is a variable v, the valuation is vI .

- For a term f(t1, . . . , tr), the valuation valI [f(t1, . . . , tr)] equals the valu-

ation f I(valI [t1], . . . , valI [tr]).

- For an atom G(t1, . . . , tr), the valuation valI [G(t1, . . . , tr)] = true iff

GI(valI [t1], . . . , valI [tr]) = true.

- For an atom t1 = t2, valI [t1 = t2] = true iff valI [t1] = valI [t2].

143

In the rest of this chapter, we assume that the interpretation of con-

stant, function and predicate symbols in L is known and fixed. We further

assume that the interpretation of sort symbols to specific domains is known

and fixed. With some abuse of notation, we shall denote the interpretation of

all constant, function and predicate symbols simply by the symbol name, and

identify sorts with their domains. Examples of some constant, function and

predicate symbols that may be included in L are: constant symbols 0, 1, 2,

function symbols +,−, and predicate symbols <,> over the integers, function

symbols ∨,¬ over bool, the constant symbol ϕ (empty list), function symbol

• (appending lists) and predicate symbol null (emptiness test) over lists, etc..

Finally, when the interpretation is obvious from the context, we denote the

valuations valI [t], valI [G] of terms t and atoms G simply as val[t], val[G],

respectively.

7.1.2 Concurrent Program Model

In this chapter, we consider a (shared-memory) concurrent program to be an

asynchronous composition of a non-empty, finite set of processes, equipped

with a finite set of program variables that range over finite domains. We as-

sume a simple concurrent programming language, as shown in Fig. 7.1, with

assignment, condition test, unconditional goto, sequential and parallel compo-

sition, and the synchronization primitive - conditional critical region (CCR)

[63,66]. A concurrent program P is written using the concurrent programming

language, in conjunction with L-terms and L-atoms. We assume that the sets

144

of (data and control) variables, functions and predicates available for writing

P are each finite subsets of LV, LF and LB, respectively.

〈pgm〉 ::= 〈vardecl〉 〈asyncprocs〉
〈vardecl〉 ::= v : 〈domain〉; | v : 〈domain〉 with v = υinit;

| 〈vardecl〉 〈vardecl〉
〈asyncprocs〉 ::= 〈proc〉 ‖ 〈asyncprocs〉 | 〈proc〉
〈proc〉 ::= 〈localvardecl〉 〈stmtseq〉
〈localvardecl〉 ::= 〈vardecl〉
〈stmtseq〉 ::= 〈labstmt〉 ; 〈stmtseq〉
〈labstmt〉 ::= λ : 〈atomicstmt〉
〈atomicstmt〉 ::= 〈assignment〉 | 〈conditiontest〉 | 〈goto〉 | 〈CCR〉
〈assignment〉 ::= v1, . . . , vm := t1, . . . , tm
〈conditiontest〉 ::= if (G) λif else λelse
〈goto〉 ::= goto λ
〈CCR〉 ::= G?→ 〈atomicstmtseq〉

Figure 7.1: Concurrent program syntax

Thus, a concurrent program P consists of a variable declaration, fol-

lowed by an asynchronous parallel composition, P1‖ . . . ‖PK , of say K pro-

cesses, with K > 0. The variable declaration consists of a finite sequence of

declaration statements, specifying the set X of shared data variables, their

domains, and possibly initializing them to specific values. For example, the

declaration statement, v1 : {0, 1, 2, 3} with v1 = 0, declares a variable v1

with (a finite integer) domain {0, 1, 2, 3}, and initializes the variable to the

value 0. The initial value of any uninitialized variable is assumed to be a

user/environment input from the domain of the variable.

A process Pk consists of a declaration of a set Yk of local data variables

(similar to the declaration of shared data variables in P), and a finite sequence

145

of labeled, atomic statements. We denote the unique atomic statement at lo-

cation λ as stmt(λ). The set of data variables V ark accessible by Pk is given by

X∪Yk. The set of labels or locations of Pk is denoted Lk = {λ0
k, . . . , λ

nk
k }, with

λ0
k being a designated start location. Unless specified otherwise1, an atomic

statement is an assignment, condition test, unconditional goto, or CCR. An as-

signment statement is a parallel assignment of L-terms t1, . . . , tm, over V ark,

to the data variables v1, . . . , vm in V ark. Upon completion, an assignment

statement at λik transfers control to the next location λi+1. A condition test,

consists of an L-atom G over V ark, and a pair of locations λif, λelse in Lk

to transfer control to if G evaluates to true, false, respectively. The state-

ment goto λ is a transfer of control to location λ ∈ Lk. A CCR is a guarded

statement block, where the enabling guard G is an L-atom over V ark and the

statement block is a sequence of assignment, conditional and goto statements.

The guard G is evaluated atomically and if found to be true, the correspond-

ing statement block is executed atomically, and control is transferred to the

next location. If G is found to be false, the process waits at the same location

till G evaluates to true. An unsynchronized process does not contain CCRs.

We model the asynchronous composition of concurrent processes by the

nondeterministic interleaving of their atomic instructions. Hence, at each step

of the computation, some process, with an enabled transition, is nondeter-

ministically selected to be executed next by a scheduler. The set of program

1A user may define an atomic statement (block) as a sequence of assignment, conditional
and goto statements

146

variables is denoted V = Loc ∪ V ar, where Loc = {loc1, . . . , locK} is the set

of control variables and V ar = V ar1 ∪ . . . ∪ V arK is the set of data variables.

The semantics of the concurrent program P is given by a transition system

(S, S0, R), where S is a set of states, S0 ⊆ S is a set of initial states and

R ⊆ S × S is the transition relation. Each state s ∈ S is a valuation of the

program variables in V . We denote the value of variable v in state s as vals[v],

and the corresponding value of a term t and an atom G in state s as vals[t]

and vals[G], respectively. vals[t] and vals[G] are defined inductively as in

Sec. 7.1.1. The domain of each control variable lock ∈ V is the set of locations

Lk, and the domain of each data variable is determined from its declaration.

The set of initial states S0 corresponds to all states s with vals[lock] = λ0
k for

all k ∈ [1, K], and vals[v] = υinit, for every data variable v initialized in its

declaration to some constant υinit. There exists a transition from state s to

s′ in R, with vals[lock] = λk, val
s′ [lock] = λ′k and vals

′
[locj] = vals[locj] for

all j 6= k, iff there exists a corresponding local move in process Pk involving

stmt(λk), such that:

1. stmt(λk) is the assignment instruction: v1, . . . , vm := t1, . . . , tm, for each

variable vi with i ∈ [1,m]: vals
′
[vi] = vals[ti], for all other data variables

v: vals
′
[v] = vals[v], and λ′k is the next location in Pk after λk, or,

2. stmt(λk) is the condition test: if (G) λif else `else, the valuation of all

data variables in s′ is the same as that in s, and either vals[G] is true

and λ′k = λif , or vals[G] is false and λ′k = λelse, or,

147

3. stmt(λk) is goto λ, the valuation of all data variables in s′ is the same

as that in s, and λ′k = λ, or,

4. stmt(λk) is the CCR G? → 〈atomicstmtseq〉, vals[G] is true, the val-

uation of all data variables in s′ correspond to the atomic execution of

〈atomicstmtseq〉 from state s, and λ′k is the next location in Pk after λk.

We assume that R is total. For terminating processes Pk, we assume that PK

ends with a special instruction, halt : goto halt.

7.1.3 Specification Language

Our specification language, LCTL, is an extension of propositional CTL, with

formulas composed from L-atoms. While one can use propositional CTL for

specifying properties of finite-state programs, LCTL enables more natural

specification of properties of concurrent programs communicating via typed

shared variables. We describe the syntax and semantics of this language be-

low.

Syntax: Given a set of variables V ⊆ LV, we inductively construct the set of

(LCTL) formulas over V , using L-atoms, in conjunction with the propositional

operators ¬, ∧ and the temporal operators A,E,X,U, along with the process-

indexed next-time operator Xk:

- Every L-atom over V is a formula.

148

- If φ1, φ2 are formulas, then so are ¬φ1 and φ1 ∧ φ2.

- If φ1, φ2 are formulas, then so are EXφ1, EXk φ1, A[φ1 Uφ2] and E[φ1 Uφ2].

We use the following standard abbreviations: φ1∨φ2 for ¬(¬φ1∧¬φ2),

φ1 → φ2 for ¬φ1 ∨ φ2, φ1 ↔ φ2 for (φ1 → φ2) ∧ (φ2 → φ1), AXφ for

¬EX¬φ, AXk φ for ¬EXk ¬φ, AFφ for A[trueUφ], EFφ for E[trueUφ], EGφ

for ¬AF¬φ, and AGφ for ¬EF¬φ.

Semantics: LCTL formulas over a set of variables V are interpreted over

models of the form M = (S,R, L), where S is a set of states and R is a a total,

multi-process, binary relation R = ∪k Rk over S, composed of the transitions

Rk of each process Pk. L is a labeling function that assigns to each state s ∈ S

a valuation of all variables in V . The value of a term t in a state s ∈ S of M is

denoted as val(M ,s)[t], and is defined inductively as in Sec. 7.1.1. A path in M

is a sequence π = (s0, s1, . . .) of states such that (sj, sj+1) ∈ R, for all j ≥ 0.

We denote the jth state in π as πj.

The satisfiability of an LCTL formula in a state s of M can be defined

as follows:

- M , s |= G(t1, . . . , tm) iff G(val(M ,s)[t1], . . . , val(M ,s)[tm]) = true.

- M , s |= (t1 = t2) iff val(M ,s)[t1] = val(M ,s)[t2].

- M , s |= ¬φ iff it is not the case that M , s |= φ.

149

- M , s |= φ1 ∧ φ2 iff M , s |= φ1 and M , s |= φ2.

- M , s |= EXφ iff for some s1 such that (s, s1) ∈ R, M , s1 |= φ.

- M , s |= EXk φ iff for some s1 such that (s, s1) ∈ Rk, M , s1 |= φ.

- M , s |= A[φ1 Uφ2] iff for all paths π starting at s, there exists some j

such that M , πj |= φ2 and for all i < j, M , πi |= φ1.

- M , s |= E[φ1 Uφ2] iff there exists a path π starting at s such that for

some j, M , πj |= φ2 and for all i < j, M , πi |= φ1.

We say M |= φ, if for every s in a set of initial states in M , M , s |= φ.

Programs as Models: A program P = (S, S0, R) can be viewed as a model

M = (S,R, L), with the same set of states and transitions as P , and the

identity labeling function L that maps a state to itself. Given an LCTL spec-

ification φ, we say P |= φ iff for each state s ∈ S0, M , s |= φ.

Example: We refer the reader to Fig. 7.2 for an example concurrent program P

and specification φspec in the above program model and specification language,

respectively. The symbols +̇ and −̇ respectively denote addition and subtrac-

tion modulo 2. Observe that P does not contain any CCRs and P 6|= φspec.

150

main() {
x : {0, 1, 2} with x = 1
P1 ‖ P2

}
P1() {

l1: 〈 if (x < 2) l2, l4 〉;
l2: 〈 x :=x+̇1 〉;
l3: 〈 goto l1 〉;
l4: 〈 goto l4 〉;
}

P2() {
t1: 〈 if (x > 0) t2, t4 〉;
t2: 〈 x :=x−̇1 〉;
t3: 〈 goto t1 〉;
t4: 〈 goto t4 〉;
}

φspec: AF(l4 ∧ t4 ∧ (x = 0 ∨ x = 2))

Figure 7.2: Example program P and specification φspec

7.2 The Basic Synchronization Synthesis Algorithm

In this section, for ease of exposition, we assume a simpler program model

than the one described in Sec. 7.1.2. We restrict the number of concurrent

processes K to 2. We assume that all data variables are initialized in the

program to specific values from their respective domains. We further assume

that all program variables, including control variables, are shared variables.

We explain our basic algorithmic framework with these assumptions, and later

describe extensions to handle the general program model in Sec. 7.3.

Let us present our problem definition. Given a concurrent program

P , composed of unsynchronized processes P1, P2, and an LCTL specification

φspec of their desired global concurrent behaviour, we wish to automatically

generate synchronized processes Ps1 , Ps2 , such that the resulting concurrent

program Ps |= φspec. In particular, we wish to obtain synchronization in the

form of CCRs, with each atomic statement of P1, P2 enclosed in a CCR;

151

the goal is to synthesize the guard for each CCR, along with any necessary

assignments to synchronization variables to be performed within the CCR. We

propose an automated framework to do this in several steps.

1. Formulate an LCTL formula φP to specify the concurrency model and

the operational semantics of the concurrent program P .

2. Construct a tableau Tφ for the formula φ given by φP ∧ φspec. If Tφ is

empty, declare specification as inconsistent and halt.

3. If Tφ is non-empty, extract a model M for φ from it.

4. Decompose M to obtain CCRs to synchronize each process.

In what follows, we describe these steps in more detail. We emphasize that

while these steps resemble the ones presented in Sec. 6.3, the technical de-

tails are different due to differences in the concurrent program models and

specification languages.

7.2.1 Formulation of φP

As mentioned in Sec. 6.3.1, the early synthesis work in [47] requires a complete

specification, which includes a temporal description φP of the concurrency and

operational semantics of the unsynchronized concurrent program P , along with

its desired global behaviour φspec. Similar to Sec. 6.3.1, we automatically infer

an LCTL formula for φP to help mitigate the user’s burden of specification-

writing. Let V ar = {v1, . . . , vh} be the set of data variables. φP is then

formulated as the conjunction of the following (classes of) properties:

152

1. Initial condition:

val[loc1] = λ0
1 ∧ val[loc2] = λ0

2 ∧
∧
v∈V ar val[v] = υinit.

2. At any step, only one process can make a (local) move:

AG
∧n1

i=1 (val[loc1] = λi1 ⇒ AX2 val[loc1] = λi1) ∧

AG
∧n2

i=1 (val[loc2] = λi2 ⇒ AX1 val[loc2] = λi2).

3. Some process can always make a (local) move:

AG(EX1 true ∨ EX2 true).

4. A statement λik : {v1, . . . , vm} := {t1, . . . , tm} in Pk is formulated as:

AG((val[lock] = λik ∧
∧h
j=1 val[vj] = µj) ⇒

AXk (val[lock] = λi+1
k ∧

∧m
j=1 val[vj] = val[tj] ∧∧

vj∈V ar\{v1,...,vm} val[vj] = µj)).

5. A statement λk: if (G) λif, λelse in Pk is formulated as:

AG((val[lock] = λk ∧ val[G] = true) ⇒ AXk val[lock] = λif) ∧

AG((val[lock] = `k ∧ val[G] = false) ⇒ AXk val[lock] = λelse).

6. A statement λk: goto λ in Pk is formulated as:

AG(val[lock] = λk ⇒ AXk val[lock] = λ)

7.2.2 Construction of Tφ

We assume the ability to evaluate L-atoms and L-terms over the set V of

program variables. Note that since we restrict ourselves to a finite subset of

the symbols in L, this is a reasonable assumption. Let us further assume that

the formula φ = φP ∧ φspec is in a form in which only atoms appear negated.

153

An elementary formula of LCTL is an atom, negation of an atom or the

formulas beginning with AXk or EXk (we do not explicitly consider formulas

beginning with AX or EX since AXψ =
∧
k AXk ψ, and EXψ =

∨
k EXk ψ.

All other formulas are nonelementary. Every nonelementary formula is either

a conjunctive formula α ≡ α1 ∧ α2 or a disjunctive formula β ≡ β1 ∨ β2.

For example, ψ1 ∧ ψ2, AG (ψ) ≡ ψ ∧ AXAGψ are α formulas, and ψ1 ∨ ψ2,

AF (ψ) ≡ ψ ∨ AXAFψ are β formulas.

The tableau Tφ for the formula φ is a finite, rooted, directed AND/OR

graph with nodes labeled with formulas such that when a node B is viewed as a

state in a suitable structure, B |= ψ for all formulas ψ ∈ B. The construction

for Tφ is similar to the tableau-construction for propositional CTL in [47],

while accounting for the presence of L-atoms over V in the nodes of Tφ. Besides

composite L-atoms and LCTL formulas, each node of Tφ is labeled with simple

atoms of the type loc = λ and v = µ identifying the values of the control

and data variables in each node. Two OR-nodes B1 and B2 are identified as

being equivalent if B1, B2 are labeled with the same simple atoms, and the

conjunction of all the formulas in B1 is valid iff the conjunction of all the

formulas in B2 is valid. Equivalence of AND-nodes can be similarly defined.

We briefly summarize the tableau construction first, before explaining the

individual steps in more detail.

1. Initially, let the root node of Tφ be an OR-node labeled with φ.

2. If all nodes in Tφ have successors, go to the next step. Otherwise, pick a

154

node B without successors. Create appropriately labeled successors of B

such that: if B is an OR-node, the formulas in B are valid iff the formulas

in some (AND-) successor node are valid, and if B is an AND-node, the

formulas in B are valid iff the formulas in all (OR-) successor nodes

are valid. Merge all equivalent AND-nodes and equivalent OR-nodes.

Repeat this step.

3. Delete all inconsistent nodes in the tableau from the previous step to

obtain the final Tφ.

Successors of OR-nodes: To construct the set of AND-node successors of

an OR-node B, first build a temporary tree with labeled nodes rooted at B,

repeating the following step until all leaf nodes are only labeled with elemen-

tary formulas. For any leaf node C labeled with a non-elementary formula ψ:

if ψ is an α formula, add a single child node, labeled C \ {ψ} ∪ {α1, α2}, to

C, and if ψ is a β formula, add two child nodes, labeled C \ {ψ} ∪ {β1} and

C \ {ψ} ∪ {β2}, to C. Once the temporary tree is built, create an AND-node

successor D for B, corresponding to each leaf node in the tree, labeled with

the set of all formulas appearing in the path to the leaf node from the root of

the tree. If there exists an atom of the form v = t in D, where t is an L-term,

and the valuation of t in D is µ, replace the atom v = t by the simple atom

v = µ.

Successors of AND-nodes: To construct the set of OR-node successors of

155

an AND-node B, create an OR-node labeled with {ψ} for each EXk ψ formula

in B and label the transition to the OR-node with k. Furthermore, label each

such OR-node D (with an k-labeled transition into D) with
⋃
j ψj for each

AXk ψj formula in B. If there exists an atom of the form v = t in D, where t

is an L-term, and the valuation of t in D is µ, replace the atom v = t by the

simple atom v = µ. Note that the requirement that some process can always

move ensures that there will be some successor for every AND-node.

Deletion rules: All nodes in the tableau that do not meet all criteria for a

tableau for φ are identified as inconsistent and deleted as follows:

1. Delete any node B which is internally inconsistent, i.e., the conjunction

of all non-temporal elementary formulas in B evaluates to false.

2. Delete any node all of whose original successors have been deleted.

3. Delete any node B such that E[ψ1 Uψ2] ∈ B, and there does not exist

some path to an AND-node D from B with ψ2 ∈ D, and ψ1 ∈ C for all

AND-nodes C in the path.

4. Delete any node B such that A[ψ1 Uψ2] ∈ B, and there does not exist

a full sub-DAG 2, rooted at B, such that for all its frontier nodes D ,

ψ2 ∈ D and for all its non-frontier nodes C, ψ1 ∈ C.

2A full sub-DAG T ′ is a directed acyclic sub-graph of a tableau T , rooted at a node of
T such that all OR-nodes in T ′ have exactly one (AND-node) successor from T in T ′, and
all AND-nodes in T ′ either have no successors in T ′, or, have all their (OR-node) successors
from T in T ′.

156

If the root node of the tableau is deleted, we halt and declare the specification

φ as inconsistent (unsatisfiable). If not, we proceed to the next step.

7.2.3 Obtaining a Model M from Tφ

A model M is obtained by joining together model fragments rooted at AND-

nodes of Tφ: each model fragment is a rooted DAG of AND-nodes embeddable

in Tφ such that all eventuality formulas labeling the root node are fulfilled in

the fragment. We do not explain this step in more detail, as it is identical to

the procedure in [47] 3. After extracting M from Tφ, we modify the labels of

the states of M by eliminating all labels other than simple atoms, identifying

the values of the program variables in each state of M . If there exist n states

s1, . . . , sn with the exact same labels after this step, we introduce an auxiliary

variable x with domain {0, 1, 2, . . . , n} to distinguish between the states: x is

assumed to be 0 in all states other than s1, . . . , sn; for each j ∈ {1, . . . , n},

we set x to j in transitions into sj, and set x back to 0 in transitions out of

sj. This completes the model generation. M is guaranteed to satisfy φ by

construction.

3There may be multiple models embedded in Tφ. In [47], in order to construct model
fragments, whenever there are multiple sub-DAGs rooted at an OR-node B that fulfill the
eventualities labeling B, one of minimal size is chosen, where size of a sub-DAG is defined as
the length of its longest path. There are other valid criteria for choosing models, exploring
which is beyond the scope of this work.

157

7.2.4 Decomposition of M into Ps1 and Ps2

Recall that P1 and P2 are unsynchronized processes with atomic statements

such as assignments, condition tests and gotos, and no CCRs. In this last

step of our basic algorithmic framework, we generate Ps1 and Ps2 consisting of

CCRs, enclosing each atomic statement of P1 and P2.

Without loss of generality, consider location λ1 in P1. The guard for

the CCR for stmt(λ1) in Ps1 corresponds to all states in M in which stmt(λ1)

is enabled, i.e., states in which P1 is at location λ1 and from which there exists

a P1 transition. To be precise, stmt(λ1) is enabled in state s in M iff there

exists a transition (s, s′) ∈ R such that vals[loc1] = λ1, vals
′
[loc1] = λ′1 with λ′1

being a valid next location for P1, and, vals[loc2] = vals
′
[loc2]. The guard Gs

corresponding to such a state s is the valuation of all program variables other

than loc1 in state s. Thus, if vals[loc2] = `2 and for all vj ∈ V ar = {v1, . . . , vh},

vals[vj] = µj, then Gs is given by (loc2 = λ2) ∧
∧h
j=1 vj = µj.

If M does not contain an auxiliary variable, then the CCR for stmt(λ1)

in Ps1 is simply G1,1? → stmt(λ1), where G1,1 is the disjunction of guards Gs

corresponding to all states s in M in which stmt(λ1) is enabled. However,

if M contains an auxiliary variable x (with domain {0, 1, 2, . . . , n}), then one

may also need to perform updates to x within the CCR instruction block. In

particular, if stmt(λ1) is enabled on state s in M , transition (s, s′) in M is

a P1 transition, and if there is an assignment x := j for some j ∈ {0, . . . , n}

along transition (s, s′), then besides stmt(λ1), the statement block of the CCR

158

main() {
x : {0, 1, 2} with x = 1
P1 ‖ P2

}
Ps1() {

l1: 〈 if (x < 2) l2, l4 〉;
l2: 〈 ¬((x = 0) ∧ (t1 ∨ t3))

→ x :=x+̇1 〉;
l3: 〈 goto l1 〉;
l4: 〈 goto l4 〉;
}

Ps2() {
t1: 〈 if (x > 0) t2, t4 〉;
t2: 〈 ¬((x = 2) ∧ (l1 ∨ l3))

→ x :=x−̇1 〉;
t3: 〈 goto t1 〉;
t4: 〈 goto t4 〉;
}

φspec: AF(l4 ∧ t4 ∧ (x = 0 ∨ x = 2))

Figure 7.3: Synchronized concurrent program Ps such that Ps |= φspec

for stmt(λ1) in P s
1 includes instructions in our programming language corre-

sponding to: if (Gs) x := j.

The synchronized process Ps1 (and similarly Ps2) can be generated by

inserting a similarly generated CCR at each location in P1 (and P2). The mod-

ified concurrent program Ps is given by Ps :: [declaration] [Ps1 ‖Ps2], where

the declaration includes auxiliary variable x with domain {0, 1, 2, . . . , n} if M

contains x with domain {0, 1, 2, . . . , n}.

Example: For the example concurrent program and specification from Fig. 7.2,

we obtain the synchronized concurrent program shown in Fig. 7.3. Observe

the CCRs introduced in locations l2 and t2, respectively.

159

7.2.5 Algorithm Notes

The following theorems assert the correctness of our basic algorithmic frame-

work for synthesizing synchronization for unsynchronized processes P1, P2, as

defined in Sec. 7.1.2, with the restriction that all program variables are shared

variables that are initialized to specific values. These theorems follow from

the correctness of the synthesis of synchronization skeletons [46, 47], and the

modifications made in this chapter to accommodate LCTL specifications over

the program variables.

Theorem 7.2.1. Given unsynchronized processes P1, P2 and an LCTL for-

mula φspec, if our basic algorithm generates Ps, then Ps |= φspec.

Theorem 7.2.2. Given unsynchronized processes P1, P2, and an LCTL for-

mula φspec, if the temporal specification φ = φspec∧φP is consistent as a whole,

then our method constructs Ps such that Ps |= φspec.

The complexity of our method is exponential in the size of φ, i.e., exponential

in the size of φspec and the number of program variables V .

7.3 Extensions

In this section, we demonstrate the adaptability of our basic algorithmic frame-

work by considering more general program models. In particular, we discuss

extensions for synthesizing correct synchronization in the presence of unini-

tialized variables and local variables. Furthermore, we extend our framework

160

to programming languages with locks and wait/notify operations over condi-

tion variables by presenting an automatic compilation of CCRs into synchro-

nization code based on these lower-level synchronization primitives (similar

to Chapter 6). We conclude with an extension of the framework to multiple

processes.

7.3.1 Uninitialized Variables

In Sec. 7.2, we assumed that all data variables are initialized to specific values

over their domains. This assumption may not be satisfied in general as it

disallows any kind of user or environment input to a concurrent program. In

the program model presented in Sec. 7.1.2, only some (or even none) of the

data variables may be initialized to specific values within the program. This is

a more realistic setting, which allows a user or environment to choose the initial

values of the remaining data variables. In this subsection, we present a simple,

brute-force extension of our basic algorithm for synthesizing synchronization

in the presence of uninitialized variables.

The formula φP , expressing the concurrency and operational semantics

of P , remains the same, except for the initial condition. Instead of a single

initial state, the initial condition in φP specifies the set of all possible initial

states, with the control and initialized data variables set to their initial values,

and the remaining data variables ranging over all possible values in their re-

spective domains. Let us denote by V arinp this remaining set of data variables,

that are, essentially, inputs to the program P . The set of program-initialized

161

data variables is then V ar \ V arinp. The initial condition in φP is expressed

as:

∧
k

val[lock] = λ0
k ∧

∧
v∈V ar\V arinp

(v = υinit) ∧
∧

v∈V arinp

∨
µ∈Dv

(v = µ),

where Dv is the domain of v.

The root node of the tableau Tφ is now an AND-node with multiple

OR-node successors, each corresponding to a particular valuation µ of all the

data variables (the values of the control variable and initialized data variables

are the same in any such valuation). Each such OR-node yields a model Mµ

for the formula φ, and a corresponding decomposition of Mµ into synchronized

processes Ps1µ and Ps2µ .

To generate synchronized processes Ps1 and Ps2 such that for all possible

initial valuations µ of the data variables, Ps |= φspec, we propose to unify the

CCRs corresponding to each valuation µ as follows:

1. Introduce a new variable vcopy for every input data variable v in V arinp.

Declare vcopy as a variable with the same domain as v. Assign vcopy the

(input) value of v.

2. Replace every CCR guard G in the synchronized process Pskµ with the

guard Gµ, given by,
∧
v∈V arinp(vcopy = µv) ∧ G, where the valuation of v

in µ is µv. Similarly, update every conditional guard accompanying an

auxiliary variable assignment within a CCR instruction block in Pskµ .

162

3. The unified guard for each CCR in Ps1 and Ps2 is given by the disjunc-

tion of the corresponding guards Gµ in all Ps1µ and Ps2µ . The unified

conditional guards for auxiliary variable updates in the CCR instruction

blocks are computed similarly.

Note that the unified guards inferred above, as well as in Sec. 7.2.4, may

not in general be readable or compact. However, since each guard is expected

to be an L-term over a finite set of variable, function and predicate symbols

with known interpretations, it is possible to obtain a simplified L-term with

the same value as the guard. This translation is beyond the scope of this work,

but we refer the reader to [83] for a similar approach.

7.3.2 Local Variables

Another assumption in Sec. 7.2 was that all program variables, including con-

trol variables, were shared variables. Since one typically associates a cost with

each shared variable access, it is impractical to expect all program variables

to be shared variables. This is especially true of control variables, which are

generally never declared explicitly or accessed in programs. Thus, the guards

inferred in Sec. 7.2.4, ranging over locations of the other process, are some-

what irregular. Indeed, any guard for a process Pk must only be defined over

the data variables V ark accessible by Pk. In what follows, we discuss various

solutions to address this issue.

Let us assume that we have a model M = (S,R, L) for φ, with states

labeled by the valuations of the control variables Loc, the shared data variables

163

X, the local data variables Y =
⋃
k Yk, and possibly a shared auxiliary variable

x. For the purpose of this subsection, let x be included in the set X. We first

check if the set of states S of M has the property that for any two states

s1, s2 in S:
(∧

loc∈Loc val
s1 [loc] = vals2 [loc] ∧

∧
y∈Y val

s1 [y] = vals2 [y]
)
⇔∧

x∈X val
s1 [x] = vals2 [x]. If this is true, then each state s ∈ S is uniquely

identified by its valuation of the shared data variables X. We can then simply

factor out guards from M for each process that only range over X, without

missing out on any permitted behaviour in M . If this is not true, we can

perform other similar checks. For instance, we can check if for a particular k:

any two states in S match in their valuations of the variables {lock}∪Yk∪X iff

they match in their valuations of the other program variables. If this is true,

then the process Pk can distinguish between states in S by the valuations of its

variables V ark ∪ {lock}. Thus, we can infer guards for Pk, that are equivalent

to the guards inferred in Sec. 7.2.4, but only range over V ark.

In general, however, there will be states s1, s2 in S which cannot be

distinguished by the valuations of a particular process’s, or worse, by any pro-

cess’s variables. This general situation presents us with a trade-off between

synchronization cost and concurrency: we can introduce additional shared

variables to distinguish between such states, thereby increasing the synchro-

nization cost and allowing more behaviours of M to be preserved in Ps, or,

we can resign to limited observability [126] of global states, resulting in lower

synchronization cost and fewer permitted behaviours of M . In particular, for

the latter case, we implement a safe subset of the behaviours of M by inferring

164

synchronization guards corresponding to the negation of variable valuations

(states) that are not present in M . Since a global state u 6∈ M may be indis-

tinguishable over some V ark from a state s ∈ M , when eliminating behaviours

rooted at u, we also eliminate all (good) behaviours of M , rooted at s. We

refer the reader to [126] for a detailed treatment of this trade-off.

7.3.3 Synchronization using Locks and Condition Variables

While CCRs provide an elegant high-level synchronization solution, many pro-

gramming languages prefer and only provide lower-level synchronization prim-

itives such as locks for mutual exclusion, and wait/notify over condition

variables for condition synchronization. Similar to Chapter 6, we present an

automatic compilation of the CCRs inferred in Sec. 7.2.4 for Ps1 , Ps2 into both

coarse-grained and fine-grained synchronization code based on these lower-level

primitives. The resulting processes are denoted as Pc1, Pc2 (coarse-grained) and

Pf1 , Pf2 (fine-grained).

In both cases, we declare locks and conditions variables for synchro-

nization. For the program Pc, which has a coarser level of lock granularity, we

declare a single lock ` for controlling access to shared variables and condition

variables. For the program Pf1 ‖ P
f
2 with a finer level of lock granularity, we

declare separate locks `v, `x for controlling access to each shared data variable

v ∈ X and the shared auxiliary variable x, respectively. We further define a

separate lock `cv1,i
, `cv2,j

for each condition variable cv1,i, cv2,j to allow simul-

taneous processing of different condition variables.

165

λi1:
lock(`) {

while (!G1,i)

wait(cv1,i,l);
if (Gaux

1,i)

x := 1;
if (Greset

1,i)

x := 0;
stmt(`i1);
notify(cv2,r);

. . .
notify(cv2,s);

}

(a) Coarse-grained

λi1:
lock(`cv1,i

) {
while (!Guard1,i)

wait(cv1,i,`cv1,i
);

}
lock(`cv2,r) {

notify(cv2,r);

}
. . .
lock(`cv2,s) {

notify(cv2,s);

}

boolean Guard1,i() {
lock(`v1 , `v2 , . . ., `x) {
if (G1,i) {
if (Gaux

1,i)

x := 1;
if (Greset

1,i)

x := 0;
stmt(`i1);
return(true);

}
else

return(false);

}}
(b) Fine-grained

Figure 7.4: Coarse and fine-grained synchronization code corresponding to
an example CCR at location `i1 of P1. Guards Gaux

1,i , Greset
1,i correspond to all

states in M on which stmt(`i1) is enabled, and there’s an assignment x:=1,
x:=0, respectively, along a P1 transition out of the states.

We refer the reader to Fig. 7.4 for an example of coarse-grained and

fine-grained synchronization code corresponding to the CCR at location λi1

of P1. Note that, for ease of presentation, we have used conventional pseu-

docode, instead of our programming language. Since these compilations are

very similar to the ones presented in Chapter 6, we do not describe them

further.

7.3.4 Multiple (K > 2) Processes

Our basic algorithmic framework can be extended, similar to the guidelines

presented in Sec. 6.3.3, for synthesizing synchronization for concurrent pro-

166

grams with an arbitrary (but fixed) number K of processes. While the naive

extension may exhibit a state explosion problem, we can adapt the more scal-

able synthesis algorithms presented in [3,4] to the synthesis of LCTL formulas.

Also, note that the compilation of CCRs into coarse-grained and fine-grained

synchronization code acts on individual processes directly, without construc-

tion or manipulation of the global model, and hence circumvents the state-

explosion problem for arbitrary K.

167

Chapter 8

Bibliographic Notes

Automatic synthesis of programs has received a fair share of attention from

the formal methods community over the last three decades. While researchers

have proposed synthesis algorithms for both sequential (see [59] for a survey)

and concurrent programs, in what follows, we mainly restrict our attention to

relevant algorithms proposed for synthesis of synchronization for concurrent

systems.

Synthesis from temporal logic specifications. Early work in this domain in-

cluded work on synthesis for CTL specifications [47] and LTL specifications

[91], using tableau-based decision procedures. While the core algorithm pre-

sented in [47] was promising, a primary limitation of the framework was its

remoteness from realistic concurrent programs and programming languages.

The limited modeling of shared-memory concurrency in this work did not in-

clude local and shared data variables, and hence, could not support specifica-

tions over the values of program variables. There was no explicit treatment of

processes with branching, observability of program counters or local variables,

and no attempt to synthesize synchronization based on lower-level synchro-

168

nization primitives available in modern programming languages. In contrast,

our approaches

More recently, practically viable synthesis of synchronization has been

proposed for both finite-state [126] and infinite-state concurrent programs

[127]. However, in both [126], [127], the authors only handle safety specifi-

cations; in fact, it can be shown that synthesis methods that rely on pruning

a global product graph [72, 126, 127] cannot, in general, work for liveness.

Moreover, these papers do not support any kind of external environment; in

particular, these papers do not account for different (environment-enabled) ini-

tializations of the program variables. Finally, similar to [47], these papers only

synthesize high-level synchronization in the form in CCRs [126] and atomic

sections [127], and do not attempt to synthesize synchronization based on

lower-level synchronization primitives available in commonly used program-

ming languages.

On the other end of the spectrum, there has been some important work

on automatic synthesis of lower-level synchronization, in the form of memory

fences, for concurrent programs running on relaxed memory models [84, 86].

There has also been work on mapping high-level synchronization into lower-

level synchronization [32,132]. These paper do not prove that their high-to-low

compilations preserve correctness, and do not, in general, pursue correctness

by design. Instead they rely on verification-driven frameworks, which involve

verifying either the synthesized implementation [32] or the manually-written

high-level implementation [132]. These papers do not treat liveness proper-

169

ties and do not address refinement of locking granularity for access to shared

variables.

In contrast to the above approaches, the synchronization synthesis

framework presented in Chapter 7 (also presented in [106]) (a) supports both

safety and liveness properties over control and data variables, (b) supports

finite-state concurrent programs composed of processes that may have local

and shared variables, may be straight-line or branching programs, may be

ongoing or terminating, and may have program-initialized or user-initialized

variables, (c) is fully algorithmic, and (d) generates synchronized concurrent

programs that are correct-by-construction. The framework presented in Chap-

ter 6 (also presented in [48]) (a) caters for both safety and liveness, (b) is fully

algorithmic, (c) automatically construct a high-level synchronization solution,

(d) can generate a low level solution based on widely used synchronization

primitives, (e) can generate both coarse-grained and fine-grained low-level so-

lutions, and (f) is provably sound and complete.

Synthesis of fine-grained synchronization. Among papers that address refine-

ment of locking granularity are [5] in which the authors provide a methodology

to refine the granularity of atomicity in the synchronization skeletons of [47]

to generate synchronization in which each instruction is an atomic read or

an atomic write. More recently, a multitude of papers ([25, 49] etc.) have

addressed the problem of compiler-based lock inference for atomic sections.

While these papers propose different levels of automation and lock granular-

170

ity, they do not, in general, support condition variables, and often rely on

the availability of high-level synchronization in the form of atomic sections.

Nevertheless, it may be possible and useful to adapt some of the ideas (multi-

granular locks, optimization with respect to costs) introduced in these papers

to our framework.

Sketching. Sketching [114, 115] is a search-based program synthesis technique

that can also be used for synthesizing optimized implementations of synchro-

nization primitives, e.g. barriers, from partial program sketches. In contrast to

the correctness-by-design paradigm in our work, sketching is also a verification-

driven approach.

Synthesis based on discrete control theory. The authors in [41] and [129] syn-

thesize maximally-permissive concurrency control for regular language (safety)

specifications, and deadlock-avoidance, respectively using discrete control the-

ory. The authors in [7] handle a richer class of specifications expressible as

Petri nets for concurrent programs with dynamically instantiated/terminated

threads, using a limited lookahead-based supervisory control algorithm. Since

the attitude in [7] is one of avoidance of constraint violation rather than strict

prevention, in the presence of limited lookahead, their framework may not

always be maximally permissive. Note that our framework can be made max-

imally permissive. Finally, none of these papers address fine-grained concur-

rency control.

Besides the above topics, we mention that there also has been work

on automatic inference of synchronization for specific types of bugs such as

171

atomicity violations [73, 79], trace-based synthesis of various concurrent pro-

gram transformations (including lock insertion) for safety properties [124],

synthesis of Java monitor classes from process algebraic specifications [17] and

component- and interface-based synthesis [8, 14].

A note on reactive systems. A shared-memory concurrent program can also be

viewed as a reactive system. A reactive system [64,101] is described as one that

maintains an ongoing interaction with an external environment or within its

internal concurrent modules. Such systems cannot be adequately described by

relational specifications over initial and final states - this distinguishes them

from transformational or relational programs. An adequate description of a

reactive system must refer to its ongoing desired behaviour, throughout its

(possibly non-terminating) activity - temporal logic [100] has been recognized

as convenient for this purpose.

A reactive system may be terminating or not, sequential or concur-

rent, and implemented on a monolithic or distributed architecture. A reactive

system can also be open or closed [102,103]. This has been a somewhat over-

looked dichotomy in recent years. We have observed that it is not uncommon

to view reactive systems exclusively as open systems; this is especially true in

the context of synthesis. While the first algorithms on synthesis of concurrent

programs [4,47,91] were proposed for closed reactive systems, the foundational

work in [102, 103] set the stage for an extensive body of impressive results on

synthesis of open reactive systems (see [85,120] for surveys).

We contend that the relatively simpler problem of synthesis of closed

172

reactive systems is an important problem in its own right. This is especially

true in the context of shared-memory concurrent programs, where it is some-

times sufficient and desirable to model programs as closed systems and force

the component processes to cooperate with each other for achieving a common

goal. If one must model an external environment, it is also often sufficient to

model the environment in a restricted manner (as in this paper) or optimisti-

cally assume a helpful environment (see [29]).

173

Part IV

Robustness Analysis

174

In Part II and Part III, we presented program debugging and synthesis algo-

rithms targeting traditional qualitative correctness properties such as safety

and liveness. In Part I, we have seen that today’s software systems often op-

erate in uncertain environments. Left unchecked, such uncertainty can lead to

highly unpredictable system behaviour. Thus, a program may have a correct

execution on every individual input, but its output may be highly sensitive to

the minutest perturbation in its operating environment.

In this part of the dissertation, we focus on checking if a system is ro-

bust — small perturbations to the operating environment of the system do not

change the system’s observable behavior substantially. Reasoning about sys-

tem robustness demands a departure from techniques to analyze and develop

traditionally correct systems, as the former requires quantitative reasoning

about the system behavior. We target robustness analysis of two classes of

systems — string transducers and networked systems. For each system, we

define robustness of the system with respect to a specific source of uncertainty.

In particular, we analyze the behaviour of transducers in the presence of in-

put perturbations, and the behaviour of networked systems in the presence

of channel perturbations. Our overall approach is automata-theoretic. We

present decision procedures based on reducing the problem of robustness ver-

ification of our systems to the problem of checking the emptiness of carefully

constructed automata. Thus, the system under consideration is robust if and

only if the language of a particular automaton is empty.

In Chapter 9, we define the relevant transducer models and distance

175

metrics, and present constructions for various distance-tracking automata. In

Chapter 10, we present decision procedures for robustness analysis of string

transducers with respect to input perturbations. Changes to input and out-

put strings are quantified using weighted generalizations of the Manhattan

and Levenshtein distances over strings. In Chapter 11, we present decision

procedures for robustness analysis of networked systems, when the underlying

network channels are prone to errors. The distance metrics considered are the

Manhattan and Levenshtein distances over strings. Finally, we conclude this

part with a discussion of related work in Chapter 12.

176

Chapter 9

Groundwork

Overview. In this chapter, we begin by defining the transducer models and

distance metrics considered in this part of the dissertation. Key components

of our approach to robustness analysis of systems are machines that can track

distances between two strings; some of these machines are reversal-bounded

counter machines. Hence, we also review reversal-bounded counter machines,

and present constructions for various distance-tracking automata.

In what follows, we use the following notation. Input strings are typically

denoted by lowercase letters s, t etc. and output strings by s′, t′ etc. We

denote the concatenation of strings s and t by s.t, the ith character of string

s by s[i], the substring s[i].s[i+ 1].s[j] by s[i, j], the length of the string s

by |s|, and the empty string and empty symbol by ε.

9.1 Functional Transducers

A transduction R from a finite alphabet Σ to a finite alphabet Γ is an arbitrary

subset of Σ? × Γ?. We use R(s) to denote the set {t | (s, t) ∈ R}. We say that

a transduction is functional if ∀s ∈ Σ?, |R(s)| ≤ 1.

177

A finite transducer (ft) is a finite-state device with two tapes: a read-

only input tape and a write-only output tape. An ft scans the input tape from

left to right, and in each state reads an input symbol, possibly changes state,

writes a finite string to the output tape, and advances its reading head one

position to the right. In each such step, an ft nondeterministically chooses its

next state and an output string to write. The output of an ft is the string on

the output tape if the ft finishes scanning the input tape in some designated

final state. Formally, a finite transducer T is a tuple (Q,Σ,Γ, q0, E, F) where

Q is a finite nonempty set of states, q0 ∈ Q is the initial state, E is a set of

transitions defined as a finite subset of (Q×Σ× Γ? ×Q), and F ⊆ Q is a set

of final states1.

A run of T on a string s = s[1]s[2] . . . s[n] is defined in terms of

the sequence: (q0, ε), (q1, w
′
1), . . . , (qn, w

′
n), where for each i, 1 ≤ i ≤ n,

(qi−1, s[i], w
′
i, qi) is a transition in E. A run is called accepting if qn ∈ F . The

output of T along a run is the string w′1.w
′
2.w

′
n if the run is accepting, and

is undefined otherwise. The transduction computed by an ft T is the relation

JT K ⊆ Σ?×Γ?, where (s, s′) ∈ JT K iff there is an accepting run of T on s with

s′ as the output along that run. T is called single-valued or functional if JT K is

functional. Thus, a functional transducer may be nondeterministic, but must

define a function between regular sets of strings. Checking if an arbitrary ft

1Some authors prefer to call this model a generalized sequential machine. In contrast,
a transducer is defined to allow ε-transitions; thus, a transducer is allowed to change state
without moving the reading head. Note that ε-transitions are disallowed in our definition
of transducers.

178

is functional can be done in polynomial time [60]. The input language, L, of

a functional transducer T is the set {s | JT K(s) is defined}. When viewed as a

relation over Σ?×Γ?, JT K defines a partial function; however, when viewed as

a relation over L × Γ?, JT K is a total function.

Mealy Machines. These are deterministic, symbol-to-symbol, functional

transducers. Thus, from every state q ∈ Q, there exists exactly one transition,

and every transition in E is of the form (q, a, w′, q′) with |w′| = 1. The input

language L of a Mealy machine T is the set Σ? (i.e., every state is accepting).

Hence, the transduction implemented by T is a total function JT K : Σ? → Γ?.

In what follows, we use the term finite transducers, or simply transduc-

ers, to refer to both functional transducers and Mealy machines, and distin-

guish between them as necessary. As a technicality that simplifies our proofs,

we assume that for all i > |s|, s[i] = #, where # is a special end-of-string

symbol not in Σ or Γ.

9.2 Distance Metrics

A metric space is an ordered pair (M,d), where M is a set and d : M ×M →

R, the distance metric, is a function with the properties: (1) d(x, y) ≥ 0,

(2) d(x, y) = 0 iff x = y, (3) ∀x, y : d(x, y) = d(y, x), and (4) ∀x, y, z :

d(x, z) ≤ d(x, y) + d(y, z).

The Hamming distance and Levenshtein distance metrics are popular

distance metrics for measuring distances (or similarity) between strings. The

179

Hamming distance, defined for two equal length strings, is the minimum num-

ber of symbol substitutions required to transform one string into the other.

For strings of unequal length, the Hamming distance is replaced by its natural

extension — the Manhattan distance or L1-norm — which also accounts for

the difference in the lengths. In particular, the Manhattan distance dM(s, t)

between strings s and t measures the number of positions in which s and t

differ, and can be defined using the following recurrence relations, for i ≥ 1,

and s[0] = t[0] = ε:

dM (s[0], t[0]) = 0
dM (s[0, i], t[0, i]) = dM (s[0, i-1], t[0, i-1]) + diff(s[i], t[i])

(9.1)

where, diff(a, b) is defined to be 0 is a = b and 1 otherwise.

The Levenshtein distance dL(s, t) between strings s and t is the min-

imum number of symbol insertions, deletions and substitutions required to

transform one string into another. The Levenshtein distance, also called the

edit distance, is defined by the following recurrence relations, for i, j ≥ 1, and

s[0] = t[0] = ε:

dL(s[0], t[0]) = 0, dL(s[0, i], t[0]) = i, dL(s[0], t[0, j]) = j
dL(s[0, i], t[0, j]) = min(dL (s[0, i-1], t[0, j-1]) + diff(s[i], t[j]),

dL (s[0, i-1], t[0, j]) + 1,
dL (s[0, i], t[0, j-1]) + 1)

(9.2)

The first three relations, that involve empty strings, are obvious. The Leven-

shtein distance between the nonempty prefixes, s[0, i] and t[0, j], is the mini-

mum over the distances corresponding to three possible transformations: (1)

optimal (Levenshtein) transformation of s[0, i-1] into t[0, j-1] and substitution

180

of s[i] with t[j] for an additional cost of diff(a, b), (2) optimal transformation

of s[0, i-1] into t[0, j] and deletion of s[i] for an additional cost of 1 (3) optimal

transformation of s[0, i] into t[0, j-1] and insertion of t[j] for an additional cost

of 1.

Example. Consider the strings s = baa and t = abca. We have dM(s, t) =

4, dL(s, t) = 2. The Manhattan transformation of s into t simply involves

4 substitutions. The Levenshtein distance of 2 is obtained by aligning the

strings as:
t b a a
a b c a

where t is a special place-holder symbol. Thus, a

Levenshtein transformation of s into t involves inserting the symbol a before

s and substituting the symbol a in s with the symbol c.

The Hamming/Manhattan and Levenshtein distances only track the

number of symbol mismatches, and not the degree of mismatch. For some ap-

plications, these distance metrics can be too coarse. Hence, we also consider

distance metrics equipped with integer penalties - pairwise symbol mismatch

penalties for substitutions and a gap penalty for insertions/deletions. We de-

note by gdiff(a, b) the mismatch penalty for substituting symbols a and b,

with gdiff(a, b) = 0 if a = b. We require gdiff(a, b) to be well-defined when

either a or b is #. We denote by α the fixed, non-zero gap penalty for inser-

tion or deletion of a symbol. We now define these weighted extensions of the

Manhattan and Levenshtein distances formally.

The generalized Manhattan distance dgM(s, t) between strings s and t

is defined by the following recurrence relations, for i ≥ 1, and s[0] = t[0] = ε:

181

dgM (s[0], t[0]) = 0
dgM (s[0, i], t[0, i]) = dgM (s[0, i-1], t[0, i-1]) + gdiff(s[j], t[i]).

(9.3)

The generalized Levenshtein distance dgL(s, t) between strings s and t is de-

fined by the following recurrence relations, for i, j ≥ 1, and s[0] = t[0] = ε:

dgL(s[0], t[0]) = 0, dgL(s[0, i], t[0]) = iα, dgL(s[0], t[0, j]) = jα
dgL(s[0, i], t[0, j]) = min(dgL (s[0, i-1], t[0, j-1]) + gdiff(s[i], t[j]),

dgL (s[0, i-1], t[0, j]) + α,
dgL (s[0, i], t[0, j-1]) + α).

(9.4)

The generalized Levenshtein distance between the nonempty prefixes,

s[0, i] and t[0, j], is the minimum over the distances corresponding to three

possible transformations: (1) optimal (generalized Levenshtein) transforma-

tion of s[0, i-1] into t[0, j-1] and substitution of s[i] with t[j], with a mismatch

penalty of gdiff(a, b), (2) optimal transformation of s[0, i-1] into t[0, j] and

deletion of s[i], with a gap penalty of α, and, (3) optimal transformation of

s[0, i] into t[0, j-1] and insertion of t[j] with a gap penalty of α.

Example. Consider the strings s = baa and t = abca again. Let: gdiff(a, b) =

gdiff(b, c) = 1, gdiff(a, c) = 2 and α = 1. We have dgM(s, t) = 5 and

dgL(s, t) = 3, using the same transformations as in the previous example.

Observe that if gdiff(a, b) is defined to be equal to diff(a, b), the def-

initions for the generalized Manhattan and Levenshtein distances correspond

to the definitions for the usual Manhattan and Levenshtein distances in equa-

tions (9.1) and (9.2), respectively. In our work, we assume that gdiff(a, b)

182

and α are external parameters provided to the algorithm by the user, and we

require that the resulting generalized Manhattan and Levenshtein distances

are distance metrics.

9.3 Reversal-bounded Counter Machines

A (one-way, nondeterministic) h-counter machine [68, 69] A is a (one-way,

nondeterministic) finite automaton, augmented with h integer counters. Let

G be a finite set of integer constants (including 0). In each step, A may

read an input symbol, perform a test on the counter values, change state, and

increment each counter by some constant g ∈ G. A test on a set of integer

counters Z = {z1, . . . , zh} is a Boolean combination of tests of the form zθg,

where z ∈ Z, θ ∈ {≤,≥,=, <,>} and g ∈ G. Let TZ be the set of all such

tests on counters in Z.

Formally, A is defined as a tuple (Σ, X, x0, Z,G,E, F) where Σ, X,

xo, F , are the input alphabet, set of states, initial state, and final states

respectively. Z is a set of h integer counters, and E ⊆ X × (Σ ∪ ε) × TZ ×

X×Gh is the transition relation. Each transition (x, σ, t, x′, g1, . . . , gh) denotes

a change of state from x to x′ on symbol σ ∈ Σ ∪ ε, with t ∈ TZ being the

enabling test on the counter values, and gk ∈ G being the amount by which

the kth counter is incremented.

A configuration of a one-way multi-counter machine is defined as the

tuple (x, σ, z1, . . . , zh), where x is the state of the automaton, σ is a sym-

bol of the input string being read by the automaton and z1, . . . , zh are the

183

values of the counters. We define a move relation →A on the configurations:

(x, σ, z1, . . . , zh)→A (x′, σ′, z′1, . . . , z
′
h) iff (x, σ, t(z1, . . . , zh), x

′, g1, . . . , gh) ∈ E,

where, t(z1, . . . , zh) is true, ∀k: z′k = zk + gk, and σ′ is the next symbol in the

input string being read. A path is an element of →?
A, i.e., a path is a finite

sequence of configurations µ1, µ2, . . . where for all i : µi →A µi+1. A run of

A on a string s = s[1]s[2] . . . s[n] can be defined as a path beginning with

an initial configuration in which x = x0, σ = s[1] and all counters are set to

0. An accepting configuration is one in which x ∈ F (with the counter values

being unconstrained). A string s ∈ Σ? is accepted by A if (x0, s[1], 0, . . . 0)→?
A

(x, s[j], z1, . . . , zh) for some x ∈ F and j ≤ n. The set of strings (language)

accepted by A is denoted L(A).

In general, multi-counter machines can simulate actions of Turing ma-

chines (even with just 2 counters). In [68], the author presents a class of

counter machines - reversal-bounded counter machines - with efficiently decid-

able properties. A counter is said to be in an increasing mode between two

successive configurations if the counter value is the same or increasing, and in

a decreasing mode if the counter value is strictly decreasing. We say that a

counter is r-reversal bounded if the maximum number of times it changes mode

(from increasing to decreasing and vice versa) along any path is r. We say that

a multi-counter machine A is r-reversal bounded if each of its counters is at

most r-reversal bounded. We denote the class of h-counter, r-reversal-bounded

machines by NCM(h, r).

Lemma 9.3.1. [61] The nonemptiness problem for A in class NCM(h, r) can

184

be solved in NLogspace in the size of A.

Recall that for all i > |s|, s[i] = #. In what follows, let Σ# = Σ ∪ {#}.

9.4 Manhattan Distance-Tracking Automata

We now define automata D=δ
M , D>δ

M that accept pairs of strings (s, t) such

that dM(s, t) = δ, dM(s, t) > δ, respectively, where dM(s, t) is the Manhattan

distance between s and t. The automata D=δ
M , D>δ

M are 1-reversal-bounded

1-counter machines (i.e., in NCM(1,1)), and are each defined as a tuple (Σ#×

Σ#, X, x0, Z,G,E, F), where (Σ#×Σ#) is the input alphabet, X = {x0, x, acc},

is a set of three states, x0 is the initial state, Z = {z} is a single 1-reversal-

bounded counter, G = {δ, 0,−1} is a set of integers, and F = {acc} is the

singleton set of final states. The transition relations of D=δ
M , D>δ

M both include

the following transitions:

1. An initialization transition (x0, (ε, ε), true, x, δ) that sets the counter z

to δ.

2. Transitions of the form (x, (a, a), z ≥ 0, x, 0), for a 6= #, that read a pair

of identical, non-# symbols, and leave the state and counter of D=δ
M , D>δ

M

unchanged.

3. Transitions of the form (x, (a, b), z ≥ 0, x,−1), for a 6= b, which read a

pair (a, b) of distinct symbols, and decrement the counter z by 1.

185

4. Transitions of the form (acc, (∗, ∗), ∗, acc, 0), which ensure that the ma-

chine stays in its final state upon reaching it.

The only difference in the transition relations of D=δ
M , D>δ

M is in their

transitions into accepting states. The accepting transitions of D=δ
M are of the

form (x, (#, #), z = 0, acc, 0), and move D=δ
M to an accepting state upon reading

a (#, #) pair when the counter value is zero, i.e., when the Manhattan distance

between the strings being read is exactly equal to δ. The accepting transitions

of D>δ
M are of the form (x, (∗, ∗), z < 0, acc, 0), and move D>δ

M to an accepting

state whenever the counter value goes below zero, i.e., when the Manhattan

distance between the strings being read is greater than δ.

Note that the size of D=δ
M or D>δ

M is O(δ + |Σ|2). The following lemma

states the correctness of the above automata constructions.

Lemma 9.4.1. D=δ
M , D>δ

M accept a pair of strings (s, t) iff dM(s, t) = δ,

dM(s, t) > δ, respectively.

Generalized Manhattan Distance-Tracking Automata. The defini-

tions for the automata D=δ
gM , D>δ

gM that accept pairs of strings (s, t) such that

dgM(s, t) = δ, dgM(s, t) > δ, respectively, with dgM(s, t) being the generalized

Manhattan distance between s and t, are very similar to the definitions for D=δ
M ,

D>δ
M , respectively. In particular, both D=δ

gM , D>δ
gM are in NCM(1,1), and are each

defined as a tuple (Σ#×Σ#, X, x0, Z,G,E, F), where (Σ#×Σ#) is the input al-

phabet, X = {x0, x, acc}, is a set of three states, x0 is the initial state, Z = {z}

186

is a single 1-reversal-bounded counter, G = {δ, 0} ∪ ∪a,b∈Σ# {gdiff(a, b)} is

a set of integers, and F = {acc} is the singleton set of final states. The

transition relations of D=δ
gM , D>δ

gM are identical to the ones for D=δ
M , D>δ

M , re-

spectively, except for the set of transitions described in item 3 above. Thus,

instead of transitions of the form (x, (a, b), z > 0, x,−1), for a 6= b, D=δ
gM , D>δ

gM

contain transitions of the form (x, (a, b), z > 0, x,−gdiff(a, b)), for a 6= b,

which read a pair (a, b) of distinct symbols, and decrement the counter z by

the corresponding mismatch penalty gdiff(a, b).

Note that the size of D=δ
gM or D>δ

gM isO(δ+|Σ|2MAXgdiffΣ
), where MAXgdiffΣ

is the maximum mismatch penalty over Σ.The following lemma states the

correctness of the above automata constructions.

Lemma 9.4.2. D=δ
gM , D>δ

gM accept a pair of strings (s, t) iff dgM(s, t) = δ,

dgM(s, t) > δ, respectively.

9.5 Levenshtein Distance-Tracking Automaton

In [53], the authors show that for a given integer k, a relation R ⊆ Σ? × Σ?

is rational if and only if for every (s, t) ∈ R, |s| − |t| < k. It is known from

[44], that a subset is rational iff it is the behavior of a finite automaton. Thus,

it follows from the above results that there exists a dfa that accepts the set

of pairs of strings that are within bounded edit distance from each other.

However, these theorems do not provide a constructive procedure for such an

automaton. In what follows, we present novel constructions for dfa’s D=δ
L ,

187

D>δ
L that accept pairs of strings (s, t) such that dL(s, t) = δ, dL(s, t) > δ,

respectively.

The standard algorithm for computing the Levenshtein distance dL(s, t)

is a dynamic programming-based algorithm using the recurrence relations in

eq.(9.2). This algorithm organizes the bottom-up computation of the Leven-

shtein distance with the help of a table t of height |s| and width |t|. The 0th

row and column of t account for the base case of the recursion. The t(i, j) en-

try stores the Levenshtein distance of the strings s[0, i] and t[0, j]. In general,

the entire table has to be populated in order to compute dL(s, t). However,

when one is only interested in some bounded distance δ, then for every i,

the algorithm only needs to compute values for the cells from t(i, i − δ) to

t(i, i+ δ) [62]. We call this region the δ-diagonal of t, and use this observation

to construct the dfa’s D=δ
L and D>δ

L .

We define D=δ
L , D>δ

L to synchronously run on a pair of strings s, t, and

accept iff dL(s, t) = δ, dL(s, t) > δ, respectively. In each step, D=δ
L , D>δ

L read a

pair of input symbols and change state to mimic the bottom-up edit distance

computation by the dynamic programming algorithm.

Example Run. A run of D>2
L on the string pair s = accca, t = caca, that

checks if dL(s, t) > 2, is shown in Fig. 9.1. After reading the ith input symbol

pair, D>2
L uses its state to remember the last δ = 2 symbols of s and t that it

has read, and transitions to a state that contains the values of t(i, i) and the

cells within the δ-diagonal, above and to the left of t(i, i).

188

a

c

b

c

d

#

0

1

2

3

4

5

6

c c f f # #

0 1 2 3 4 5 6

0

1 1

1 2

2

112

>
2

222

>
>
>>2

>
>
>>>
>
>
>>>

(ε, ε, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 1, 1,⊥〉)

(ac, cc, 〈2, 1, 1, 2, 2〉)

(cb, cf, 〈2, 2, 2, 2,>〉)

(bc, ff, 〈2,>,>,>,>〉)

(cd, f#, 〈>,>,>,>,>〉)

accept

(a, c)

(c, c)

(b, f)

(c, f)

(d, #)

(#, #)

Figure 9.1: Dynamic programming table emulated by D>2
L . The table t filled

by the dynamic programming algorithm is shown to the left, and a compu-
tation of D>2

L on the strings s = acbcd and t = ccff is shown to the right.

As in the case of Manhattan distance, D=δ
L , D>δ

L are identical, except

for their accepting transitions. Formally, D=δ
L , D>δ

L are each defined as a tuple

(Σ# × Σ#, Q, q0,∆, {acc}), where (Σ# × Σ#), Q, q0, ∆, {acc} are the input

alphabet, the set of states, the initial state, the transition function and the

singleton set of final states respectively. A state is defined as the tuple (x, y, e),

where x and y are strings of length at most δ and e is a vector containing

2δ + 1 entries, with values from {0, 1, . . . , δ,⊥,>} for each entry. A state of

D=δ
L , D>δ

L maintains the invariant that if i symbol pairs have been read, then x,

y store the last δ symbols of s, t (i.e., x = s[i-δ+1, i], y = t[i-δ+1, i]), and the

entries in e correspond to the values stored in t(i, i) and the cells within the

δ-diagonal, above and to the left of t(i, i) (i.e., entries in e correspond to the

values in t(i, i) and in the cells defined by the sets {t(i, j) | j ∈ [i-δ, i-1]}, and

{t(j, i) | j ∈ [i-δ, i-1]}. The values in these cells greater than δ are replaced

by >. The initial state is q0 = (ε, ε, 〈⊥, . . . ,⊥, 0,⊥, . . . ,⊥〉), where ε denotes

189

the empty string, ⊥ is a special symbol denoting an undefined value, and the

value 0 corresponds to entry t(0, 0).

Upon reading the ith input symbol pair, s[i], t[i], D=δ
L , D>δ

L transition

from state qi-1 = (xi-1, yi-1, ei-1) to a state qi = (xi, yi, ei) as shown in Fig. 9.2.

First, note that xi, yi are the δ-length suffices of xi-1.s[i], yi-1.t[i], respectively.

Also, note that to compute values in ei corresponding to the ith row of t,

we need the substring t[i-δ, i-1], the values t(i-1-δ, i-1) to t(i-1, i-1), and

the symbol s[i]. From the state invariant, it follows that the values of the

required cells from t and the required substring t[i-δ, i-1] are present in qi-1.

Similarly, to compute t(j, i), where j ∈ [i-1-δ, i] the string in yi−1, values in

ei−1 and the input symbol suffice. Thus, given any state qi-1 of D=δ
L , D>δ

L and

an input symbol pair, we can construct the unique next state that satisfies the

state-invariant from xi-1, yi-1, ei-1 and the input symbol pair.

Finally, upon reading the symbol (#, #) in state (x, y, e), we add tran-

sitions to the single accepting state acc in D=δ
L (and in D>δ

L) iff:

- |s| = |t|, i.e., x and y do not contain #, and the (δ + 1)th entry in e is δ

(> in the case of D>δ
L), or,

- |s| = |t|+ `, i.e., y contains ` #’s, x contains no #, and the (δ + 1− `)th

entry in e is δ (> in the case of D>δ
L), or,

- |t| = |s|+ `, i.e., x contains ` #’s, y contains no #, and the (δ + 1 + `)th

entry in e is δ (> in the case of D>δ
L).

190

s[i-δ, i-1], t[i-δ, i-1],
t

(i-1-δ, i-1) (i-1, i-1)

(i-1, i-δ-1)

s[i], t[i]

s[i-δ+1, i], t[i-δ+1, i],

(i-δ+1, i) (i, i)

(i, i-δ+1)

t

Figure 9.2: A transition of D=δ
L , D>δ

L

Upon reaching acc, D=δ
L , D>δ

L remain in it for all possible input symbol pairs.

Note that the size of D=δ
L or D>δ

L is O((δ|Σ|)4δ). The following lemma

states the correctness of these constructions. The proof follows from the state-

invariants maintained by D=δ
L , D>δ

L and their accepting transitions.

Lemma 9.5.1. D=δ
L , D>δ

L accept a pair of strings (s, t) iff dL(s, t) = δ, dL(s, t) >

δ, respectively.

Generalized Levenshtein Distance-Tracking Automata. The defini-

tions for the automata D=δ
gL , D>δ

gL that accept pairs of strings (s, t) such that

dgL(s, t) = δ, dgL(s, t) > δ, respectively, with dgL(s, t) being the generalized

Manhattan distance between s and t, are essentially the same as the definitions

for D=δ
L , D>δ

L , respectively. The only difference lies in the fact that the transi-

191

tions of the form shown in Fig. 9.2 involve a computation using the mismatch

and gap penalties, according to eq.(9.4).

a

c

c

c

a

#

0

1

2

3

4

5

6

c a c a # #

0 1 2 3 4 5 6

0

1 2

1 2

1

212

2

1

2>2

2

>
>>>
>
>
>>>
>
>
>>>

(ε, ε, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 2, 1,⊥〉)

(ac, ca, 〈2, 1, 2, 1, 2〉)

(cc, ac, 〈2,>, 2, 1, 2〉)

(cc, ca, 〈>,>,>,>, 2〉)

(ca, a#, 〈>,>,>,>,>〉)

accept

(a, c)

(c, a)

(c, c)

(c, a)

(a, #)

(#, #)

Figure 9.3: Dynamic programming table emulated by D>2
gL . The table t filled

by the dynamic programming algorithm for δ = 2 is shown to the left, and
a computation of D>2

L on the strings s = accca, t = caca is shown to the
right. Here, Σ = {a, b, c}, gdiff(a, b) = gdiff(b, c) = gdiff(a, #) = 1,
gdiff(a, c) = gdiff(b, #) = 2, gdiff(c, #) = 3 and α = 1.

Example Run. A run of D>2
gL on the string pair s = accca, t = caca that

checks if dgL(s, t) > 2, is shown in Fig. 9.3. The mismatch and gap penalties

are as enumerated in the caption.

Thus, the size of D=δ
gL or D>δ

gL is O((δ|Σ|)4δ), and the following lemma

states the correctness of these constructions.

Lemma 9.5.2. D=δ
gL , D>δ

gL accept a pair of strings (s, t) iff dgL(s, t) = δ,

dgL(s, t) > δ, respectively.

192

Chapter 10

Robustness Analysis of String Transducers

Overview. In this chapter, we target robustness analysis of string trans-

ducers with respect to input perturbations. We formally define our notion

of robustness and present a set of decision procedures based on reducing the

problem of robustness verification of a transducer to the problem of check-

ing the emptiness of a reversal-bounded counter machine. In this chapter, we

choose to focus on the generalized Levenshtein and Manhattan distance met-

rics over strings. This is because string transducers are involved in a diverse

set of applications, as highlighted in Chapter 1, and the usual Levenshtein

and Manhattan distance metrics may be too coarse and inadequate for some

of these applications.

10.1 Robust String Transducers

Our notion of robustness for finite transducers is an adaptation of the analytic

notion of Lipschitz continuity. Given two metric spaces (M1, d1) and (M2, d2), a

function f : M1 →M2 is called Lipschitz continuous if there exists a constant

K ∈ N such that ∀x, y ∈ M1 : d2(f(x), f(y)) ≤ Kd1(x, y). Intuitively, a

Lipschitz-continuous function responds proportionally, and hence robustly, to

193

perturbations in its input. Thus, Lipschitz-continuity can be the basis of a

mathematical definition of robustness [24].

We define a transducer T to be robust if the function JT K encoded by

the transducer satisfies a property very similar to Lipschitz-continuity. The

one difference between the Lipschitz criterion and ours is that the output of a

Lipschitz-continuous function changes proportionally to every perturbation δ

to the input, however large δ might be. From the modeling point of view, this

requirement seems too strong; if the input is noisy beyond a certain point, it

makes little sense to constrain the behavior of the output. Accordingly, we

define robustness of a transducer T with respect to a fixed bound B on the

amount of input perturbation.

Definition 10.1.1 (Robust String Transducers). Given an upper bound B on

the input perturbation, a constant K ∈ N and a distance metric d : Σ∗×Σ∗ ∪

Γ? × Γ? → N, a transducer T defined over a regular language L ⊆ Σ∗, with

JT K : L → Γ?, is called (B,K)-robust if:

∀δ ≤ B, ∀s, t ∈ L : d(s, t) = δ =⇒ d(JT K(s), JT K(t)) ≤ Kδ.

10.2 Robustness Analysis

From Def. 10.1.1, it follows that checking (B,K)-robustness of a transducer

T is equivalent to checking if for each δ ≤ B, ∀s, t ∈ L : d(s, t) = δ =⇒

d(JT K(s), JT K(t)) ≤ Kδ. Hence, we focus on the problem of checking ro-

bustness of a transducer for some fixed input perturbation δ. We reduce this

194

problem to checking language emptiness of a product machine Aδ constructed

from:

1. An input automaton AδI that accepts a pair of strings (s, t) iff d(s, t) = δ,

2. A pair-transducer P that transforms input string pairs (s, t) to output

string pairs (s′, t′) according to T , and

3. An output automaton AδO that accepts (s′, t′) iff d(s′, t′) > Kδ.

We construct Aδ such that T is robust iff for all δ ≤ B, the language of Aδ is

empty.

Later in this section, we present specialized constructions for AδI , AδO

for checking robustness of Mealy machines and functional transducers, with

respect to the generalized Manhattan and Levenshtein distances. The defi-

nition of the pair-transducer P is standard in all these scenarios, and hence

we present it first. We next define the product machine Aδ for two relevant

scenarios. Scenario 1 is when AδI and AδO are both dfas - as we will see, this

scenario presents itself while checking robustness of either type of transducer

with respect to the generalized Levenshtein distance. Scenario 2 is when AδI

and AδO are both 1-reversal-bounded counter machines - this scenario presents

itself while checking robustness of either type of transducer with respect to

the generalized Manhattan distance.

Recall that Σ# = Σ∪{#}. Let Γ# = Γ∪{#}, Γε,# = Γ∪{ε, #}, Σ̃ = Σ#×Σ#

and Γ̃ = Γε,# × Γε,#.

195

Pair-transducer, P . Given a transducer T , the pair-transducer P reads an

input string pair and produces an output string pair according to T . Formally,

given T = (Q,Σ,Γ, q0, E, F), P is defined as the tuple (QP , Σ̃, Γ̃, q0P , EP , FP)

where QP = Q×Q, q0P = (q0, q0), FP = F × F , and, EP is the set of all tran-

sitions of the form ((q1, q2), (a, b), (w′, v′), (q′1, q
′
2)) such that (q1, a, w

′, q′1) ∈ E

and (q2, b, v
′, q′2) ∈ E. While for Mealy machines, in all transitions in EP ,

w′, v′ are symbols in Γ ∪ {#}, for arbitrary functional transducers, w′, v′ may

be strings of different lengths, and either or both could be ε. We define the

function JPK such that JPK(s, t) = (s′, t′) if J
K−→ (s) = s′ and J

K−→ (t) =< t′.

Product machine, Aδ. Given input automaton AδI , pair transducer P and

output automaton AδO , the product machine Aδ is constructed to accept all

string pairs (s, t) such that (s, t) is accepted by AδI and there exists a string

pair (s′, t′) accepted by AδO with (s′, t′) = JPK(s, t). Notice that while in each

of its transitions, AδO can only read a pair of symbols at a time, each transition

of P potentially generates a pair of (possibly unequal length) output strings.

Hence, Aδ cannot be constructed as a simple synchronized product.

Scenario 1. Given a dfa input automaton AδI = (QI , Σ̃, q0I ,∆I , FI), pair

transducer P = (QP , Σ̃, Γ̃, q0P , EP , FP) and a dfa output automaton AδO =

(QO , Γ̃, q0O ,∆O , FO), Aδ is a dfa given by the tuple (Q, Σ̃, q0,∆, F), where

Q ⊆ QI ×QP ×QO , q0 = (q0I , q0P , q0O), F = FI × FP × FO , and E is defined as

follows:

196

∆((qI , qP , qO), (a, b)) = (q′I , q
′
P , q
′
O) iff

1. ∆I (qI , (a, b)) = q′I , and

2. there exist w′, v′ such that

(a) (qP , (a, b), (w
′, v′), q′P) ∈ EP , and

(b) ∆∗O(qO , (w
′, v′)) = q′O .

Scenario 2. For counter machines, one also needs to keep track of the coun-

ters. Given input automaton AδI = (Σ̃, XI , x0I , ZI , GI , EI , FI) in NCM(hI ,1),

pair transducer P = (QP , Σ̃, Γ̃, q0P , EP , FP) and output automaton AδO in class

NCM(hO ,1), of the form (Γ̃, XO , x0O , ZO , GO , EO , FO), Aδ is in NCM(h,1), with

h = hI + hO , and is given by the tuple (Σ̃, X, x0, Z,G,E, F), where X ⊆

XI×QP×XO , x0 = (x0I , q0P , x0O), Z = ZI∪ZO , G = GI∪GO , F = FI×FP×FO ,

and E is defined as follows:

((xI , qP , xO), (a, b), t, (x′I , q
′
P , x

′
O), gI1, . . . , gIhI , gO1, . . . , gOhO) ∈ E iff

1. (xI , (a, b), tI , x
′
I , gI1, . . . , gIhI) ∈ EI with t⇒ tI , and

2. there exist w′, v′ such that

(a) (qP , (a, b), (w
′, v′), q′P) ∈ EP , and

(b) (xO , (w
′[1], v′[1]), zO1, . . . , zOhO) →?

AδO
(x′O , (w

′[j], v′[`]), z′O1, . . . , z
′
OhO

),

with j = |w′|, ` = |v′|, t ⇒ tO where tO is the enabling test corre-

sponding to the first move along →?
AδO

and ∀k: z′Ok = zOk + gOk.

197

Thus, in both scenarios, each transition of Aδ corresponds to a single transition

of AδI , a single transition of P yielding some output string pair (w′, v′), and a

path of AδO , consisting of multiple transitions/moves on (w′, v′).

10.2.1 Mealy Machines

Generalized Manhattan Distance. For a Mealy machine T , it is easy to see

from the descriptions of AδI , AδO and from the constructions in Sec. 9.4, that AδI

is the same as D=δ
gM and AδO is essentially the same as D>Kδ

gM , with the alphabet

being Γ̃. Thus, AδI and AδO are both in NCM(1,1). Let Aδ be the product

machine, as defined in Scenario 2 using AδI , P and AδO . From Lem. 9.4.2 and

the definition of Aδ, it follows that Aδ accepts all input strings (s, t) such that

dM(s, t) = δ, and there exists (s′, t′) = JPK(s, t) with dM(s′, t′) > Kδ. Thus,

any pair of input strings accepted by Aδ is a witness to the non-robustness of

T ; equivalently T is robust iff Aδ is empty for all δ ≤ B.

The product machine Aδ is in NCM(2, 1) and its size is polynomial in

size(T), δ, K, |Σ|, |Γ| and MAXdiff, where MAXdiff is the maximum mismatch

penalty over Σ and Γ. Since, we need to check nonemptiness of Aδ for all

δ ≤ B, we have the following theorem using Lem. 9.3.1.

Theorem 10.2.1. Robustness verification of a Mealy machine T with respect

to the generalized Manhattan distance can be accomplished in NLogspace in

size(T), B, K, |Σ|, |Γ| and MAXdiff (maximum mismatch penalty).

Generalized Levenshtein Distance. For a Mealy machine T , AδI is the

198

same as D=δ
gL and AδO is the same as D>Kδ

gL (as defined in Sec. 9.4), with alphabet

Γ̃. Thus, AδI and AδO are both dfas. Let Aδ be a product machine, as defined in

Scenario 1 using AδI , P and AδO . As before, from Lem. 9.5.2 and the definition

of Aδ, it follows that T is robust iff Aδ is empty for all δ ≤ B.

The size of Aδ is O(size2(T)|Σ|4δ(|Γ|K)4Kδδ4δ(1+K)). Since the empti-

ness of the dfa Aδ can be checked in NLogspace in the size of Aδ, and we

need to repeat this for all δ ≤ B, we have the following theorem.

Theorem 10.2.2. Robustness verification of a Mealy machine T with respect

to the generalized Levenshtein distance can be accomplished in PSpace in B

and K.

10.2.2 Functional Transducers

Checking robustness of functional transducers is more involved than checking

robustness of Mealy machines. The main reason is that P may produce output

symbols for two strings in an unsynchronized fashion, i.e., the symbols read

by AδO may be of the form (a, ε) or (ε, a). While this does not affect the input

automata constructions, the output automata for functional transducers differ

from the ones for Mealy machines.

Generalized Manhattan Distance. As stated above, AδI is the same as

D=δ
gM . The construction of AδO is based on the observation that if s′, t′ are

mismatched in 1 + Kδ positions, dgM(s′, t′) is guaranteed to be greater than

Kδ. Let η = 1 + Kδ. We define AδO to be in class NCM(1 + 2η, 1) with a

199

distance counter z and two sets of position counters c1, . . . , cη and d1, . . . , dη.

The counter z is initialized to Kδ and for all j, position counters cj, dj are

initialized to hold guesses for η mismatch positions in s′, t′, respectively. In

particular, the position counters are initialized such that for all j, cj = dj,

cj ≥ 0, and cj < cj+1, thereby ensuring that the counter pairs store η distinct

position guesses 1. For notational convenience, we denote the initial position

guess stored in the position counter cj (or dj) by pj.

Intuitively, for each j, AδO uses its position counters to compare the

symbols at the pthj position of each string. For all j, AδO decrements cj, dj

upon reading a nonempty symbol of s′, t′, respectively. Thus, AδO reads the

pthj symbol of s′, t′ when cj = 0, dj = 0, respectively. If the pthj symbols

are mismatched symbols a, b, then AδO decrements the distance counter z by

gdiff(a, b). Now, recall that the symbol at the pthj position for one string may

arrive before that for the other string. Thus, for instance, cj may be 0, while

dj is still positive. In this case, AδO needs to remember the earlier symbol in

its state till the delayed symbol arrives. Note that AδO has to remember at

most η symbols corresponding to the η guessed positions. When the delayed

symbol at position pj of the trailing string arrives, i.e. dj finally becomes 0,

AδO compares it to the symbol stored in its state and decrements z as needed.

1Note that this can be done nondeterministically as follows. First all 2η counters are
incremented by 1, and at some nondeterministically chosen point, the machine stops in-
crementing the c1, d1 counters, then at some further point stops incrementing the c2, d2
counters, and so on. This ensures that for each j, cj = dj , and the higher index counters
have higher (distinct) values.

200

Formally, a state of AδO is a tuple of the form (pos, id, vec), where pos ∈

[1, η] is a positive integer (initially 0) that keeps track of the earliest position

for which AδO is waiting to read symbols of both strings, id ∈ {0, 1, 2} is

used to track which of the strings is leading the other, and vec is a η-length

vector that stores the symbols of the leading string. Initially, all entries of vec

are ⊥. The invariant maintained by the state is as follows: if pos = j, (a)

id = 0 iff cj > 0, dj > 0 and vecj = ⊥, (b) id = 1 iff cj ≤ 0, dj > 0 and

vecj = s′[pj], and (c) id = 2 iff cj > 0, dj ≤ 0 and vecj = t′[pj]. Thus, if cj

becomes zero while dj is non-zero, id is set to 1, and vecj is set to the symbol

read, s′[pj]; when dj eventually becomes zero due to the pthj symbol of t′ being

read, then vecj is set to ⊥, z is decremented by gdiff(s′[pj], t
′[pj]) and pos is

incremented. The case when the pthj symbol of t′ is output before that of s′ is

handled symmetrically. AδO moves to an accepting state whenever the value in

z goes below 0, i.e. dgM(s′, t′) > Kδ, and stays there. AδO moves to a special

rejecting state if the value in z is nonnegative and either the string pairs or

all position guesses are exhausted, i.e., if AδO reads a (#, #) symbol or if all

position counters are negative. In effect, the construction ensures that if AδO

accepts a pair of strings (s′, t′), then dgM(s′, t′) > Kδ. On the other hand, note

that if dgM(s′, t′) > Kδ, then there exists a run of AδO in which it correctly

guesses some mismatch positions (whose number is at most η) such that their

cumulative mismatch penalty exceeds Kδ.

Lemma 10.2.3. The above AδO accepts a pair of strings (s, t) iff dgM(s, t) >

Kδ.

201

Note that the size of AδO is O(Γ2Kδ). Let Aδ be a product machine, as defined

in Scenario 2 using AδI , P and AδO . From Lem. 9.4.2, Lem. 10.2.3 and the

definition of Aδ, it follows that T is robust iff Aδ is empty for all δ ≤ B. Aδ

is in class NCM(2 + 2η, 1), and its size is O(size2(T)(δ + |Σ|2MAXdiffΣ
)Γ2Kδ),

with MAXdiff being the maximum mismatch penalty over Σ. Since we need to

repeat this for all δ ≤ B, we have the following theorem using Lem. 9.3.1.

Theorem 10.2.4. Robustness verification of a functional transducer T with

respect to the generalized Manhattan distance can be accomplished in PSpace

in B and K.

Generalized Levenshtein distance. The input automaton AδI is the same

as D=δ
gL . In order to track the generalized Levenshtein distance between the un-

synchronized output strings generated by P , AδO needs to remember substrings

of the leading string in its state, and not simply the symbols at possible mis-

match positions. A natural question to ask is whether there exists a bound on

the length of the substrings that AδO needs to remember in its state. We first

address this question before defining AδO .

Consider AδI ⊗ P , the synchronous product of the input automaton

AδI and the pair transducer P . Let TI⊗P = (QI⊗P , Σ̃, Γ̃, q0I⊗P , EI⊗P , FI⊗P) be

obtained by trimming AδI⊗P , i.e., by removing all states that are not reachable

from the initial state or from which no final state is reachable. The set EI⊗P of

transitions of TI⊗P can be extended in a natural way to the set E∗I⊗P of paths

of TI⊗P . Note that for any path (q0I⊗P , (w, v), (w′, v′), qfI⊗P) from the initial

state to some final state qfI⊗P ∈ FI⊗P , dgL(w, v) = δ and JPK(w, v) = (w′, v′).

202

We define the pairwise-delay of a path π of TI⊗P , denoted pd(π), as the

difference in lengths of its output string labels: for π = (q, (w, v), (w′, v′), q′),

pd(π) = abs (|w′| − |v′|). TI⊗P is said to have bounded pairwise-delay if the

pairwise-delay of all its paths is bounded. For TI⊗P with bounded pairwise-

delay, we denote the maximum pairwise-delay over all paths of TI⊗P by D(TI⊗P).

Let `max be the length of the longest output string in any transition of T , i.e.,

`max = max{|w′| | (q, a, w′, q′) ∈ E}, and let QI , Q be the set of states of AδI ,

T .

Lemma 10.2.5. TI⊗P has bounded pairwise-delay, with D(TI⊗P) bounded by

|Q|2|QI |`max, iff the pairwise-delay of all cyclic paths in TI⊗P is 0.

Proof. If there is a cyclic path c = (q, (w, v), (w′, v′), q) in TI⊗P with pd(c) 6= 0,

then for n traversals through c, pd(cn) = n(pd(c)), and hence D(TI⊗P) is not

bounded. If for all cycles c, pd(c) = 0, then for any path π, pd(π) = pd(πacy),

where πacy is the acyclic path obtained from π by iteratively removing all cycles

from π. Thus, D(TI⊗P) is bounded by the maximum possible pairwise-delay

along any acyclic path of TI⊗P . This maximum delay is (|QI⊗P | − 1)`max and

is exhibited along an acyclic path of maximum length |QI⊗P | − 1, with the

output string pair along each transition being ε and a string of length `max.

By definition of TI⊗P , |QI⊗P | ≤ |Q|2.|QI |. The result follows.

Corollary 10.2.6. TI⊗P has bounded pairwise-delay iff each simple cycle of

TI⊗P is labeled with equal length output strings.

203

Lemma 10.2.7. If TI⊗P does not have bounded pairwise-delay, T is non-

robust.

Proof. We exhibit a witness for non-robustness of T . If TI⊗P does not have

bounded pairwise-delay, there is some simple cycle c : (q, (wc, vc), (w
′
c, v
′
c), q) in

TI⊗P with |w′c| 6= |v′c|. Consider the paths π1 = (q0I⊗P , (w1, v1), (w′1, v
′
1), q) and

π2 = (q, (w2, v2), (w′2, v
′
2), qfI⊗P), with qfI⊗P ∈ FI⊗P . Let us assume that |w′1| >

|v′1|, |w′c| > |v′c| and |w′2| > |v′2| (the other cases can be handled similarly). Let

|w′c| − |v′c| = lc and |w′1.w′2| − |v′1.v′2| = l.

Then, given δ, K, there exists n ∈ N such that l + nlc > Kδ. The

witness path π to non-robustness of T can now be constructed from π1, followed

by n-traversals of c, followed by π2. By definition of TI⊗P , the generalized

Levenshtein distance, dgL(w1.(wc)
n.w2, v1.(vc)

n.v2), of the input string labels

of π, equals δ, and by construction of π, the difference in the lengths, and

hence the generalized Levenshtein distance, gdL(w′1.(w
′
c)
n.w′2, v

′
1.(v

′
c)
n.v′2) of

the output string labels of π exceeds Kδ.

Lem. 10.2.5 is helpful in constructing an output automaton AδO that

accepts a pair of output strings (s′, t′) iff dgL(s′, t′) > Kδ. The construction

of AδO is very similar to that of DKδ
gL , defined over alphabet Γ̃, with one crucial

difference. Having read the jth symbol of s′, in order to compute all entries

in the jth row of the Kδ-diagonal in the dynamic programming table, we

need to have seen the (j + Kδ)th symbol of t′. However, the maximum delay

between s′ and t′ could be as much as D(TI⊗P) (by Lem. 10.2.5). Hence,

204

unlike DKδ
gL , which only needs to remember strings of length Kδ in its state,

AδO needs to remember strings of length D(TI⊗P) + Kδ in its state. Thus, a

state of AδO is a tuple (x, y, e), where x and y are strings of length at most

D(TI⊗P) + Kδ, and e is a vector of length 2Kδ + 1. Note that AδO is a dfa

with size O(|Γ|4(Kδ+D(TI⊗P))), where D(TI⊗P) is the maximum pairwise-delay of

T and is O(size2(T)|Σ|4δδ4δ`max).

Lemma 10.2.8. If TI⊗P has bounded pairwise-delay, AδO as described above

accepts a pair of strings (s′, t′) iff dgL(s′, t′) > Kδ.

Summarizing our robustness checking algorithm for a functional transducer T ,

we first check if TI⊗P does not have bounded pairwise-delay. To do this, we

check if there exists a simple cycle c in TI⊗P for which pd(c) 6= 0. If yes, T is

non-robust by Lem. 10.2.7. If not, we construct the product machine Aδ, as

defined in Scenario 1 using AδI , P and AδO . By Lem. 9.5.2, Lem. ?? and the

definition of Aδ, it follows that T , with bounded pairwise-delay, is robust iff

Aδ is empty for all δ ≤ B.

Checking if there exists a simple cycle c in TI⊗P with pd(c) 6= 0 can be

done in NLogspace in the size of TI⊗P
2, which is O(size2(T)|Σ|4δδ4δ). Also,

the nonemptiness of Aδ can be checked in NLogspace in its size, as given by

the product of size(TI⊗P) and size(AδO). Repeating this for all δ ≤ B, we have

the following theorem.

2This can be done using a technique similar to the one presented in [122](Theorem 2.4)
for checking nonemptiness of a Büchi automaton.

205

Theorem 10.2.9. Robustness verification of a functional transducer T with

respect to the Levenshtein distance can be accomplished in ExpSpace in B.

206

Chapter 11

Robustness Analysis of Networked Systems

Overview. In this chapter, we target robustness analysis of networked sys-

tems with respect to perturbations in the network channels. We formally

define our model for synchronous networked systems and our notion of robust-

ness for such systems. We present automata-theoretic decision procedures for

checking robustness with respect to the Levenshtein and Manhattan distance

metrics.

In what follows, we sometimes denote vectors of objects using bold letters such

as s, ε, with the ith object in the vector denoted si, εi respectively.

11.1 Robust Networked Systems

In this section, we present a formal model for a synchronous networked system.

We then introduce a notion of robustness for computations of such networked

systems when the communication channels are prone to errors.

11.1.1 Synchronous Networked System

A networked system, denoted N , can be described as a directed graph (P , C),

with a set of processes P = {P1, . . . , Pn} and a set of communication channels

207

M3

M2

M1

C3,2,
δ2

Cout, ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

Figure 11.1: Networked system

C. The set of channels consists of internal channels N , external input channels

I, and external output channels O. An internal channel Cij ∈ N connects a

source process Pi to a destination process Pj. An input channel has no source

process, and an output channel has no destination process in N .

Process Definition and Semantics. A process Pi in the networked system

is defined as a tuple (In i,Out i,Mi), where In i ⊆ (I ∪ N) is the set of Pi’s

input channels, Out i ⊆ (O ∪ N) is the set of Pi’s output channels, and Mi is

a machine describing Pi’s input/output behavior. We assume a synchronous

model of computation: (1) at each tick of the system, each process consumes

an input symbol from each of its input channels, and produces an output

symbol on each its output channels, and (2) message delivery through the

channels is instantaneous. We further assume that a networked systemN has a

computation alphabet Σ for describing the inputs and outputs of each process,

and for describing communication over the channels. Please see Fig. 11.1 for

208

an example networked system. Observe that a process may communicate with

one, many or all processes in N using its output channels. Thus our network

model subsumes unicast, multicast and broadcast communication schemes.

In this work, we focus on processes described as Mealy machines. In

each tick, a Mealy machine process in a networked system N consumes a

composite symbol (the tuple of symbols on its input channels), and outputs

a composite symbol (the tuple of symbols on its output channels). Thus,

the input alphabet for M i is Σ|Ini|, and the output alphabet is Σ|Outi|. Let

(Qi,Σ
|Ini|,Σ|Outi|, , q0i , Ei) be the tuple describing the Mealy machine under-

lying process Pi. Recall from Sec. 9.1 that every state of a Mealy machine is

an accepting state; hence, we do not include a set F of accepting states in the

tuple describing a Mealy machine.

Operational Semantics of a Network. We define a network state q as the

tuple (q1, . . . , qn, c1, . . . , c|N |), where for each i, qi ∈ Qi is the state of Pi, and

for each k, ck is the state of the kth internal channel, i.e., the current symbol

in the channel. A transition of N has the following form:

(q1, . . . , qn, c1, . . . , c|N |)

(q′1, . . . , q
′
n, c
′
1, . . . , c

′
|N |)

(a1, . . . , a|I|), (a
′
1, . . . , a

′
|O|)

Here (a1, . . . , a|I|) denote the symbols on the external input channels, and

(a′1, . . . , a
′
|O|) denote the symbols on the external output channels. During a

209

transition of N , each process Pi consumes a composite symbol (given by the

states of all internal channels in In i and the symbols in the external input

channels in In i), changes state from qi to q′i, and outputs a composite symbol.

The generation of an output symbol by Pi causes an update to the states of

all internal channels in Out i and results in the output of a symbol on each

output channel in Out i.

Thus, we can view the networked system N itself as a machine that in

each step, consumes an |I|-dimensional input symbol a from its external input

channels, changes state according to the transition functions Ei of each pro-

cess, and outputs an |O|-dimensional output symbol a′ on its external output

channels.

Formally, we define the semantics of a computation of N using the

tuple (Σ|I|,Σ|O|, Q,q0, E), where Q = (Q1 × . . . × Qn × Σ|N |) is the set of

states and E ⊆ (Q× Σ|I| × Σ|O| ×Q) is the network transition function. The

initial state qo = (q01, . . . , q0n, c01, . . . , c0|N |) ofN is given by the initial process

states and internal channel states. An execution ρ(s) of N on an input string

s = s[1]s[2] . . . s[m] is defined as a sequence of configurations of the form (q0, ε),

(q1, s
′[1]), . . . , (qm, s

′[m]), where for each j, 1 ≤ j ≤ m, (qj−1, s[j], s′[j],qj) ∈

E. The output function computed by the networked system JN K : (Σ|I|)
? →

(Σ|O|)
?

is then defined such that JN K(s[1]s[2] . . . s[m]) = s′[1]s′[2] . . . s′[m].

210

11.1.2 Channel Perturbations and Robustness

An execution of a networked system is said to be perturbed if one or more of

the internal channels are perturbed one or more times during the execution.

A channel perturbation can be modeled as a deletion or substitution of the

current symbol in the channel. To model symbol deletions1, we extend the

alphabet of each internal channel to Σε = Σ ∪ ε. A perturbed execution

includes transitions corresponding to channel perturbations, of the form:

(q1, . . . , qn, c1, . . . , c|N |)

(q′1, . . . , q
′
n, c
′
1, . . . , c

′
|N |),

ε, ε

Here, for each i, the states q′i and qi are identical, and for some k, ck 6= c′k.

Such transitions, termed τ -transitions2, do not consume any input symbol

and model instantaneous channel errors. We say that the kth internal channel

is perturbed in a τ -transition if ck 6= c′k. A perturbed network execution

ρτ (s) on an input string s = s[1]s[2] . . . s[m] is a sequence of configurations

(q0, ε), . . . , (qτ , s
′[m]), where for each j either (qj−1, s[`], s′[`],qj) ∈ E, for

some `, or (qj−1, ε, ε,qj) is a τ -transition.

1Note that though a perturbation can cause a symbol on an internal channel to get
deleted in a given step, we expect that the processes reading from this channel will output
a nonempty symbol in that step. In this sense, we treat an empty input symbol simply as
a special symbol, and assume that each process can handle such a symbol.

2Note that a network transition of the form ((q1, . . . , qn, c1, . . . , c|N |), ε, a′,
(q′1, . . . , q

′
n, c
′
1, . . . , c

′
|N |)) where for some i, qi 6= q′i is not considered a τ -transition: such

a transition involves a state change by some process on an empty input symbol along with
the generation of a nonempty output symbol.

211

Note that there can be several possible perturbed executions of N on a

string s which differ in their exact instances of τ -transitions and the channels

perturbed in each instance. Each such perturbed execution generates a dif-

ferent perturbed output. For a specific perturbed execution ρτ (s) of the form

(q0, ε), (q1, s
′[1]), . . . , (qτ , s

′[m]), we denote the string s′ = s′[1]s′[2] . . . s′[m]

output by N along that execution by JρτK(s). We denote by JNτK(s) the set of

all possible perturbed outputs corresponding to the input string s. Formally,

JNτK(s) is the set {s′ | ∃ρτ (s) such that s′ = JρτK(s)}.

Robustness. Let d : Σ∗ × Σ∗ → N be a distance metric over a set Σ∗

of strings. We can extend this metric to vectors of strings in the standard

fashion. Let w = (w1, . . . , wL), v = (v1, . . . , vL) be two vectors of strings; then

d(w,v) = (d(w1, v1), . . . , d(wL, vL)).

Let τk denote the number of perturbations in the kth internal channel in

ρτ (s). Then, the channel-wise perturbation count in ρτ (s), denoted ‖ρτ (s)‖ is

given by the vector (τ1, . . . , τ|N |). We define robustness of a networked system

as follows.

Definition 11.1.1 (Robust Networked System). Given an upper bound δ =

{δ1, . . . , δ|N |} on the number of possible perturbations in each internal channel,

and an upper bound ε = (ε1, . . . , ε|O|) on the acceptable error in each external

output channel of a networked system N , we say that N is (δ, ε)-robust if:

∀s ∈ (Σ|I|)
?
,∀ρτ (s) : ‖ρτ (s)‖≤ δ =⇒ d(JN K(s), JρτK(s))≤ ε.

212

11.2 Robustness Analysis

Checking if a networked system N is (δ, ε)-robust is equivalent to checking

if, for each output channel o` ∈ O (with an error bound of ε`), N is (δ, ε`)-

robust. Thus, in what follows, we focus on the problem of checking robust-

ness of the networked system N for a single output channel. Rephrasing

the robustness definition from Def. 11.1.1, we need to check if for all input

strings s ∈ (Σ|I|)?.(#|I|)?, and all runs ρτ (s) of N , ‖ρτ (s)‖ ≤ δ implies that

d(JN K|`(s), JρτK|`(s)) ≤ ε`. Here, JN K|`(s), JρτK|`(s) respectively denote the

projections of JN K(s) and JρτK(s) on the `th output channel. For simplicity in

notation, henceforth, we drop the ` in the error bound on the channel, and

denote it simply by ε.

Similar to the semantics of a networked system N with multiple out-

put channels, we can define the semantics of N for the `th output chan-

nel using the tuple (Σ|I|,Σ, Q,q0, E|`). Here, E|` denotes the projection of

the transition relation E of N onto the `th output channel. To incorporate

the addition of # symbols at the end of strings, the semantics of N is fur-

ther modified to the tuple (Σ|I| ∪ {#|I|},Σ#, Q,q0, E
#), where E# = E|` ∪

{(q, ((#, . . . , #), #),q) : q ∈ Q}. Similarly, the tuple defining Nτ is modified

to (Σ|I| ∪ {#|I|1, . . . , #|I|,}Σ#, Q,q0, E
#
τ), where E#

τ includes E# and all possible

τ -transitions from each state.

In what follows, we define composite machines A that accept input

strings certifying the non-robust behavior of a given networked system N . In

other words, A accepts a string s ∈ (Σ|I|)?.(#|I|)? iff there exists a perturbed

213

execution ρτ (s) of Nτ such that: ‖ρτ (s)‖ ≤ δ and d(JN K|`(s), JρτK|`(s)) > ε.

Thus, the networked system N is (δ, ε)-robust iff L(A) is empty.

11.2.1 Robustness Analysis for the Manhattan Distance Metric

The composite machine Aδ,ε
M certifying non-robustness with respect to the

Manhattan metric, is a nondeterministic, 1-reversal-bounded (|N |+1)-counter

machine, i.e., in the class NCM(|N |+ 1, 1). In each run on an input string s,

Aδ,ε
M simultaneously does the following: (a) it simulates an unperturbed exe-

cution ρ(s) of N and a perturbed execution ρτ (s) of Nτ , (b) keeps track of all

the internal channel perturbations along ρτ (s), and (c) tracks the Manhattan

distance between the outputs generated along ρ(s) and ρτ (s).

Recall from Sec. 9.4, that the automaton D>ε
M , accepting pairs of strings

with Manhattan distance greater than ε from each other, is in the class

NCM(1,1). Let D>ε
M = (Σ# × Σ#, XM , x0M , ZM , GM , EM , {accM}), with all

components of the tuple as defined in Sec. 9.4.

Formally, the machine Aδ,ε
M , in the class NCM(|N |+ 1, 1) is defined as

the tuple (Σ|I| ∪ {#|I|}, X,x0, Z,G,E, F), where X,x0, Z,G,E, F are respec-

tively the set of states, initial state, set of counters, a finite set of integers, the

transition relation and the final states of Aδ,ε
M . We define these below.

The set of states X = Y ∪ {acc, rej}, where Y ⊆ (Q×Q×XM). Each

state x ∈ Y of Aδ,ε
M is a tuple (q, r, xM), where the component labeled q tracks

the state of the unperturbed network N , the component r tracks the state of

the perturbed network Nτ , and xM is a state in D>ε
M . The initial state x0 is

214

(q0,q0, x0M). The set of counters Z = {z1, . . . , z|N |}∪{z}, where the counters

{z1, . . . , z|N |} track the number of perturbations in each internal channel of N ,

and the counter z tracks the Manhattan distance of the output strings. The

initial value of each counter is 0. The set G = {0,−1, δ1, δ2, . . . , δ|N |, ε} is the

set of all integers that can be used in tests on counter values, or by which any

counter in Z can be incremented. The set F of final states is the singleton set

{acc}.

The transition relation E of Aδ,ε
M is constructed using the following

steps:

1. Initialization transition:

We add a single transition of the form:

(q0,q0, x0M), ε,

|N |∧
k=1

zk = 0 ∧ z = 0, (q0,q0, x0M), (+δ1, . . . ,+δ|N |, +ε)



In this transition, Aδ,ε
M initializes each counter zk for k ∈ [1, |N |] to the

error bound δk on the kth internal channel, and also initializes the counter

z to the error bound ε on the output channel. Note that no input symbol

is consumed and there’s no state change. Also, note that the counter

test ensures that this transition can be taken only once from x0.

2. Unperturbed network transitions:

For each pair of transitions in E# and E#
τ from the same state, with

215

the same input symbol and output symbol, i.e., (q, a, b,q′) ∈ E# and

(r, a, b, r′) ∈ E#
τ , and transitions of the form (xM , (b, b), z ≥ 0, xM , 0) ∈

EM , we add a transition of the following form to Aδ,ε
M :(q, r, xM), a,

|N |∧
k=1

zk ≥ 0 ∧ z ≥ 0, (q′, r′, xM), (0, . . . , 0, 0)

 .

For each pair of transitions in E# and E#
τ from the same state, with

the same input symbol and different output symbols, i.e., (q, a, b,q′) ∈

E# and (r, a, b′, r′) ∈ E#
τ , and transitions of the form (xM , (b, b

′), z ≥

0, xM ,−1) ∈ EM , we add a transition of the following form to Aδ,ε
M :(q, r, xM), a,

|N |∧
k=1

zk ≥ 0 ∧ z ≥ 0, (q′, r′, xM), (0, . . . , 0,−1)

 .

For each pair of transitions in E# and E#
τ from the same state, with

the same input symbol and different output symbols, i.e., (q, a, b,q′) ∈

E# and (r, a, b′, r′) ∈ E#
τ , and transitions of the form (xM , (b, b

′), z <

0, accM , 0) ∈ EM , we add transitions of the following form to Aδ,ε
M :

(q, r, xM), a,

|N |∧
k=1

zk ≥ 0 ∧ z < 0, (q′, r′, accM), (0, . . . , 0, 0)

 .

In each of the above transitions, Aδ,ε
M consumes an input symbol a and

simulates a pair of unperturbed transitions on a in the first two compo-

nents of its state. The distance between the corresponding outputs of N

216

(b and b′ above) is tracked by the counter z and the third component of

the state of Aδ,ε
M . Note that the values of all counters zk, for k ∈ [1, |N |]

are required to be non-negative in the source state and remain unmodi-

fied in each transition.

3. Perturbed network transitions:

From each state x ∈ Y , we add transitions of the form:(q, r, xM), ε,

|N |∧
k=1

zk ≥ 0, (q, rτ , xM), g



In each such transition, Aδ,ε
M simulates a τ -transition (r, ε, ε, rτ) ∈ E#

τ .

In the transition, g denotes a (|N | + 1)-length vector, with entries in

{0,−1}: for k ∈ [1, |N |], gk = −1 iff the kth internal channel is perturbed

in (r, ε, ε, rτ), and g|N |+1 = 0. Thus, we model a perturbation on the kth

internal channel by decrementing the (non-negative) zk counter of Aδ,ε
M .

Note that in these transitions, no input symbol is consumed, and the

first and third components, i.e. q and xM remain unchanged.

4. Rejecting transitions:

From each state x ∈ Y , we add transitions of the form:(q, r, xM), ε,

|N |∨
k=1

zk < 0, rej , 0



217

From the state rej , for all a, we add a transition: (rej , a, true, rej ,0).

Thus, we add a transition to a designated rejecting state whenever the

value of some counter zk, for k ∈ [1, |N |] goes below 0, i.e., whenever

the perturbation count in some kth internal channel exceeds the error

bound δk. Once in the state rej , Aδ,ε
M ignores any further input read,

and remains in that state.

5. Accepting transitions:

Finally, from each state (q, r, accM) ∈ Y , we add transitions of the form:(q, r, xM), ε,

|N |∧
k=1

zk ≥ 0, acc, 0



We add a transition to the unique accepting state whenever xM = accM

and
∧|N |
k=1 zk ≥ 0. The first criterion ensures that dM(JN K|`(s), JρτK|`(s)) >

ε (as indicated by reaching the accepting state in D>ε
M). The second cri-

terion ensures that ‖ρτ (s)‖ ≤ δ, i.e., the run ρτ (s) of N on s models

perturbations on the network that respect the internal channel error

bounds.

Theorem 11.2.1. Given an upper bound δ on the number of perturbations

in the internal channels, and an upper bound ε on the acceptable error for a

particular output channel, the problem of checking if the networked system N

is (δ, ε)-robust with respect to the Manhattan distance can be accomplished in

218

NLogspace in the number |Q| of network states, the number |E#
τ | of perturbed

network transitions, δ and ε.

Proof. We note that the construction of Aδ,ε
M reduces the problem of checking

(δ, ε)-robustness for N (w.r.t. the Manhattan distance) to checking emptiness

of Aδ,ε
M . From the construction of Aδ,ε

M , we further note that the size of Aδ,ε
M

is polynomial in the number |Q| of network states, the number |E#
τ | of the set

of perturbed network transitions (which dominates the size |E| of the set of

unperturbed network transitions) and in δ and ε. The theorem then follows

from Lem. 9.3.1, which states that emptiness checking of Aδ,ε
M can be solved

in NLogspace in its size.

11.2.2 Robustness Analysis for the Levenshtein Distance Metric

The composite machine Aδ,ε
L , certifying non-robustness with respect to the

Levenshtein distance metric, is a nondeterministic 1-reversal-bounded |N |-

counter machine, i.e., in the class NCM(|N |,1). Similar to Aδ,ε
M , in each run

on an input string s, Aδ,ε
L simultaneously does the following: (a) it simulates

an unperturbed execution ρ(s) of N and a perturbed execution ρτ (s) of Nτ ,

(b) keeps track of all the internal channel perturbations along ρτ (s), and (c)

tracks the Levenshtein distance between the outputs generated along ρ(s) and

ρτ (s).

Recall from Sec. 9.5, that the automaton D>ε
L , accepting pairs of strings

with Levenshtein distance greater than ε from each other, is a dfa. Let D>ε
L

= ((Σ# × Σ#), QL,q0L,∆L, {accL}).

219

Formally, Aδ,ε
L , in the class NCM(|N |,1), is defined as the tuple (Σ|I| ∪

{#|I|}, X,x0, Z,G,E, F), where X,x0, Z,G,E, F are respectively the set of

states, initial state, set of counters, a finite set of integers, the transition

relation and the final states of Aδ,ε
L . We define these below.

The set of states X = Y ∪ {acc, rej}, where Y ⊆ (Q × Q × QLev).

The initial state of Aδ,ε
L , x0, is given by the tuple (q0,q0,q0L). The set

of counters Z = {z1, . . . , z|N |} tracks the number of perturbations in each

internal channel of N , and the initial value of each counter is 0. The set

G = {0,−1, δ1, δ2, . . . , δ|N |}, and the set of final states is the singleton set

{acc}.

The transition relation E of Aδ,ε
L is constructed using the following

steps:

1. Initialization transition:

From the initial state x0, we add a single transition of the form:(q0,q0,q0L), ε,

|N |∧
k=1

zk = 0, (q0,q0,q0L), (+δ1, . . . ,+δ|N |)



In this transition, Aδ,ε
L sets each counter zk to the error bound δk on the

kth internal channel, without consuming an input symbol or changing

state. The counter test ensures that this transition can be taken only

once from x0.

220

2. Unperturbed network transitions:

For each pair of transitions in E# and E#
τ on the same input symbol

from the same state, i.e., (q, a, b,q′) ∈ E# and (r, a, b′, r′) ∈ E#
τ , and

transitions of the form (qL, (b, b′), q′L) ∈ ∆L, we add a transition of the

following form to Aδ,ε
L :(q, r,qL), a,

|N |∧
k=1

zk ≥ 0, (q′, r′,q′L), 0



In each such transition, Aδ,ε
L consumes an input symbol a ∈ Σ|I| ∪ {#|I|}

and simulates a pair of unperturbed transitions on a in the first two

components of its state. The distance between the corresponding outputs

of N (b and b′ above) is tracked by the third component. Note that in

such transitions, all counter values are required to be non-negative in

the source state and are not modified.

3. Perturbed network transitions:

From each state x ∈ Y , we add transitions of the form:(q, r,qL), ε,

|N |∧
k=1

zk ≥ 0, (q, rτ ,qL), g



In each such transition, Aδ,ε
L simulates a τ -transition (r, ε, ε, rτ) ∈ E#

τ .

In the transition, g denotes a |N |-length vector with entries in {0,−1},

where gk = −1 iff the kth internal channel is perturbed in (r, ε, ε, rτ).

221

Note that in these transitions, no input symbol is consumed, and the

first and third components, i.e. q and qL remain unchanged.

4. Rejecting transitions:

From each state x ∈ Y , we add transitions of the form:(q, r,qL), ε,

|N |∨
k=1

zk < 0, rej , 0



From the state rej , for all a, we add a transition: (rej , a, true, rej ,0).

5. Accepting transitions:

Finally, from each state (q, r, accL) ∈ Y , we add transitions of the form:(q, r,qL), ε,

|N |∧
k=1

zk ≥ 0, acc, 0



We add a transition to the unique accepting state whenever qL = accL

and
∧|N |
k=1 zk ≥ 0. The first criterion ensures that dL(JN K|`(s), JρτK|`(s)) >

ε (as indicated by reaching the accepting state in D>ε
L). The second cri-

terion ensures that ‖ρτ (s)‖ ≤ δ, i.e., the run ρτ (s) of N on s models

perturbations on the network that respect the internal channel error

bounds.

222

Theorem 11.2.2. Given an upper bound δ on the number of perturbations

in the internal channels, and an upper bound ε on the acceptable error for a

particular output channel, the problem of checking if the networked system N

is (δ, ε)-robust with respect to the Levenshtein distance can be accomplished in

PSpace in ε.

Proof. We first note that the construction of Aδ,ε
L reduces the problem of

checking (δ, ε)-robustness of N (w.r.t. the Levenshtein distance) to checking

emptiness of Aδ,ε
L . From the construction of Aδ,ε

L and D>ε
L , we further note

that Aδ,ε
L belongs to the class NCM(|N |, 1) and its size is O((ε|Σ|)4ε), and is

polynomial in the number |Q| of network states, the number |E#
τ | of the set

of perturbed network transitions (which dominates the size |E| of the set of

unperturbed network transitions) and in δ. The theorem then follows from

Lem. 9.3.1, which states that emptiness checking of Aδ,ε
L can be solved in

NLogspace in its size.

223

Chapter 12

Bibliographic Notes

Many tasks in computing involve the evaluation of functions from strings to

strings. Such functions are often naturally represented as finite-state string

transducers [19, 62, 93, 125]. For example, inside every compiler is a trans-

ducer that maps user-written text to a string over tokens, and authors of

web applications routinely write transducers to sanitize user input. Systems

for natural language processing use transducers for executing morphological

rules, correcting spelling, and processing speech. Many of the string algo-

rithms at the heart of computational biology or image processing are essen-

tially functional transducers. The transducer representation of functions has

been studied thoroughly over the decades, and many decision procedures and

expressiveness results about them are known [93,125]. However, the behavior

of finite-state transducers under uncertain operating environments has been

less well-studied.

Recently, there has been a growing interest in the study of robustness in

the formal methods and software engineering communities. The initial papers

by Majumdar and Saha [88] and by Chaudhuri et al [22–24] study continuity

and robustness analysis of infinite-state programs. While these papers reason

224

about programs that manipulate numbers, we focus on robustness analysis of

programs manipulating strings [108]. As the underlying metric topologies are

quite different, these approaches are essentially complementary to ours. It is

also important to note that the analyses presented in these papers is incomplete

and their scope does not extend to networked systems with channel errors like

ours [107].

More recent papers have aimed to develop a notion of robustness for

reactive systems. In [119], the authors present polynomial-time algorithms for

the analysis and synthesis of robust transducers. Their notion of robustness

is one of input-output stability, that bounds both the deviation of the output

from disturbance-free behaviour under bounded disturbance, as well as the

persistence of the effect on the output of a sporadic disturbance. Unlike our

distance metrics which quantify the cost of transforming one string into an-

other, their distances are measured using cost functions that map each string

to a nonnegative integer.

In [16, 89, 123], the authors develop different notions of robustness for

reactive systems, with ω-regular specifications, interacting with uncertain en-

vironments. In [89], the authors present metric automata, which are automata

equipped with a metric on states. The authors assume that at any step, the

environment can perturb any state q to a state at most γ(q) distance away,

where γ is some function mapping states to real numbers. A winning strategy

for a finite-state or Büchi automaton A is a strategy that satisfies the cor-

responding acceptance condition (stated as reachability of states in F or as

225

infinitely often visiting states in F respectively). Such a winning strategy is

defined to be σ-robust if it is a winning strategy for A where the set F ′ char-

acterizing the acceptance condition includes all states at most σ.supq∈Fγ(q)

distance away from the F . We note that while there are some similarities in

how a disturbance is modeled, our approach is quite different, as we quantify

and analyze the effect of errors over time, and do not associate metrics with

individual states.

In [40], the authors study robustness of sequential circuits w.r.t. a com-

mon suffix distance metric. Their notion of robustness essentially bounds the

persistence of the effect of a sporadic disturbance in the input of a sequential

circuit. To be precise, a circuit is said to be robust iff the position of the last

mismatch in any pair of output sequences is a bounded number of positions

from the last mismatch position in the corresponding pair of input sequences.

The authors present a polynomial-time algorithm to decide robustness of se-

quential circuits modeled as (single) Mealy machines. The metric and its

subsequent treatment developed in this paper is useful for analyzing circuits;

however, for networked systems communicating via strings, metrics such as

the Manhattan and Levenshtein distances provide a more standard way to

measure the effect of errors.

In [43], the authors present modeling techniques for cyber-physical sys-

tems. Further, the authors also discuss the challenges of including a network in

a cyber-physical system. A key observation is that to maintain discrete-event

semantics of components in such a system, it is important to have a common

226

sense of time across all components. A critical requirement in such systems

is that the communication remain synchronized, which is typically fulfilled by

using protocols that bound the allowed drift in the value of the global clock. In

our model, we do not analyze such details, and abstract them away, assuming

that some underlying protocol ensures synchronous communication. Recent

papers on wireless control networks [98, 99], classic models like Kahn process

networks [80], and languages like Esterel [18] have made similar assumptions

about synchronous communication.

Work in the area of robust control seeks to analyze and design net-

worked control systems where communication between sensors, the controller,

and actuators occurs over unreliable networks such as wireless networks [1].

On the other hand, work on wireless control networks [98, 99] focuses on de-

sign of distributed controllers where the components of the controller com-

municate over unreliable wireless networks. In such applications, robustness

typically means desirable properties of the control loop such as stability. We

note that these papers typically assume a synchronous communication sched-

ule as supported by wireless industrial control protocols such as ISA 100 and

WirelessHART.

227

Part V

Conclusions

228

Chapter 13

Conclusions

Software systems today are increasingly complex, ubiquitous and

often interact with each other or with the physical world. While

their reliability has never been more critical, these systems remain

vulnerable to the fallibility of human programmers as well as the

unpredictability of their operating environments. The only solution

that holds promise is increased usage of meta-programs to help

analyze, debug and synthesize programs, given a precise character-

ization of reliable program behaviour.

In this dissertation, we have presented several meta-programs, i.e., algo-

rithms, to help analyze, debug and synthesize various models of programs. In

particular, we have developed algorithms for debugging sequential programs,

for synthesizing synchronization for concurrent programs and for verifying the

robustness of certain systems modeled using transducers. In this chapter, we

conclude this dissertation by summarizing our contributions in each of these

domains, and outlining avenues for future work.

229

13.1 Summary of Contributions

13.1.1 Debugging of Sequential Programs

A broad and informal statement of the (automated) program debugging prob-

lem is to compute a correct program P̂ that is obtained by suitably modifying

an erroneous program P . This problem is undecidable in general; it is hard

to formalize; moreover, it is particularly challenging to assimilate and mecha-

nize the customized, expert human intuition involved in the choices made in

manual program debugging. Our contributions in this domain are as follows.

1. Methodical Problem Formulation:

We present several problem definitions that help formalize the program

debugging problem and enable automation.

(a) Update Schemas: We propose a problem formulation in which, along

with an erroneous program P , we are given a set U of update

schemas, describing a class of permissible modifications of a state-

ment in P . The goal is to compute a correct program P̂ that is

obtained from P by applying suitable update schemas from U to

the statements in P . While a typical debugging routine begins with

fault localization and is followed by error elimination, our update

schema-based formulation obviates the need for a separate fault

localization phase, and enables us to directly focus on error elimi-

nation or program repair.

230

(b) Cost-awareness: We further propose a problem formulation in which,

we are also given a repair budget and a cost function that charges

each application of an update schema to a program statement some

user-defined cost. The goal is now to compute a repaired program

P̂ whose total modification cost does not exceed the repair budget.

(c) Template-based Repair: Finally, we propose a template-based prob-

lem formulation, in which the additional goal is to compute P̂

such that the syntax of any repaired expression matches some user-

specified expression template.

All of the above problem formulations provide ways to incorporate ex-

pert programmer intuition and intent in automated program debugging.

Insightful choices for update schemas, cost functions and templates can

help prune the search space for repaired programs, and help compute a

repaired program similar to what the programmer may have in mind.

2. Predicate abstraction-based Solution Framework:

We present a predicate abstraction-based solution framework for the

above problems that can repair infinite-state, imperative, sequential pro-

grams. As part of this framework, we make the following contributions.

(a) We present a sound and complete algorithm for automatic repair

of Boolean programs that meet some syntactic requirements and

can be repaired by a single application of an update schema. Our

231

approach targets total correctness with respect to a specification in

the form of a precondition, postcondition pair.

(b) We present a sound and complete algorithm for automatic repair

of arbitrary Boolean programs (or, pushdown systems), annotated

with multiple assertions, with respect to partial correctness. This

algorithm can repair Boolean programs by modifying them in mul-

tiple program locations using suitable update schemas. Along with

a repaired program, the algorithm also generates a proof of correct-

ness composed of inductive assertions.

(c) We present techniques to concretize a repaired Boolean program,

with and without user-supplied expression templates, to obtain a

concrete repaired program P̂ .

(d) We present experimental results for repairing C programs, using a

prototype implementation based on SMT solving.

13.1.2 Synchronization Synthesis for Concurrent Programs

Extant work in this domain has focused on either propositional temporal logic

specifications with simplistic models of concurrent programs, or more refined

program models with the specifications limited to just safety properties. More-

over, there has been limited effort in developing adaptable and fully-automatic

synthesis frameworks that are capable of generating synchronization at differ-

ent levels of abstraction and granularity. Our contributions in this domain are

as follows.

232

1. Synthesis of Low-level Synchronization:

(a) We present a framework that takes unsynchronized sequential pro-

cess skeletons along with a propositional temporal logic specification

of their global concurrent behaviour, and automatically generates

a concurrent program with synchronization code ensuring correct

global behaviour. The synthesized synchronization code can be

coarse-grained or fine-grained, and is based on readily-implementable

synchronization primitives such as locks and condition variables.

The overall method is fully automatic, sound and complete.

(b) As part of the framework, we present algorithms to compile high-

level synchronization actions in the form of guarded commands into

coarse-grained and fine-grained synchronization code based on locks

and condition variables. The ability to automatically synthesize

fine-grained synchronization code is noteworthy; programmers of-

ten restrict themselves to using coarse-grained synchronization for

its inherent simplicity. In fact, manual implementations of synchro-

nization code using wait/notify operations on condition variables

are particularly hard to get right in the presence of multiple locks.

(c) We provide detailed proofs of the correctness of the compilations

with respect to a useful subset of propositional CTL.

(d) We use our prototype tool to successfully synthesize synchronization

code for concurrent Java programs such as an airport ground traffic

233

simulator program, readers-writers and dining philosophers.

2. Generalized Synchronization Synthesis:

(a) We propose a generalized framework that can synthesize synchro-

nization for real-world shared-memory concurrent programs, given

unsynchronized processes, and temporal logic properties over both

control and data variables.

(b) For the specification language, we propose an extension of propo-

sitional CTL that facilitates expression of both safety and liveness

properties over control and data variables.

(c) We present an extension of the synthesis procedure of [47] for our

proposed specification language and program model. This exten-

sion enables synchronization synthesis for finite-state concurrent

programs composed of processes that may have local and shared

variables, may be straight-line or branching programs, may be on-

going or terminating, and may have program-initialized or user-

initialized variables.

(d) We further present compilations of high-level synchronization ac-

tions into lower-level coarse-grained or fine-grained synchronization

based on locks and condition variables for our proposed class of

programs and specifications.

234

13.1.3 Robustness Analysis of Discrete Systems

On the one hand, techniques and results from relevant, mature areas such as

robust control are not directly applicable to robustness analysis of systems

with large amounts of discretized, discontinuous behavior. On the other hand,

traditional program verification techniques do not provide a quantitative mea-

sure of the sensitivity of system behaviour to uncertainty in the operating

environment. Hence, robustness analysis of software programs used in hetero-

geneous settings necessitates development of new theoretical frameworks and

algorithms. Our contributions in this domain are as follows.

1. Methodical Problem Formulation: We develop notions of robust-

ness for certain systems modeled using transducers with respect to spe-

cific sources of uncertainty.

(a) We formally define a notion of robustness for functional string trans-

ducers in the presence of input perturbations.

(b) We present a formal model of a synchronous networked system of

processes (Mealy machines), and define a notion of robustness for

computations of such networked systems when the communication

channels are prone to perturbation.

2. Distance-tracking Automata Constructions:

We provide constructions for automata that can track various distance

metrics between two strings.

235

(a) We define reversal-bounded counter machines that can track the

the traditional and generalized versions of the Manhattan distance

between strings.

(b) We define deterministic finite automata that can track the the tradi-

tional and generalized versions of the Levenshtein distance between

strings.

3. Automata-theoretic Framework for Robustness Analysis:

We present automata-theoretic decision procedures that utilize distance-

tracking automata to reduce the problem of robustness verification of our

systems to the problem of checking the emptiness of certain carefully

constructed automata.

(a) For robustness verification of Mealy machines and functional trans-

ducers, we define product machines, composed of input automata,

pair-transducers and output automata, that essentially accept all in-

put string pairs that certify the non-robustness of the transducer un-

der consideration. For Mealy machines, the automata constructions

are fairly straight-forward, and the decision procedures for checking

robustness with respect to the generalized Manhattan and Leven-

shtein distances are in NLogspace and PSpace, respectively. For

functional transducers, the output automata constructions are more

involved, and the decision procedures for checking robustness with

236

respect to the generalized Manhattan and Levenshtein distances are

in PSpace and ExpSpace, respectively.

(b) For robustness verification of synchronous networked systems of

transducers, we define composite machines that accept input string

pairs certifying the non-robust behavior of the networked system

under consideration. Our decision procedures for checking robust-

ness with respect to the Manhattan and Levenshtein distances are

in NLogspace and PSpace, respectively.

13.2 Future Work

While we have presented several algorithms in this dissertation to help analyze,

debug and synthesize various program models with respect to different charac-

terizations of reliable program behaviour, our work is by no means complete.

In what follows, we discuss extensions that can enhance the scope and perfor-

mance of our current body of work. When applicable, we also outline avenues

for future work that go beyond the specific methodologies of this dissertation,

but share the same goals.

13.2.1 Debugging of Sequential Programs

It may be possible to extend the approach presented in Chapter 3 to repair

Boolean programs using simultaneous applications of multiple update schemas.

The basic idea would be to formulate a suitable QBF over variables repre-

senting unknown/suspect expressions in the incorrect Boolean program, and

237

extract the repaired expressions from the certificate of validity of the QBF

using a QBF solver. However, we believe, the approach presented in Chap-

ter 4 has more potential as an automated program debugging methodology.

We describe some possible extensions below:

1. Our current tool can be improved in many ways. We can generalize

the tool to permit different kinds of cost functions, statement deletions,

handling of procedures and fully-automatic concretization. Moreover, we

believe the performance of our current implementation can be improved

by experimenting with different SMT-encodings of the cost-aware re-

pairability conditions.

2. As mentioned in Chapter 4, our algorithm can be extended to handle

total correctness by additionally computing ranking functions and using

the method of well-founded sets along with the method of inductive

assertions.

3. While the algorithm presented in Chapter 4 separates the computation

of a repaired Boolean program B̂ from its concretization to obtain P̂ , this

separation is not necessary. In fact, the separation may be sub-optimal

— it may not possible to concretize all modified statements of a com-

puted B̂, while there may exist some other concretizable B̂. The solution

is to directly search for B̂ such that all modified statements of B̂ are

concretizable. This can be done by combining the constraints presented

in Sec. 4.3 with the one in (4.4). In particular, the set Unknown in (4.4)

238

can be modified to include unknown expressions/template parameters

needed in the formulas in Sec. 4.3, and CRCPC(π) can be modified to

include the inner quantifier-free constraints in the formulas in Sec. 4.3.

4. In our algorithm, we set Ientry0 to true and require the other inductive

assertions to simply ensure the validity of all the CRCPC(π) conditions.

Note however, that since both the program B̂ and its set IΛ of induc-

tive assertions are unknown, it is possible to pick B̂ and IΛ such that

the inductive assertions are needlessly restrictive and B̂ has only a few

feasible execution paths. The solution to this problem is to compute

the weakest possible set of inductive assertions and a least restrictive B̂.

The first part may be accomplished by iteratively weakening the induc-

tive assertions inferred from (4.4), and the second part may be similarly

accomplished by iteratively weakening the expression modifications in-

ferred from (4.4).

5. Our framework can be used to define and handle more interesting update

schemas. In particular, one may choose to permit insertion of statements

to significantly expand the search space for repaired programs. It may

be possible to adapt program synthesis techniques (such as [82]) to com-

pute localized repairs consisting of inserted program fragments. Besides

statement modification, it should also be possible to use our framework

to infer modified program preconditions by keeping Ientry0 unknown as

well.

239

6. In our experiments, we found that the non-determinism inherent to

Boolean programs can interfere with the scalability of the technique.

Hence, it is worth investigating the efficiency and effectiveness of ap-

plying the method of inductive assertions to repair concrete programs

directly. We emphasize that the method of inductive assertions for arbi-

trary concrete programs would be incomplete in general and might have

to rely on user-supplied templates for all unknown inductive assertions

and expressions, thereby necessitating more user involvement.

We note that Boolean programs can model both sequential and combinational

circuits, and hence, our techniques can be used for repairing such circuits.

13.2.2 Synchronization Synthesis for Concurrent Programs

We wish to extend our current framework for efficient synthesis of synchroniza-

tion for large finite-state or infinite-state concurrent programs. In particular,

we wish to focus on defining and computing sound, finitary abstractions of

the tableaux corresponding to large finite-state or infinite-state concurrent

programs. To this end, it might be helpful to investigate the adaption of

automata-theoretic approaches for deciding the satisfiability of various con-

straint temporal logics [31, 54] as well as predicate abstraction-based tableaux

construction.

Another approach for efficient synthesis of synchronization is to avoid

constructing and exploring the entire product graph or tableaux corresponding

to the concurrent program, and instead use clever techniques to decompose the

240

task at hand. One such technique is to explore the set of feasible permutations

of the statements in a given execution trace of the concurrent program in one

step [124], before moving on to a new execution trace with a different set of

statements. One of the challenges here is to ensure that the synchronization

synthesized in different steps can be composed with each other, and that the

overall synchronization is as permissive as possible.

Finally, we note that a related goal is repair of existing synchronization

code in incorrect concurrent programs. This is an important problem in legacy

code as it may not always be easy to remove existing synchronization code [79]

before synthesizing new synchronization code.

13.2.3 Robustness Analysis of Discrete Systems

There are a few directions in which our robustness analysis frameworks can be

developed further. The first is a more extensive treatment of distance metrics.

It is clear that that the right distance metric to use to measure perturbation

depends on the task at hand. For instance, for natural language or image pro-

cessing or even compiler applications, the Levenshtein or Manhattan distance

metrics are likely to suffice. For sequential circuits, the authors in [40] argue

that the common suffix distance metric is more suitable. For cyberphysical

systems, where the symbol sequences could represent a wide range of digital

signals, one must track the magnitude of the signals. This necessitates defin-

ing and computing distances that are based on mapping individual symbols

or symbol sequences to numbers [119]. To summarize, it would be interesting

241

to identify specific applications and related distance metrics, and extend our

robustness analysis framework accordingly.

The second direction is a generalization of the error model and sub-

sequently, the robustness definition. In our work, we only focus on internal

channel errors in a network or, on input perturbations. However, in a real-

world scenario, there can be multiple simultaneous sources of uncertainty such

as sensor and actuator noise, modeling errors and process failures. A com-

prehensive robustness analysis should thus check if small disturbances in the

inputs or internal channels or processes result in small deviations in the system

behaviour.

We also wish to investigate robustness analysis of other program models

such as traditional software sequential and concurrent programs, and perhaps

synthesis of robust programs.

242

Appendix

243

Appendix 1

Select Proofs

In this appendix, we present the proofs of Lem. 6.3.1 and Lem. 6.3.2.

We begin by introducing some preliminary definitions (cf. [45, 92,95]).

1.1 Basic Definitions

Definition 1.1.1. (Stuttering Equivalent Paths)

Let Mu = (Su, Ru, Lu) and Mv = (Sv, Rv, Lv) be two structures/models over

the same set of atomic propositions AP , and let B ⊆ Su × Sv be a relation.

Paths πu = u0, u1, . . . and πv = v0, v1, . . . are called stuttering B−equivalent

iff there exist infinite sequences of natural numbers i0 = 0 < ii < i2 < . . . and

k0 = 0 < k1 < k2 such that for all j ≥ 0, the following condition is true:

∀q, r ∈ N : (ij ≤ q ≤ ij+1) ∧ (kj ≤ r ≤ kj+1)⇒ (uq, vr) ∈ B.

If B is defined such ∀u ∈ Su, v ∈ Sv: (u, v) ∈ B iff Lu(u) = Lv(v), then the

paths πu and πv are simply called stuttering equivalent.

Definition 1.1.2. (Stuttering Path Equivalence)

Structures Mu = (Su, Ru, Lu) and Mv = (Sv, Rv, Lv), with the same set of

atomic propositionsAP , are called stuttering path equivalent (denoted Mu ≡SPE

Mv) iff

244

1. for every path πu starting from an initial state u0 ∈ Su, there exists a

stuttering equivalent path πv starting from an intial state v0 ∈ Sv, and

2. a symmetric condition holds with the roles of u0 and v0 reversed.

Lemma 1.1.1. Given structures Mu,Mv with Mu ≡SPE Mv, and a CTL∗ \ X

formula φ of the form Aψ or Eψ, where ψ is in LTL \ X, Mu |= φ iff Mv |= φ.

Definition 1.1.3. (Stuttering Simulation)

Given a structure M = (S,R, L), a relationB ⊆ S×S is a stuttering simulation

iff for any (u,w) ∈ B:

1. L(u) = L(w),

2. for every path starting from u, there exists a stuttering B-equivalent

path starting from w in M .

Definition 1.1.4. (Well-founded Simulation)

Given a Kripke structure M = (S,R, L), a relation B ⊆ S×S is a well-founded

simulation iff for any (u,w) ∈ B

1. L(u) = L(w), and,

2. there exist functions rank1 : S × S × S 7→ N, and rank2 : S × S 7→ W ,

with 〈W,≺〉 well-founded, such that ∀t : (u, t) ∈ R

(a) ∃v : ((w, v) ∈ R ∧ (t, v) ∈ B) ∨

(b) (t, w) ∈ B ∧ rank2(t, w) ≺ rank2(u,w) ∨

245

(c) ∃v : ((w, v) ∈ R ∧ (u, v) ∈ B ∧ rank1(v, u, t) ≺ rank1(w, u, t)).

Lemma 1.1.2. Given Kripke structure M = (S,R, L), a relation B ⊆ S × S

is a well-founded simulation iff B is a stuttering simulation.

Lemma 1.1.3. Given Kripke structure M = (S,R, L), a stuttering simulation

B, and a formula φ in ACTL∗\X, if (u,w) ∈ B and M , w |= φ, then M , u |= φ.

Definition 1.1.5. Given structures Mu = (Su, Ru, Lu), Mv = (Sv, Rv, Lv) with

atomic propositions APu, APv, respectively, we say Mu≡APvMv iff

1. APv ⊆ APu

2. there exists a bijection h : Su → Sv such that h(u) = v iff Lu(u)|APv =

Lv(v), where Lu(u)|APv is the set of atomic propositions in APu ∩ APv

that label state u, and,

3. (u, t) ∈ Ru iff (h(u),h(t)) ∈ Rv.

Thus, Mu and Mv have the exact same branching structure, with the

only difference being in the labeling of their corresponding states. In partic-

ular, the set of labels in each state u of Mu is a superset of the set of labels

in each corresponding state h(u) of Mv. Note that since h is a bijection, h−1

exists. Thus, even though two states of Mu can be mapped into two states of

Mv with the exact same labels, the two states of Mv are unique and distin-

guishable from each other, and can be mapped back to the two states of Mu

via h−1.

246

Let φ(AP) denote a property φ over the set of atomic propositions AP .

An obvious consequence of the above definition is the following lemma.

Lemma 1.1.4. If Mu≡APvMv, then for any formula φ(APv) in CTL∗, Mu |=

φ(APv) iff Mv |= φ(APv).

In what follows, we fix AP to be the set {S1,1, . . . ,S1,n1 ,S2,1, . . . ,S2,n2}

of code regions of P1, P2, and AP ′ to be the set {s1,1, . . . , s1,n1 , s2,1, . . . , s2,n2}

of all the Boolean shared variables declared in Sec. 6.3.2 to represent these

code regions. Recall the states of the model M obtained in the first step of

our algorithm in Sec. 6.3.1 are labeled with code region names and the values of

shared synchronization variables x̄. Let M ′ be a structure over AP ′ obtained

from M by replacing each code region Sk,i label in every state of M by its

corresponding counterpart sk,i ∈ AP ′, and suppressing the x̄ label. We can

state the following result.

Lemma 1.1.5. For any formulas φ(AP), φ(AP ′) in CTL∗, M |= φ(AP) iff

M ′ |= φ(AP ′).

1.2 Lem. 6.3.1: Constructions and Proofs

To prove Lem. 6.3.1, we first construct refined synchronization skeletons, cor-

responding to Pc1 and Pc2, using the semantics of lock(`), wait(c,`) and

notify(c) presented in Sec. 6.1.2. We then define the global model M c com-

posed of these two synchronization skeletons, and establish the desired relation

between M and M c.

247

s1,i−1

uci−1

s1,i−1

ubi−1

s1,i−1

uai−1

s1,i−1

udi−1

s1,i

uzi

s1,i

uyi

s1,i

uxi

s1,i

uwi

s1,i

uai

` = 0?→ `:=1

¬G̃
1,
i?
→
`,
in

1,
i
:=

0,
1

¬i
n 1
,i

?

G̃1,i,1?→ x̄:=x̄1,i,1

G̃1,i,t?→ x̄:=x̄1,i,t

in2,r:=0

in2,s:=0

`:=0

Figure 1.1: Partial refined synchronization skeleton corresponding to the im-
plementation in Fig. 6.8a

248

In lieu of a formal definition, we present, in Fig. 1.1, the part of the re-

fined synchronization skeleton that corresponds to the implementation shown

in Fig. 6.8a. Each labeled transition between the states labeled with S1,i−1

and S1,i in Ps1 is implemented as a series of labeled transitions between states

labeled with s1,i−1 and s1,i in Pc1. To distinguish between identically labeled

states, we name the states using uai−1, uzi etc. as shown in Fig. 1.1. In particu-

lar, we name any state labeled with s1,i as upi for some p, and any state labeled

with s2,j as vpj for some p (when p is not important, we leave it out and simply

use ui, vj, respectively). Also, we denote the first state labeled with s1,i, in

which P1 is trying to acquire lock `, as uai , and the first state labeled with s1,i,

with P1 holding lock `, as uzi (and similarly use vai , v
z
i , for these respective

states in P2).

Recall that our coarse-grained implementation creates a unique condi-

tion variable cv1,i corresponding to the overall guard G̃1,i of code region S1,i,

and we model the semantics of wait(cv1,i,`)/notify(cv1,i) by associating a

queue q1,i (of waiting processes) with cv1,i. We simulate this queue q1,i by

using a Boolean variable in(P1, q1,i), which is set to 1 when P1 is added to

q1,i and set to 0 when P1 is removed from q1,i. Note that the actions in the

labeled transitions of Pc1 do not affect the state labels as long as the actions

only update the shared synchronization variables x̄. In fact, the state label

can only be changed by the parallel assignment statement s1,i−1, s1,i := 0, 1,

corresponding to the transition from state udi−1 to state uzi . The transitions

following this state label change correspond to the various notification signals

249

sent by P1 to P2, with P1 releasing the lock in the final transition into state

uai .

The refined synchronization skeleton for Pc1 (and Pc2) can be obtained

by extending the construction in Fig. 1.1 to all synchronization regions.

We now define the global model M c corresponding to Pc1 ‖ Pc2. Let

Sc1 and Sc2 denote the sets of states of the refined synchronization skeletons of

Pc1 and Pc2, respectively. Let X denote the set of possible valuations of the

shared synchronization variables x̄ in M . Let Lk = {0, 1, 2}, IN1,i = {0, 1}

for i = 1, . . . , n1, and IN2,j = {0, 1} for j = 1, . . . , n2 represent the sets of

possible values of the shared synchronization variables introduced in Pc1 ‖ P c
2 .

Then, M c = (Sc, Rc, Lc), where Sc = Sc1 × Sc2 ×X ×Lk× IN1,1× . . .× IN2,n2

is the set of global states. Thus, each state w of M c is a tuple of the form

(u, v, x̄, `, in1,1, . . . , in2,n2), with u ∈ Sc1 and vinSc2, and Lc(wc) is an assignment

of values to the members of this tuple from their respective domains. The

transition relation Rc is defined such that it includes a transition from state

w to state w′ in M c iff there exists a transition u
G→A−−−→ u′ in the refined

synchronization skeleton for Pc1 such that Lc(w) contains the set of labels of

state u, Lc(w′) contains the set of labels of state u′, the guard G is true given

Lc(w), and the action A results in the new valuation of the synchronization

variables x̄, as captured in Lc(w′), or, there exists a similar labeled transition

in the refined synchronization skeleton for Pc2.

We present a portion of M c in Fig. 1.2 that mimics the transitions

shown in the refined synchronization skeleton for Pc1 shown in Fig. 1.1, with

250

the following assumptions: (1) there are no shared synchronization variables

in Pc1, Pc2, (2) there is a single transition from S1,i−1 to S1,i in Ps1 , which is

enabled on S2,j and disabled on S2k and (3) for each code region S2,k, . . . ,S2,j+1

of Pc2, there is a single outgoing transition, which is enabled on S1,i−1. We do

not show transitions of M c that do not change any label, e.g., transitions

corresponding to redundant notification signals sent to Pc2. As illustrated in

Fig. 1.2, M c’s states can be partitioned into classes [i, j]h which can be defined

as shown below (the classes in Fig. 1.2 are of the form [i, j] as we assumed the

absence of x̄ variables).

Definition 1.2.1. (Class [i, j]h)

1. Any state w = (ui, vj, x̄h, . . .) of M c where x̄h is the hth valuation of the

shared synchronization variables belongs to class [i, j]h.

2. Any state w = (ui, vj, x̄p, . . .) of M c such that p 6= h, and there exists a

transition from a state in class [i, j]h to w belongs to class [i, j]h.

3. No other state belongs to class [i, j]h.

The reason we make the labels i, j in the class [i, j]h explicit, and leave

the label h implicit will become clear a little later. For now, note that the

classes [i, j]h induce a partition on the set of states of M c. We can relate this

partition of M c to the set of states of M , as stated in the following lemma.

We denote a state w in a class [i, j]h with no predecessors in [i, j]h as an entry

state and with no successors in [i, j]h as an exit state of the class [i, j]h.

251

Lemma 1.2.1. [Properties of class [i, j]h]

1. A class [i, j]h exists in M c iff there exists a state (S1,i S2,j x̄h) in M .

2. A transition from a state in the class [i, j]h to a state in the class [i+1, j]p

exists in M c iff a transition (S1,i S2,j x̄h) → (S1,i+1 S2,j x̄p) exists in M ,

and the same holds true with the roles i and j reversed.

3. If there exists a transition (S1,i S2,j x̄h)→ (S1,i+1 S2,j x̄p) in M , then there

exists a path from each entry state in the class [i, j]h to an entry state

in the class [i + 1, j]p, and the same holds true with the roles i and j

reversed.

4. A path that starts in a state in the class [i, j]h, and only involves transi-

tions among states in the same class [i, j]h, is bounded.

Proof. We prove each part of the lemma below.

1. A state (S1,i S2,j x̄h) exists in M iff there exists some transition of the

form (S1,i−1 S2,j x̄p) → (S1,i S2,j x̄h), or there exists some transition of

the form (S1,i S2,j−1 x̄q)→ (S1,i S2,j x̄h) in M . Without loss of generality,

we focus our attention on the transition (S1,i−1 S2,j x̄p) → (S1,i S2,j x̄h)

in M . The transition (S1,i−1 S2,j x̄p)→ (S1,i S2,j x̄h) exists in M iff there

exists a transition in Ps1 from S1,i−1 to S1,i, which is enabled on S2,j ∧ x̄p,

and which assigns x̄h to x̄ (if x̄p 6= x̄h). This in turn is true iff there

exists a transition in Pc1 from a state ui−1 to a state ui, which is enabled

252

on s2,j ∧ x̄p, and assigns x̄h to x̄. This is true iff there exists a transition

(ui−1, vj, x̄p, ` = 1, . . .) → (ui, vj, x̄h, ` = 1, . . .) in M c, and hence, iff

there exists a state w = (ui, vj, x̄h, . . .) in M c, in other words, iff the

class [i, j]h exists in M c.

2. This can be proven using a similar series of arguments as above.

3. We first note from the construction of M c (and the example shown in

Fig. 1.2) that each path originating at an entry state in the class [i, j]h

has to contain a transition to a state (ui, vj, x̄h, ` = 0, . . .). Now suppose

there exists a transition (S1,i S2,j x̄h) → (S1,i+1 S2,j x̄p) in M . Then,

there exists a series of transitions in M c (which can be inferred from the

structure of the refined synchronization skeleton of Pc1 shown in Fig. 1.1),

which start from (ui, vj, x̄h, ` = 0, . . .) and lead to a state (ui+1, vj, x̄p, ` =

1, . . .). Hence, there exists a path from each entry state in [i, j]h to a

state in [i + 1, j]p. The proof can be similarly applied to the case when

the roles of i and j are reversed.

4. Recall that the transition relation of M is total. Moreover, note that

there are no self-loops in M . This follows from the interleaved model of

concurrent computation in which some process with an enabled transi-

tion in its synchronization skeleton is selected to be executed next, and

each transition in the synchronization skeleton of a process is from one

code region to a different code region. Thus, every state in M has an

outgoing transition to a different state in M .

253

We can now prove this claim by arriving at a contradiction of the above

fact. Suppose there exists a path of unbounded length within the states

of class [i, j]h. Since there are a finite number of states in any class, this

means there exists a cycle among the states of class [i, j]h. Referring

to Fig. 1.2 and Fig. 1.1, this can happen iff both G̃1,i+1 and G̃2,j+1 are

false1. However, if both G̃1,i+1 and G̃2,j+1 are false, both processes will

be waiting on their respective condition variables, and hence, there will

not be any transition out of class [i, j]h. Hence, by claims (2) and (3) of

this lemma, there will not be any transition out of the state (S1,i S2,j x̄h)

in M , which contradicts the assumption that the transition relation of

M is total. Hence, there are no cycles within the states of any class of

M c.

Let M c′ = (Sc
′
, Rc′ , Lc

′
) be a structure over alphabet AP ′ with M c′≡AP ′M c.

Thus M c′ preserves the branching structure of M c, with the only difference

being that the labels of the states in M c′ are restricted to atoms in AP ′ (the

labels corresponding to all the synchronization variables are suppressed in

1If, say, G̃2,j+1 is true and P2 acquires lock `, then P2 perhaps updates the values of
the shared synchronization variables to x̄p, and then updates the Boolean shared variables,
thereby forcing a transition to a state in class [i, j + 1]p within a bounded number of steps.

If G̃2,j+1 is true and P2 does not acquire lock `, i.e., P1 acquires lock `, then either G̃2,i+1

is true and P1 similarly forces a transition to class [i + 1, j]q within a bounded number

of steps, or G̃2,i+1 is false, P1 yields the lock ` to P2, which forces a transition to class
[i, j + 1]p within a bounded number of steps.

254

M c′). In fact, the form of AP ′ is the reason why we only make the i, j labels

in a class [i, j]h of M c explicit. The following lemma is a direct consequence

of Lem. 1.1.4.

Lemma 1.2.2. For any formula φ(AP ′) in CTL∗, M c′ |= φ(AP ′) iff M c |=

φ(AP ′).

Moreover, we can define a partition of M c′ akin to M c. Since M c′ is

structurally the same as M c, Lem. 1.2.1 applies to the classes of M c′ .

Lemma 1.2.3. Any class [i, j]h of M c′ has all properties stated in Lem. 1.2.1.

We can now state and prove the following important lemmas relating

M c′ to M ′, both of which are structures over the alphabet AP ′.

Lemma 1.2.4. Let M be the disjoint union of M c′ = (Sc
′
, Rc′ , Lc

′
) and M ′ =

(S ′, R′, L′). There exists a stuttering simulation B ⊆ Sc
′ × S ′ on the states of

M .

Proof. Let B be a relation on the states of M such that (wc, w) ∈ B iff wc

belongs to some class [i, j]h in M c′ and s1,i, s2,j, x̄h ∈ L(y), where y is the unique

state in M corresponding to w. Note that B is well-defined (see Lem. 1.2.3

and the definition of M ′), and that (wc, w) ∈ B implies Lc
′
(wc) = L′(w).

Further note that B is an equivalence relation on the states of M , where each

equivalence class [i, j]hB is the union of the equivalence class [i, j]h of M c′ , and

exactly one state w from S ′ such that L′(w) = {s1,i, s2,j}, and x̄h ∈ L(y) for

the corresponding y. Now let rank(a, b), be defined as follows:

255

1. rank(a, b) = 0 if a has a successor outside its equivalence class, and,

2. rank(a, b) = 1 + maxc rank(c), where c is a successor of a in the same

equivalence class.

As defined above, rank is a well-founded function, whose maximum value is

bounded by Lem. 1.2.3, and minimum value is 0 by definition.

Consider a state wc ∈ Sc′ which belongs to the equivalence class [i, j]hB ,

and let w ∈ S ′ be a state in the same class, i.e., (wc, w) ∈ B. Let wc
′

be an

arbitrary successor of wc. We have the following cases:

1. rank(wc) = 0: This implies that wc
′

lies outside the class [i, j]hB as from

the structure of M c′ , the exit state wc can have exactly one successor.

In fact, either wc
′ ∈ [i + 1, j]pB or wc

′ ∈ [i, j + 1]qB , for some p and q.

Suppose wc
′ ∈ [i + 1, j]pB . Then, from Lem. 1.2.3, we know that there

exists a successor w′ of w such that w′ ∈ [i+1, j]pB . Hence, (wc
′
, w′) ∈ B.

The case when wc
′ ∈ [i, j + 1]qB can be handled similarly.

2. rank(wc) 6= 0: This implies that wc has a successor wc
′ ∈ [i, j]hB such

that (wc
′
, w) ∈ B, and rank(wc

′
, w) ≤ rank(wc, w)− 1, by the definition

of rank.

Thus, we meet the requirements of Def. 1.1.4 for all successors of wc

for any (wc, w) ∈ B. Hence, B is a well-founded simulation, and a stuttering

simulation (by Lem. 1.1.2) over M .

256

Lemma 1.2.5. Given an ACTL∗ \X formula φ(AP ′), M ′ |= φ(AP ′)⇒ M c′ |=

φ(AP ′).

Proof. This follows from Lem. 1.1.3 and Lem. 1.2.4.

Proof. Lem. 6.3.1:

This follows from Lem. 1.2.2, Lem. 1.1.5 and Lem. 1.2.5, and by replacing each

AP ′ state label in M c by its corresponding counterpart in AP .

As mentioned in Sec. 6.3.3, the translation from M to M c preserves a

larger class of properties than just ACTL \ X. This claim in already validated

by Lem. 1.2.5, which proves preservation of ACTL∗ \X properties. We present

the following lemmas to further support this claim.

Lemma 1.2.6. M c′ ≡SPE M ′.

Proof. The first part of the proof involves proving that for every path starting

from an initial state wc0 in M c′ , there exists a stuttering equivalent path starting

from an initial state w0 in M ′. This follows directly from Lem. 1.2.4.

The second part of the proof involves proving the reverse direction.

This follows from (1) and (3) of Lem. 1.2.1 and Lem. 1.2.3.

Lemma 1.2.7. Given a CTL∗ \ X formula φ(AP) of the form Aψ(AP) or

Eψ(AP), where ψ(AP) is an LTL \ X formula over AP , M c |= φ(AP) iff

M |= φ(AP).

257

Proof. This follows from Lem. 1.2.2, Lem. 1.1.5, Lem. 1.1.1 and Lem. 1.2.6, and

again, by replacing each AP ′ state label in M c by its corresponding counterpart

in AP .

1.3 Lem. 6.3.2: Constructions and Proofs

We only provide a brief treatment of the constructions and proofs involved in

proving Lem. 6.3.2 as they are similar in spirit to those involved in proving

Lem. 6.3.1. As before, to prove Lem. 6.3.2, we first construct refined synchro-

nization skeletons, corresponding to the implementations Pf1 and Pf2 . Again, in

lieu of a definition, we present, in Fig. 1.3, the refined synchronization skeleton

that corresponds to the implementation shown in Fig. 7.4b. The basic struc-

ture of the refined synchronization skeleton remains the same, except for the

sequences of transitions corresponding to acquisition and release of multiple

locks (instead of just one lock). The global model M f can be defined similar

to M c as well, with the difference being in the larger number of states in M f .

Let Sf1 and Sf2 denote the sets of states of the refined synchronization skeletons

of Pf1 and Pf2 , respectively. Let Lkcv1,1 = {0, 1, 2}, . . . , Lkcv2,n2
= {0, 1, 2} rep-

resent the values of the lock variables associated with the condition variables

cv1,1, . . . , cv2,n2 , respectively. Let Lks1,1 = {0, 1, 2}, . . . , Lks2,n2
= {0, 1, 2} rep-

resent the values of the lock variables associated with the Boolean shared

variables s1,1, . . . , s2,n2 , respectively. Thus, M f = (Sf , Rf , Lf), where Sf =

Sf1 ×S
f
2 ×X×Lkcv1,1×. . .×Lkcv2,n2

×Lks1,1×. . .×Lks2,n2
×IN1,1×. . .×IN2,n2 ,

Lf is an assignment of values from appropriate domains to each member of a

258

state tuple, and Rf is defined similar to Rc.

Having defined the refined synchronization skeletons corresponding to

Pf1 and Pf2 , and M f , we can now extend all the definitions and lemmas leading

to the proof of Lem. 6.3.1, to corresponding definitions and lemmas leading to

the proof of Lem. 6.3.2.

The states of M f can be partitioned into classes [i, j]h defined according

to Def. 1.2.1, which in turn can be related to the states of M as stated in

Lem. 1.2.1. The proof of Lem. 1.2.1 for the classes of M f is similar in spirit

to that presented already. Intuitively, this is due to the similarity in the

structures of the refined synchronization skeletons for Pc1, Pc2 and Pf1 , Pf2 .

One only needs to account for a longer sequence of transitions corresponding

to acquisition and release of locks in the proof.

The rest of the lemmas: Lem. 1.2.2, Lem. 1.2.3, Lem. 1.2.4 and Lem. 1.2.5

extend in a straight-forward manner, leading to the proof of Lem. 6.3.2.

Note that Lem. 1.2.6 and Lem. 1.2.7 also hold for the fine-grained case.

259

[i− 1, k]

[i− 1, k + 1]

[i− 1, j]

[i, j] [i− 1, j + 1]

uai−1, v
a
k , ` = 0,¬in1,i, . . .

ubi−1, v
a
k , ` = 1,¬in1,i, . . .

uai−1, v
b
k, ` = 2,¬in1,i, . . .

uci−1, v
a
k , ` = 0, in1,i, . . .

uci−1, v
b
k, ` = 2, in1,i, . . .

uci−1, v
z
k+1, ` = 2, in1,i, . . .

uci−1, v
a
k+1, ` = 0, in1,i, . . .

uci−1, v
b
k+1, ` = 2, in1,i, . . .

uai−1, v
z
k+1, ` = 2,¬in1,i, . . .

uai−1, v
a
k+1, ` = 0,¬in1,i, . . .

uai−1, v
b
k+1, ` = 2,¬in1,i, . . .

ubi−1, v
a
k+1, ` = 1,¬in1,i, . . .

uci−1, v
a
k+1, ` = 0, in1,i, . . .

uai−1, v
z
j , ` = 2,¬in1,i, . . .uci−1, v

z
j , ` = 2, in1,i, . . .

uci−1, v
y
j , ` = 2,¬in1,i, . . .

uai−1, v
y
j , ` = 2,¬in1,i, . . .

uai−1, v
a
j , ` = 0,¬in1,i, . . .

ubi−1, v
a
j , ` = 1,¬in1,i, . . . uai−1, v

b
j , ` = 2,¬in1,i, . . .

1

2

1

2

2

2

2

2

2

2

1

1

2

2

2

2

1

2

1
2

1

1
2

Figure 1.2: A partial representation of M c

260

s1,i−1

s1,i−1

s1,i−1

s1,i−1

s1,i−1

s1,i−1

s1,i−1 s1,i−1

s1,i

s1,i

s1,i

s1,i

s1,i

s1,i

s1,i

s1,i

`cv1,i = 0?→ `cv1,i :=1

`s1,i−1 = 0?→ `s1,i−1 :=1

¬G̃
1,
i?
→

s̀ 2
,u

:=
0

`cv1,i , in1,i := 0, 1

¬i
n 1
,i
?

G̃1,i,1?→ x̄:=x̄1,i,1

G̃1,i,t)?→ x̄:=x̄1,i,t

`s2,u :=0

`cv2,r = 0?→ `cv2,r :=1

in2,r:=0

`cv2,r :=0

`cv1,i :=0

Figure 1.3: Refined synchronization skeleton corresponding to implementation
in Fig. 6.8b

261

Bibliography

[1] Rajeev Alur, Alessandro D’Innocenzo, Karl Henrik Johansson, George J.

Pappas, and Gera Weiss. Compositional Modeling and Analysis of

Multi-Hop Control Networks. IEEE Transactions on Automatic Con-

trol, 56(10):2345–2357, 2011.

[2] A. Arcuri. On the Automation of Fixing Software Bugs. In Proceed-

ings of International Conference on Software Engineering (ICSE), pages

1003–1006. ACM, 2008.

[3] P. C. Attie. Synthesis of Large Concurrent Programs via Pairwise Com-

position. In Proceedings of International Conference on Concurrency

Theory (CONCUR), pages 130–145. ACM, 1999.

[4] P. C. Attie and E. A Emerson. Synthesis of Concurrent Systems with

Many Similar Sequential Processes. In Proceedings of Principles of

Programming Languages (POPL), pages 191–201. ACM, 1989.

[5] P. C. Attie and E. A Emerson. Synthesis of Concurrent Systems for

an Atomic Read/Atomic Write Model of Computation. In Proceedings

of Principles of Distributed Computing (PODC), pages 111–120. ACM,

1996.

262

[6] P. C. Attie and J. Saklawi. Model and Program Repair via SAT Solving.

CoRR, abs/0710.3332, 2007.

[7] A. Auer, J. Dingel, and K. Rudie. Concurrency Control Generation for

Dynamic Threads using Discrete-Event Systems. In Proceedings of the

Annual Allerton Conference on Communication, Control, and Comput-

ing (Allerton), pages 927–934. IEEE, 2009.

[8] M. Autili, P. Inverardi, A. Navarra, and Massimo Tivoli. SYNTHESIS:

A Tool for Automatically Assembling Correct and Distributed Compone-

nt-Based Systems. In Proceedings of International Conference on Soft-

ware Engineering (ICSE), pages 784–787. ACM, 2007.

[9] T. Ball. Formalizing Counterexample-driven Refinement with Weak-

est Preconditions. In Proceedings of Engineering Theories of Software

Intensive Systems, pages 121–139. Springer-Verlag, 2005.

[10] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static Driver

Verification with under 4% False Alarms. In Proceedings of Formal

Methods in Computer Aided Design (FMCAD), pages 35–42, 2010.

[11] T. Ball, M. Naik, and S. K. Rajamani. From Symptom to Cause: Lo-

calizing Errors in Counterexample Traces. In Proceedings of Principles

of Programming Languages (POPL), pages 97–105. ACM, 2003.

[12] T. Ball and S. K. Rajamani. Boolean Programs: A Model and Process

for Software Analysis. Technical Report MSR-TR-2000-14, Microsoft

263

Research, 2000.

[13] T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety

Properties of Interfaces. In Proceedings of the International Workshop

on Model Checking of Software (SPIN), pages 103–122. Springer-Verlag,

2001.

[14] D. Beyer, T. A. Henzinger, and V. Singh. Algorithms for Interface

Synthesis. In Proceedings of Computer Aided Verification (CAV), pages

4–19. Springer-Verlag, 2007.

[15] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better

Quality in Synthesis through Quantitative Objectives. In Proceedings

of Computer Aided Verification (CAV), pages 140–156. Springer, 2009.

[16] R. Bloem, K. Greimel, T. Henzinger, and B. Jobstmann. Synthesizing

Robust Systems. In Proceedings of Formal Methods in Computer Aided

Design (FMCAD), pages 85–92, 2009.

[17] E. Bonta, M. Bernardo, J. Magee, and J. Kramer. Synthesizing Con-

currency Control Components from Process Algebraic Specifications. In

Proceedings of the International Conference on Coordination Models and

Languages, pages 28–43, 2006.

[18] F. Boussinot and R. De Simone. The ESTEREL Language. Proceedings

of the IEEE, 79(9):1293–1304, 1991.

264

[19] Robert K. Bradley and Ian Holmes. Transducers: An Emerging Prob-

abilistic Framework for Modeling Indels on Trees. Bioinformatics,

23(23):3258–3262, 2007.

[20] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing Model

Checking in Verification by AI Techniques. Artificial Intelligence, 112(1-

2):57–104, 1999.

[21] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic Debug-

ging. In Proceedings of International Conference on Software Engineer-

ing (ICSE), pages 121–130. ACM, 2011.

[22] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity Analysis

of Programs. In Proceedings of Principles of Programming Languages

(POPL), pages 57–70, 2010.

[23] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and Ro-

bustness of Programs. Communications of the ACM, 2012.

[24] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving

Programs Robust. In Proceedings of Foundations of Software Engineer-

ing, pages 102–112, 2011.

[25] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring Locks for Atomic

Sections. In Proceedings of Programming Language Design and Imple-

mentation (PLDI), pages 304–315. ACM, 2008.

265

[26] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-

based Predicate Abstraction for ANSI-C. In Proceedings of Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS), pages

570–574. Springer Verlag, 2005.

[27] E. M. Clarke and E. Allen Emerson. Design and Synthesis of Synchro-

nization Skeletons using Branching Time Temporal Logic. In Proceed-

ings of Logics of Programs, volume 131, pages 52–71. Springer Berlin

Heidelberg, 1982.

[28] M. A. Colón. Schema-Guided Synthesis of Imperative Programs by

Constraint Solving. In Proceedings of Logic Based Program Synthesis

and Transformation (LOPSTR), volume 3573, pages 166–181. Springer

Berlin Heidelberg, 2005.

[29] L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT

Software Engineering Notes, 26(5):109–120, 2001.

[30] V. Debroy and W. E. Wong. Using Mutation to Automatically Sug-

gest Fixes for Faulty Programs. In Proceedings of Software Testing,

Verification and Validation (ICST), pages 65–74, 2010.

[31] S. Demri and D. D’Souza. An Automata-theoretic Spproach to Con-

straint LTL. Information and Computation, 205(3):380–415, 2007.

[32] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based

Specification, Synthesis, and Verification of Synchronization in Concur-

266

rent Programs. In Proceedings of International Conference on Software

Engineering (ICSE), pages 442–452. ACM, 2001.

[33] L. A. Dennis. Program Slicing and Middle-Out Reasoning for Error

Location and Repair. In Proceedings of Disproving: Non-Theorems,

Non-Validity and Non-Provability, 2006.

[34] L. A. Dennis, R. Monroy, and P. Nogueira. Proof-directed Debugging

and Repair. In Proceedings of the Symposium on Trends in Functional

Programming, pages 131–140, 2006.

[35] J. V. Deshmukh, E. A. Emerson, and R. Samanta. Economical Trans-

formations for Structured Data. Technical Report TR-10-28, The Uni-

versity of Texas at Austin, Department of Computer Sciences, 2010.

[36] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[37] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program

Semantics. Springer-Verlag New York, Inc., 1990.

[38] I. Dillig, T. Dillig, and A. Aiken. Automated Error Diagnosis using

Abductive Inference. In Proceedings of Programming Language Design

and Implementation (PLDI), pages 181–192. ACM, 2012.

[39] H. Do, S. G. Elbaum, and G. Rothermel. Supporting Controlled Experi-

mentation with Testing Techniques: An Infrastructure and its Potential

Impact. Empirical Software Engineering: An International Journal,

2005.

267

[40] L. Doyen, T. A. Henzinger, A. Legay, and D. Ničković. Robustness of

Sequential Circuits. In Proceedings of Application of Concurrency to

System Design (ACSD), pages 77–84, 2010.

[41] C. Dragert, J. Dingel, and K. Rudie. Generation of Concurrency Control

Code using Discrete-Event Systems Theory. In Proceedings of Interna-

tional Symposium on Foundations of Software Engineering (FSE), pages

146–147. ACM, 2008.

[42] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY

Programs: Possibilities and Limitations. In International Conference

on Principles of Distributed Systems (OPODIS), pages 275–290, 2005.

[43] John C. Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and

Jia Zou. Distributed Real-Time Software for Cyber-Physical Systems.

Proceedings of the IEEE (special issue on CPS), 100(1):45–59, 2012.

[44] Samuel Eilenberg. Automata, Languages, and Machines, volume A.

Academic Press New York, 1974.

[45] E. A Emerson, S. Jha, and D. Peled. Combining Partial Order and

Symmetry Reductions. In Proceedings of Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 19–34, 1997.

[46] E. A. Emerson, T. Sadler, and J. Srinivasan. Efficient Temporal Reason-

ing. In Proceedings of Principles of Programming Languages (POPL),

pages 166–178. ACM, 1989.

268

[47] E. Allen Emerson and E. M. Clarke. Using Branching Time Temporal

Logic to Synthesize Synchronization Skeletons. Science of Computer

Programming, 2(3):241–266, 1982.

[48] E. Allen Emerson and R. Samanta. An Algorithmic Framework for Syn-

thesis of Concurrent Programs. In Proceedings of Automated Technqiues

for Verification and Analysis (ATVA), pages 522–530, 2011.

[49] M. Emmi, J. S. Fishcher, R. Jhala, and R. Majumdar. Lock Allocation.

In Proceedings of Principles of Programming Languages (POPL), pages

291–296, 2007.

[50] E. Ermis, M. Schäf, and T. Wies. Error Invariants. In Proceedings

of Formal Methods (FM), pages 187–201. Springer Berlin Heidelberg,

2012.

[51] H. R. Nielson F. Nielson and C. Hankin. Principles of Program Analysis.

Springer-Verlag New York, Inc., 1999.

[52] R. W. Floyd. Assigning Meanings to Programs. In Proceedings of Math-

ematical Aspects of Computer Science, pages 19–32. American Mathe-

matical Society, 1967.

[53] C. Frougny and J. Sakarovitch. Rational Relations with Bounded De-

lay. In Proceedings of Symposium on Theoretical Aspects of Computer

Science (STACS), pages 50–63, 1991.

269

[54] R. Gascon. An Automata-based Approach for CTL* With Constraints.

Electronic Notes in Theoretical Computer Science, 239:193–211, 2009.

[55] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A Systematic

Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8

Each. In International Conference on Software Engineering (ICSE),

pages 3–13. IEEE Press, 2012.

[56] S. Graf and H. Säıdi. Construction of Abstract State Graphs with

PVS. In Proceedings of Computer Aided Verification (CAV), pages 72–

83. Springer Verlag, 1997.

[57] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean Programs

with an Application to C. In Proceedings of Computer Aided Verification

(CAV), pages 358–371, 2006.

[58] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error Explanation

with Distance Metrics. Int. J. Softw. Tools Technol. Transf., 8(3):229–

247, 2006.

[59] S. Gulwani. Dimensions in Program Synthesis. In Proceedings of Prin-

ciples and Practice of Declarative Programming (PPDP), pages 13–24.

ACM, 2010.

[60] E. Gurari and O. Ibarra. A Note on Finite-valued and Finitely Ambigu-

ous Transducers. Mathematical Systems Theory, 16(1):61–66, 1983.

270

[61] Eitan M. Gurari and Oscar H. Ibarra. The Complexity of Decision

Problems for Finite-Turn Multicounter Machines. In Proceedings of

the International Colloquium on Automata Languages and Programming

(ICALP), pages 495–505, 1981.

[62] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge

University Press, 1997.

[63] P. B. Hansen. Edison – A Multiprocessor Language. Software – Practice

and Experience, 11(4):325–361, 1981.

[64] D. Harel and A. Pnueli. On the Development of Reactive Systems. In

Proceedings of Logics and Models of Concurrent Systems, pages 477–498,

1985.

[65] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Veri-

fication with BLAST. In Proceedings of the International Workshop on

Model Checking of Software (SPIN), pages 235–239, 2003.

[66] C. A. R. Hoare. Towards a Theory of Parallel Programming. In Pro-

ceedings of Operating Systems Techniques, pages 61–71, 1971.

[67] M. Huth and M. Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge Univeristy Press, 2004.

[68] Oscar H. Ibarra. Reversal-Bounded Multicounter Machines and Their

Decision Problems. Journal of the ACM, 25(1):116–133, 1978.

271

[69] Oscar H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer.

Counter Machines: Decidable Properties and Applications to Verifica-

tion Problems. In Proceedings of Mathematical Foundations of Com-

puter Science (MFCS), pages 426–435, 2000.

[70] J. Gray. Why Do Computers Stop And What Can Be Done About It?

In Proceedings of Symposium on Reliability in Distributed Software and

Database Systems, pages 3–12, 1986.

[71] J. Silva. A Survey on Algorithmic Debugging Strategies. Advances in

Engineering Software, 42(11):976–991, 2011.

[72] M. U. Janjua and A. Mycroft. Automatic Correction to Safety Viola-

tions in Programs. In Proceedings of Thread Verification, 2006.

[73] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated Atomicity-

violation Fixing. In Proceedings of Programming Language Design and

Implementation (PLDI), pages 389–400. ACM, 2011.

[74] H. Jin, K. Ravi, and F. Somenzi. Fate and Free Will in Error Traces. In-

ternational Journal on Software Tools for Technology Transfer, 6(2):102–

116, 2004.

[75] B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair as a

Game. In Proceedings of Computer Aided Verification (CAV), pages

226–238. Springer-Verlag, 2005.

272

[76] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding

and Fixing Faults. Journal of Computer and System Sciences (JCSS),

78(2):441–460, 2012.

[77] M. Jose and R. Majumdar. Cause Clue Clauses: Error Localization

using Maximum Satisfiability. In Proceedings of Programming Language

Design and Implementation (PLDI), pages 437–446. ACM, 2011.

[78] K. Zhou and J. C. Doyle and K. Glover. Robust and Optimal Control.

Prentice Hall, 1996.

[79] V. Kahlon. Automatic Lock Insertion in Concurrent Programs. In

Proceedings of Formal Methods in Computer-Aided Design (FMCAD),

pages 16–23, 2012.

[80] Gilles Kahn. The Semantics of Simple Language for Parallel Program-

ming. In Proceedings of IFIP Congress, pages 471–475, 1974.

[81] R. Könighofer and R. Bloem. Automated Error Localization and Cor-

rection for Imperative Programs. In Proceedings of Formal Methods in

Computer Aided Design (FMCAD), pages 91–100, 2011.

[82] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete Functional

Synthesis. In Proceedings of Programming Language Design and Imple-

mentation (PLDI), pages 316–329. ACM, 2010.

273

[83] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional Synthesis

for Linear Arithmetic and Sets. In Proceedings of Software Tools for

Technology Transfer (STTT), pages 455–474, 2012.

[84] M. Kuperstein, M. T. Vechev, and E. Yahav. Automatic Inference of

Memory Fences. In Proceedings of Formal Methods in Computer-Aided

Design (FMCAD), pages 108–123, 2010.

[85] O. Kupferman. Recent Challenges and Ideas in Temporal Synthesis.

In Proceedings of Current Trends in Theory and Practice of Computer

Science (SOFSEM), pages 88–98. Springer Berlin Heidelberg, 2012.

[86] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav. Dynamic

Synthesis for Relaxed Memory Models. In Proceedings of Programming

Language Design and Implementation (PLDI), pages 429–440, 2012.

[87] F. Logozzo and T. Ball. Modular and Verified Automatic Program

Repair. In Proceedings of Object Oriented Programming Systems Lan-

guages and Applications (OOPSLA), pages 133–146. ACM, 2012.

[88] R. Majumdar and I. Saha. Symbolic Robustness Analysis. In IEEE

Real-Time Systems Symposium, pages 355–363, 2009.

[89] Rupak Majumdar, Elaine Render, and Paulo Tabuada. A Theory of

Robust Software Synthesis. CoRR, abs/1108.3540, 2011.

[90] Z. Manna. Introduction to Mathematical Theory of Computation. McGraw-

Hill, Inc., 1974.

274

[91] Z. Manna and P. Wolper. Synthesis of Communicating Processes from

Temporal Logic Specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 6(1):68–93, 1984.

[92] P. Manolios. Brief Announcement: Branching Time Refinement. In

Proceedings of Principles of Distributed Computing (PODC), page 334.

ACM, 2003.

[93] M. Mohri. Finite-state Transducers in Language and Speech Processing.

Computational Linguistics, 23(2):269–311, 1997.

[94] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Pro-

ceedings of Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), pages 337–340. Springer-Verlag, 2008.

[95] K. Namjoshi. A Simple Characterization of Stuttering Bisimulation.

In Proceedings of Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), pages 284–296, 1997.

[96] National Institute of Standards and Technology. The Economic Impacts

of Inadequate Infrastructure for Software Testing, 2002.

[97] NEC. NECLA Static Analysis Benchmarks. http://www.nec-labs.

com/research/system/systems_SAV-website/benchmarks.php#NECLA_

Static_Analysis_Benchmarks.

[98] Miroslav Pajic, Shreyas Sundaram, George J. Pappas, and Rahul Mang-

haram. The Wireless Control Network : A New Approach for Control

275

http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks

Over Networks. IEEE Transactions on Automatic Control, 56(10):2305–

2318, 2011.

[99] George J. Pappas. Wireless Control Networks: Modeling, Synthesis,

Robustness, Security. In Proceedings of Hybrid Systems: Computation

and Control (HSCC), pages 1–2, 2011.

[100] A. Pnueli. The Temporal Logic of Programs. In Proceedings of Foun-

dations of Computer Science (FOCS), pages 46–77, 1977.

[101] A. Pnueli. Linear and Branching Structures in the Semantics and Logics

of Reactive Systems. In Proceedings of International Colloquium on

Automata, Languages and Programming (ICALP), pages 15–32, 1985.

[102] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module.

In Proceedings of Principles of Programming Languages (POPL), pages

179–190. ACM, 1989.

[103] A. Pnueli and R. Rosner. Distributed Reactive Systems are Hard to Syn-

thesize. In Proceedings of Foundations of Computer Science (FOCS),

pages 746–757, 1990.

[104] R. M. Prasad and A. Biere and A. Gupta. A Survey of Recent Advances

in SAT-based Formal Verification. International Journal on Software

Tools for Technology Transfer, 7(2):156–173, 2005.

276

[105] M. Renieris and S. P. Reiss. Fault Localization With Nearest Neighbor

Queries. In Proceedings of Automated Software Engineering (ASE),

pages 30–39, 2003.

[106] R. Samanta. Towards Algorithmic Synthesis of Synchronization for

Shared-Memory Concurrent Programs. In Proceedings of the Workshop

on Synthesis (SYNT), volume 84 of EPTCS, pages 17–32, 2012.

[107] R. Samanta, J. V. Deshmukh, and S. Chaudhuri. Robustness Analysis

of Networked Systems. In Proceedings of Verification, Model Checking,

and Abstract Interpretation (VMCAI), pages 229–247, 2013.

[108] R. Samanta, J. V. Deshmukh, and S. Chaudhuri. Robustness Analysis

of String Transducers. In Proceedings of Automated Technqiues for

Verification and Analysis (ATVA), pages 427–441, 2013.

[109] R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic Genera-

tion of Local Repairs for Boolean Programs. In Proceedings of Formal

Methods in Computer Aided Design (FMCAD), pages 1–10, 2008.

[110] R. Samanta, O. Olivo, and E. A. Emerson. Cost-Aware Automatic

Program Repair. CoRR, abs/1307.7281, 2013.

[111] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[112] R. Singh, S. Gulwani, and A. Solar-Lezama. Automatic Feedback Gen-

eration for Introductory Programming Assignments. In Proceedings of

277

Programming Language Design and Implementation (PLDI), pages 15–

26, 2013.

[113] R. Singh and A. Solar-Lezma. Synthesizing Data-Structure Manipu-

lations from Storyboards. In Proceedings of Foundations of Software

Engineering (FSE), pages 289–299, 2011.

[114] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching Concurrent

Data Structures. In Proceedings of Programming Language Design and

Implementation (PLDI), pages 136–148. ACM, 2008.

[115] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Program-

ming by Sketching for Bit-streaming Programs. In Proceedings of Pro-

gramming Language Design and Implementation (PLDI), pages 281–294.

ACM, 2005.

[116] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.

Combinatorial Sketching for Finite Programs. In Proceedings of Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 404–415. ACM, 2006.

[117] S. Srivastava, S. Gulwani, and J. S. Foster. From Program Verification

to Program Synthesis. In Proceedings of Principles of Programming

Languages (POPL), pages 313–326. ACM, 2010.

[118] T. Ball. The Concept of Dynamic Analysis. In Proceedings of the Euro-

pean Software Engineering Conference held jointly with the ACM SIG-

278

SOFT Foundations of Software Engineering (ESEC/FSE), pages 216–

234. Springer-Verlag, 1999.

[119] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majum-

dar. Input Output Stability for Discrete Systems. In Proceedings of

International Conference on Embedded Software (EMSOFT), 2012.

[120] W. Thomas. Facets of Synthesis: Revisiting Church’s Problem. In Pro-

ceedings of Foundations of Software Science and Computation Structures

(FOSSACS), pages 1–14. Springer-Verlag, 2009.

[121] V. D’Silva and D. Kroening and G. Weissenbacher. A Survey of Au-

tomated Techniques for Formal Software Verification. IEEE Trans-

actions of Computer-Aided Design of Integrated Circuits and Systems,

27(7):1165–1178, 2008.

[122] M. Y. Vardi and P. Wolper. Reasoning about Infinite Computations.

Information and Computation, 115(1):1–37, 1994.

[123] P. Černý, T. A. Henzinger, and A. Radhakrishna. Simulation Dis-

tances. In Proceedings of International Conference on Concurrency

Theory CONCUR, pages 253–268, 2010.

[124] P. Černý, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach.

Efficient Synthesis for Concurrency by Semantics-preserving Transfor-

mations. In Proceedings of Computer Aided Verification (CAV), pages

951–967. Springer-Verlag, 2013.

279

[125] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Sym-

bolic Finite State Transducers: Algorithms and Applications. In Pro-

ceedings of Principles of Programming Languages (POPL), pages 137–

150, 2012.

[126] M. T. Vechev, E. Yahav, and G. Yorsh. Inferring Synchronization under

Limited Observability. In Proceedings of Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 139–154, 2009.

[127] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-Guided Synthe-

sis of Synchronization. In Proceedings of Principles of Programming

Languages (POPL), pages 327–388, 2010.

[128] C. von Essen and B. Jobstmann. Program Repair without Regret.

In Proceedings of Computer Aided Verification (CAV), pages 896–911.

Springer Berlin Heidelberg, 2013.

[129] Y. Wang, S. Lafortune, T. Kelley, M. Kudlur, and S. Mahlkeh. The

Theory of Deadlock Avoidance via Discrete Control. In Proceedings of

Principles of Programming Languages (POPL), pages 252–263, 2009.

[130] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and

A. Zeller. Automated Fixing of Programs with Contracts. In Pro-

ceedings of International Symposium on Software Testing and Analysis

(ISSTA), pages 61–72. ACM, 2010.

280

[131] J. Whaley. JavaBDD: An Efficient BDD Library for Java. http:

//javabdd.sourceforge.net/.

[132] T. Yavuz-Kahveci and T. Bultan. Specification, Verification, and Syn-

thesis of Concurrency Control Components. In Proceedings of Inter-

national Symposium on Software Testing and Analysis (ISSTA), pages

169–179. ACM, 2002.

[133] R. N. Zaeem, D. Gopinath, S. Khurshid, and K. S. McKinley. History-

Aware Data Structure Repair using SAT. In Proceedings of Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS), pages

2–17. Springer-Verlag, 2012.

[134] A. Zeller and R. Hilebrandt. Simplifying and Isolating Failure-Inducing

Input. IEEE Trans. Softw. Eng., 28(2):183–200, 2002.

[135] Y. Zhang and Y. Ding. CTL Model Update for System Modifications.

Journal of Artificial Intelligence Research, 31:113–155, 2008.

281

http://javabdd.sourceforge.net/
http://javabdd.sourceforge.net/

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Part I Introduction
	Chapter 1. Introduction
	Motivation
	Debugging of Sequential Programs
	Synchronization Synthesis for Concurrent Programs
	Robustness Analysis of Discrete Systems

	Part II Sequential Program Debugging
	Chapter 2. Groundwork
	Sequential Programs
	Program Syntax
	Transition Graphs
	Program Semantics
	Specifications and Program Correctness

	Predicate Abstraction and Boolean Programs
	Predicate Abstraction
	Boolean Programs

	Program Repair: The Problem
	Solution Overview

	Chapter 3. Repair of Boolean Programs
	Formal Framework
	Step I: Program Annotation
	Backward Propagation of Postconditions
	Forward Propagation of Preconditions

	Step II: Repair Generation
	The Repair Algorithm
	Algorithm Notes
	Annotation and Repair of Programs with Procedures

	Chapter 4. Cost-Aware Program Repair
	Formal Framework
	Cost-aware Repair of Boolean Programs
	Concretization
	Experiments with a Prototype Tool

	Chapter 5. Bibliographic Notes

	Part III Synchronization Synthesis
	Chapter 6. Synthesis of Low-level Synchronization
	Formal Framework
	Concurrent Program Model
	Synchronization Primitives — Locks and Condition Variables
	Specification Language(s)

	Motivating Example
	The Synchronization Synthesis Algorithm
	Synthesis of High-Level Solution
	Synthesis of Low-level Solution
	Algorithm Notes

	Experiments

	Chapter 7. Generalized Synchronization Synthesis
	Formal Framework
	A vocabulary L
	Concurrent Program Model
	Specification Language

	The Basic Synchronization Synthesis Algorithm
	Formulation of P
	Construction of T
	Obtaining a Model M from T
	Decomposition of M into P1s and P2s
	Algorithm Notes

	Extensions
	Uninitialized Variables
	Local Variables
	Synchronization using Locks and Condition Variables
	Multiple (K > 2) Processes

	Chapter 8. Bibliographic Notes

	Part IV Robustness Analysis
	Chapter 9. Groundwork
	Functional Transducers
	Distance Metrics
	Reversal-bounded Counter Machines
	Manhattan Distance-Tracking Automata
	Levenshtein Distance-Tracking Automaton

	Chapter 10. Robustness Analysis of String Transducers
	Robust String Transducers
	Robustness Analysis
	Mealy Machines
	Functional Transducers

	Chapter 11. Robustness Analysis of Networked Systems
	Robust Networked Systems
	Synchronous Networked System
	Channel Perturbations and Robustness

	Robustness Analysis
	Robustness Analysis for the Manhattan Distance Metric
	Robustness Analysis for the Levenshtein Distance Metric

	Chapter 12. Bibliographic Notes

	Part V Conclusions
	Chapter 13. Conclusions
	Summary of Contributions
	Debugging of Sequential Programs
	Synchronization Synthesis for Concurrent Programs
	Robustness Analysis of Discrete Systems

	Future Work
	Debugging of Sequential Programs
	Synchronization Synthesis for Concurrent Programs
	Robustness Analysis of Discrete Systems

	Appendix
	Appendix 1. Select Proofs
	Basic Definitions
	Lem. 6.3.1: Constructions and Proofs
	Lem. 6.3.2: Constructions and Proofs

	Bibliography

