
Roopsha Samanta

CS560: Reasoning About Programs

Hoare Logic, Part I

Partly based on slides by Isil Dillig

Announcements

▸ There be no midterm this time
▸ Keep an eye out for updated schedule
▸ HW 3 will be released today

Grading

Component Weight

Class Project 40% 50%

Midterm 20%

Homeworks 35% 45%

Participation 5%

Previously
▸ Unit 1: Logics and proof engines

Today
▸ Unit 2: Program verification and analysis
▸ (Floyd-)Hoare logic: axiomatic approach to program verification
▸ Partial correctness, total correctness, Hoare triples
▸ Hoare logic inference rules for partial correctness

Roadmap

Verifier

Deductive
Verification

Model
Checking

Abstract
Interpretation

Type
Systems

5

Program/Model

Specification

Yes/Proof

No/Bug

Deductive Verifier

6

Program/Model

Specification

Yes/Proof

No/Bug

Verification
Condition
Generator

Program/Model

Specification

Valid ✓

Not valid ✗

7

Automatic
Theorem prover

(SMT Solver)

Verification condition
(FOL formula)

Today
▸ Use Hoare logic to deductively prove programs correct
Next
▸ Use verification conditions to automate Hoare logic

Verification condition is a formula that is valid iff program is correct

Pnueli Clarke Emerson Sifakis Lamport

Dijkstra Floyd Hoare Milner

8

A bit of history

Dijkstra Floyd Hoare

9

Floyd, Assigning Meanings to Programs, 1967

Hoare, An Axiomatic Basis for Computer Programming, 1969

Dijkstra, Guarded Commands, Nondeterminacy and Formal Derivation of Programs, 1975

A bit of history

Expression ! ≔ # $ %!+ %" | %!× %"

Condition) ≔ true | false | %!= %" | %! ≤ %"

Statement , ≔ $ ≔ !
,!; ,"
if) then ,! else ,"
while) do ,!

Simple imperative programming language (IMP)

We will use this to
illustrate Hoare logic

Hoare triple: partial correctness

{"} $ {%}

! is a program statement in IMP

", the precondition, is a FOL formula

#, the postcondition, is a FOL formula

Hoare triple: partial correctness

{"} $ {%}

! is a program statement in IMP

", the precondition, is a FOL formula

#, the postcondition, is a FOL formula

Program state:
Assignment of values from proper domain to all
program variables

Sets of program states can be represented
using FOL formulas over program variables

Partial correctness / Validity of {"} ! {#}:
If ! is executed in a program state satisfying ",
and if execution of ! terminates,
then the resulting program state satisfies #

Hoare triple: total correctness

" $ [%]

! is a program statement in IMP

", the precondition, is a FOL formula

#, the postcondition, is a FOL formula

Hoare triple: total correctness

" $ [%]

! is a program statement in IMP

Total correctness / Validity of " ! [#] :
If ! is executed in a program state satisfying ",
then execution of ! terminates,
and the resulting program state satisfies #

Total correctness = Partial correctness + termination", the precondition, is a FOL formula

#, the postcondition, is a FOL formula
Safety Liveness

Proving partial correctness

Hoare gave a sound and relatively complete proof system
that allows semi-automation of correctness proofs

⊨ ") {%} Hoare triple is valid
⊢ ") {%} Hoare triple is provable

Soundness: If ⊢ ") {%} , then ⊨ ") {%}
Completeness: If ⊨ ") {%} , then ⊢ ") {%}

Inference rules
! ≔) ≔ *

!!; !"
if , then !! else !"
while , do !!

⊢ !# " ## …⊢ !$ " {#$}
⊢ ! " {#}

If "! , #! , … , "# , {##}
are provable in proof system, then
" , {#} is also provable

One inference rule for every statement

Inference rules without hypotheses
correspond to base cases in proof

Inference rules with hypotheses
correspond to inductive cases in proof

Hoare inference rules

⊢ % +/- - ≔ + {%}
Assignment

$ with % substituted by &

Hoare inference rules

⊢ % +/- - ≔ + {%}
Assignment

$ with % substituted by &

"!⇒ " ⊢ " $ % % ⇒ %!
⊢ "! $ %!

Precondition strengthening/
Postcondition weakening

Hoare inference rules

⊢ % +/- - ≔ + {%}
Assignment

$ with % substituted by &

"!⇒ " ⊢ " $ % % ⇒ %!
⊢ "! $ %!

Precondition strengthening/
Postcondition weakening

⊢ " $" % ⊢ % $# {0}
⊢ " $"; $# R

Composition

Hoare inference rules

⊢ % +/- - ≔ + {%}

"!⇒ " ⊢ " $ % % ⇒ %!
⊢ "! $ %!

⊢ " $" % ⊢ % $# {0}
⊢ " $"; $# R

⊢) ∧ " $" %
⊢ ¬) ∧ " $# %

⊢ " if) then $" else $# {%}

Composition

Precondition strengthening/
Postcondition weakening

Assignment
If$ with % substituted by &

Hoare inference rules

⊢ % +/- - ≔ + {%}

"!⇒ " ⊢ " $ % % ⇒ %!
⊢ "! $ %!

⊢ " $" % ⊢ % $# {0}
⊢ " $"; $# R

⊢) ∧ " $" %
⊢ ¬) ∧ " $# %

⊢ " if) then $" else $# {%}

⊢) ∧ = $ =
⊢ = while) do $ {= ∧ ¬)}Composition

Precondition strengthening/
Postcondition weakening

Assignment
If

While

Loop Invariant

$ with % substituted by &

▸ Loop invariant = may not always satisfy = ∧) $ =
▸ Inductive invariant always satisfies = ∧) $ =
▸ Inductive invariants are the only invariants we can prove

▸ Key challenge in verification: finding inductive invariants

Invariant vs. Inductive Invariant

Hoare Logic: Soundness and Completeness

If ⊢ " $ % , then ⊨ " $ %
Proof rules for Hoare logic are sound

If ⊨ " S % and we have an oracle for deciding implications,
then ⊢	 " S %
Proof rules for Hoare logic are relatively complete

Precondition strengthening/Postcondition weakening may need
reasoning about implications in Peano arithmetic, which is incomplete.

Today
▸ (Floyd-)Hoare logic: axiomatic approach to program verification
▸ Partial correctness, total correctness, Hoare triples
▸ Hoare logic inference rules for partial correctness

Next
▸ Automating Hoare logic inference rules using verification conditions

Summary

