Temporal Logics

CS560: Reasoning About Programs

Roopsha Samanta
PURDUE

IIIIIIII

Based on slides by Georg Weissenbacher

Roadmap

Previously
» Propositional logic and SAT Solving

» First-order logic, first-order theories and SMT Solving

Today
» Temporal logic!

Specifying Correctness for Ongoing Systems

A software system controlling traffic lights

Each traffic light in the system can be in one of three states

Consider a crossing with two traffic Iights§51 and §2

assert (_I! 1 Vo= !2)

Safety specification

Expresses something bad should not happen

A perfectly safe scenario

“not indefinitely (!1 A !2)"

Liveness specification

Expresses something good will eventually happen

Temporal logics can express safety and
liveness specifications for ongoing systems

. . AP~ ,Ca\,bg
Modeling Ongoing Systems

> ob
) \,3
Finite State Transition system (S, T, I) b@
» Afinite set of states § A
» Asetofinitial states] € S 2
» A total transition relation T € SXS b

Vs € S.3s' € S.T(s,s") K:|)3)9/3/3)'”

Modeling Ongoing Systems

Kripke structure (S, T, I, L)

» Afinite set of states S

» Asetofinitial states] € S

» Atotal transition relation T € S§XS
4

A labeling function L = § —>

sel of
subcels o[P\P

State Formulas

State Formula
Boolean combination of atomic propositions in AP

Given Kripke structure M, state s and state formula F,
we write M,s E F if F holds in s

safisfies
M,s Ep iff p € L(s)
M,s & =F iff M,s¥F

M,seF, VF, iff M,seF,or M,sEF,
M,s EF,ANF, iff M,seF, and M,s EF,

Path Formulas

A pathmis a
» Sequence of states sy, S, ...
» Such that T(s;, sj+1) (where 0 < i)

Path Formulas

Given Kripke structure M, path and path formula ¢,
we write M, T & ¢ if ¢ holds form € M

A state formula F is also a path formula

M,mEeEF iff ?7?

Path Formulas

Given Kripke structure M, path and path formula ¢,
we write M, T & ¢ if ¢ holds form € M

A state formula F is also a path formula

M,mt = F iff F holdsin the first state sq of @

F

(oo (s e s s
So S1 S2 S3 Sy -

» From now on, we use
» F to denote a state formula
» ¢ todenote a path formula

» We introduce a number of operators
» Allow us to specify what’s supposed to happen along a path

Temporal Operators: Next
MreXp iff Mnoled@

For instance: M, ™ = Xp , (:(’ -,—_,—) 'K. F‘P = 'NF XP

p
(oo (o e s s
So S1 S2 S3 S4 -

It doesn’t matter whether or not p holds in sy or s,, s3, ...

Temporal Operators: Next

MreXp iff Mnoled@

For instance: M, = Xp

p
(oo (o e s s
So S1 S2 S3 S4 -

X can be nested: M, & XXp

N \=w N er Fp

Temporal Operators: Eventually
M, = Fo & 3k > 0.M, % E ¢

» Basic liveness property
» Forinstance: M, &= Fp

p
T T T T

Temporal Operators: Eventually
M, = Fo & 3k > 0.M, % E ¢

» Basic liveness property

» Forinstance: M, &= Fp
» p holds after a finite number of steps

p
(o s e e (s
So S1 So S3 Sy -

Temporal Operators: Globally Xp= Fp
“p > Fp

M,mt E G & Vi>0.M,n' E ¢

» Basic safety property

» Forinstance: M, E Gp A (x@ & [(—-ﬁ

P P

P P P
Lo) s s
So S1 S2 S3 Sy -

(

[y

Temporal Operators: Globally

M,m =G e Vi>0.M,n'E ¢
» Basic safety property

» Forinstance: M, E Gp
» p holds after any number of steps

p p p p p

Temporal Operators: Until

M,me=¢p,Up, & 3k=>0.M,n*E ¢,
Vje{0..k—1} M,/ & ¢,
» ¢,holds until ¢,holds
» Also: ¢, has to hold eventually!
» Forinstance: M, E qUp

q,p q,p q,p D

Temporal Operators: Until

M,me=¢p,Up, & 3k=>0.M,n*E ¢,
Vje{0..k—1} M,/ & ¢,
» ¢,holds until ¢,holds
» Also: ¢, has to hold eventually!
» Forinstance: M, E qUp

- 4P apP q,pP P
0 G o 61 o 0 o D

» Note: g doesn’t have to hold anymore once discharged by p

Temporal Operators: More Examples

M, Tt EpU (Gq)

Temporal Operators: More Examples

M, Tt EpU (Gq)

p,q P, q b, q D,

Temporal Operators: More Examples

M, Tt EpU (Gq)
p.q p.q P, q D

M, & F(Gp)

Temporal Operators: More Examples

M, Tt EpU (Gq)
p.q p.q p.q D,
(oo s e s s
M, = F(Gp)
p p p

(oo (s A s s
So S1 S2 S3 Sq -

Temporal Operators: More Examples

“not indefinitely (!1 A !2)"
M,m:F(ﬂ!) or M,npﬁa(!)

Temporal Operators: More Examples

“not indefinitely (!1 A !2)" 'Yig FAJCFI\:\H7 [‘K)

M,n|=F(—.!) or M,TL'I=—|G(!) ID

(oo) (s e s s
So S1 S2 S3 S4 -

Temporal Operators: Redundancies

M, t &= U,

» Last example shows:
» Some temporal operators can be expressed in terms of others

G ¢ = ~F(=9) 166 = F(=d)

F¢ =trueU ¢

Temporal Operators: Redundancies

M, E ¢ U,

» Last example shows:
» Some temporal operators can be expressed in terms of others

G =—-F(—p)

F¢ =trueU ¢

» —,X, U are sufficient to express G and F

» (c.f. “basis” (—,V) in propositional logic)

Al
Temporal Operators: Path Quantifiers f\

G, s
M, t &= U, ZCQ__ 039
» So far, we can only talk about individual paths z
» To amend this, we introduce path quantifies ‘/JQ’
2 =
| AN
» M,seEE¢® S drm starting at s such that M, w = ¢ 2 2 ~_3
RN VA
» M,seEAgp = Vr starting at s it holds that M, m = ¢p 2 2 2 3
o‘[Z I'. /"
R S A

£ muhm free

Unwinding Transition Relations

» Remember:
» Unwinding transition function results in infinite tree

Computation Tree Logic CTL*

» Accordingly, our logic is appropriately called

» More specifically: CTL*

Computation Tree Logic CTL*: Examples /
55

Computation Tree Logic CTL*: Examples

16}

» M,s, = AF (!)\/

Computation Tree Logic CTL*: Examples

16}

> M,SOFAF(!)\/ !

» M, s, E AX(EG(!))

Computation Tree Logic CTL*: Examples

16}

> M,SOFAF(!)\/ !

» M,s, = AX(EG(!)) J

Computation Tree Logic CTL*: Examples

16}

e @ EG L a@

» M,s, EAX(EG(a)V

Computation Tree Logic CTL*: Examples

16}

> M,SO|=AF(!)\/ ! M,SOFEGX(!)\/

» M,s, = AX(EG(!)) J

Computation Tree Logic CTL*: Examples

16}

> M,SO|=AF(!)\/ ! M,SOPEGX(!)\/

» M,s, E AX(EG(!)) / M, s, E AGX(!)

Computation Tree Logic CTL*: Examples

16}

> M,SO|=AF(!)\/ ! M,SOPEGX(!)\/

» M,s, E AX(EG(!)) / M, s, = AGX(!) X

Branching Time and Linear Time Logic

» Commonly used subsets of CTL*:

» branching-time logic cTC

quantifies over paths possible from a given state

» linear-time logic
LT~

for events along a single computation path only

Model Checking

Clarke Emerson Sifakis

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

Algorithmic framework for exhaustive exploration of finite-state transition systems to
check temporal properties

Branching Time Logic: Computation Tree Logic

» Computation Tree Logic CTL

» CTLcCTL*
» Restriction:
X, F, G, and U, must be immediately preceded by A or E AKX
E€
F
AF EG

A€ A&

Branching Time Logic: Computation Tree Logic

» Computation Tree Logic CTL
» CTLcCTL*
» Restriction:
X, F, G, and U, must be immediately preceeded by A or E
Examples:
ca-yé“ EF(start A —|ready) There’s a path on which we start
at some point despite not being
ready
(/\ AG(req A = AF ack) Each request eventually

acknowledged
AG EX progress No deadlocks

Branching Time Logic: Computation Tree Logic

» What are the restrictions?
» Some properties can’t be expressed!

» A(FGp) can’t be expressed in CTL!

» And the advantages?
» More efficient to check than cull CTL*
» Checking CTL-formula ¢ for (S, T, 1, L) is O(|¢| - (|S| + |T]))
» Checking CTL* lies in PSPACE
» Can be checked using fixed points!

Linear Temporal Logic

» Linear Temporal Logic: Another subset of CTL*
for events along a single computation path only

» Formulas have the form A¢
» State formulas can only be atomic propositions
» In particular, ¢ doesn’t contain A, E, conjunctions, or disjunctions of path formulas

Linear Temporal Logic

» Linear Temporal Logic: Another subset of CTL*
for events along a single computation path only

» Formulas have the form A¢
» State formulas can only be atomic propositions

» ¢ doesn’t contain Aor E
» Intuitively, ¢ is always interpreted over all paths

[

Linear Temporal Logic - NSO\ FFOP
e__F

Examples for LTL formulas:

» A(FG p) “all paths eventually stabilize with property p” F G'PP
» This can’t be expressed in CTL
» A(GF p) “pis visited infinitely often” 57??
» AG(try = F succeed) “every attempt eventually succeeds” Gy (£ Y FS\
S

We can’t ex halg
press
» AG(EF p) Oo—>0— M'OP 2 -

» This can be expressed in CTL /P

Summary

Today

» Temporal logic as a specification language
» Branching time logic CTL

» Linear time logic LTL

Next
» Odds and Ends

