
Roopsha Samanta

CS560: Reasoning About Programs

Temporal Logics

Based on slides by Georg Weissenbacher

Previously
▸ Propositional logic and SAT Solving
▸ First-order logic, first-order theories and SMT Solving

Today
▸ Temporal logic!

Roadmap

A software system controlling traffic lights

Specifying Correctness for Ongoing Systems

Each traffic light in the system can be in one of three states

Consider a crossing with two traffic lights !! and !"

assert (¬ $! ∨ ¬ & ")

Safety specification

Expresses something bad should not happen

A perfectly safe scenario

“not indefinitely (a ! ∧ b ")”

Liveness specification

Expresses something good will eventually happen

Temporal logics can express safety and
liveness specifications for ongoing systems

Finite State Transition system 〈,, ., /〉
▸ A finite set of states ,
▸ A set of initial states / ⊆ ,
▸ A total transition relation T ⊆ ,×,

Modeling Ongoing Systems

∀5 ∈ ,. ∃5# ∈ ,. .(5, 5#)

Kripke structure 〈,, ., /, 9〉
▸ A finite set of states ,
▸ A set of initial states / ⊆ ,
▸ A total transition relation T ⊆ ,×,
▸ A labeling function 9 ∶ , → 2$%

Modeling Ongoing Systems

=>: set of atomic propositions

▸ Properties of states
▸ Abstracts values of variables

?, 5 ⊨ ! iff ! ∈ 9 5
?, 5 ⊨ ¬A iff ?, 5 ⊭ A
?, 5 ⊨ A! ∨ A" iff ?, 5 ⊨ A! or ?, 5 ⊨ A"
?, 5 ⊨ A! ∧ A" iff ?, 5 ⊨ A! and ?, 5 ⊨ A"

State Formulas
State Formula
Boolean combination of atomic propositions in =>

Given Kripke structure ?, state 5 and state formula A,
we write ?, 5 ⊨ A if A holds in 5

A path C is a
▸ Sequence of states s&, s!, …
▸ Such that T(s', s'(!) (where 0 ≤ H)

Path Formulas

!! !" !# !$!%
T T T T

We use C) to denote the suffix of C starting at 5)
▸ In particular, C = C&

Path Formulas

Given Kripke structure ?, path C and path formula J,
we write ?,C ⊨ J if J holds for C ∈ ?
A state formula A is also a path formula

?,C ⊨ A iff ??

!, # ⊨ % iff % holds in the first state s! of #

Path Formulas

Given Kripke structure ?, path C and path formula J,
we write ?,C ⊨ J if J holds for C ∈ ?
A state formula A is also a path formula

!! !" !# !$!%
T T T T

A

▸ From now on, we use
▸ # to denote a state formula
▸ $ to denote a path formula

▸ We introduce a number of temporal operators
▸ Allow us to specify what’s supposed to happen along a path

For instance: ?,C ⊨ K!

It doesn’t matter whether or not p holds in s& or s", s*, …

Temporal Operators: Next

!! !" !# !$!%
T T T T

!

?, C ⊨ KJ iff ?,C+ ⊨ J

For instance: ?,C ⊨ K!

K can be nested: ?,C ⊨ KK!

Temporal Operators: Next

!! !" !# !$!%
T T T T

!

?, C ⊨ KJ iff ?,C+ ⊨ J

!! !" !# !$!%
T T T T

!

?,C ⊨ MJ ⇔ ∃O ≥ 0.?, C, ⊨ J

▸ Basic liveness property
▸ For instance: ?,C ⊨ M!

Temporal Operators: Eventually

!! !" !# !$!%
T T T T

!

?,C ⊨ MJ ⇔ ∃O ≥ 0.?, C, ⊨ J

▸ Basic liveness property
▸ For instance: ?,C ⊨ M!
▸ % holds after a finite number of steps

Temporal Operators: Eventually

!! !" !# !$!%
T T T T

!

?,C ⊨ QJ ⇔ ∀H ≥ 0.?, C) ⊨ J

▸ Basic safety property
▸ For instance: ?,C ⊨ Q!

Temporal Operators: Globally

!! !" !# !$!%
T T T T

!! !!!

?,C ⊨ QJ ⇔ ∀H ≥ 0.?, C) ⊨ J

▸ Basic safety property
▸ For instance: ?,C ⊨ Q!
▸ % holds after any number of steps

Temporal Operators: Globally

!! !" !# !$!%
T T T T

!! !!!

?,C ⊨ J!RJ" ⇔ ∃O ≥ 0.?, C, ⊨ J"
∀ S ∈ 0. . O − 1 .?, C- ⊨ J!

▸ J!holds until J"holds
▸ Also: J" has to hold eventually!
▸ For instance: ?,C ⊨ VR!

Temporal Operators: Until

!! !" !# !$!%
T T T T

V, !̅ V, !̅ V, !̅ XV, ! XV, !̅

?,C ⊨ J!RJ" ⇔ ∃O ≥ 0.?, C, ⊨ J"
∀ S ∈ 0. . O − 1 .?, C- ⊨ J!

▸ J!holds until J"holds
▸ Also: J" has to hold eventually!
▸ For instance: ?,C ⊨ VR!

▸ Note: V doesn’t have to hold anymore once discharged by !

Temporal Operators: Until

!! !" !# !$!%
T T T T

V, !̅ V, !̅ V, !̅ XV, ! XV, !̅

?,C ⊨ ! R (QV)

Temporal Operators: More Examples

?,C ⊨ ! R (QV)

Temporal Operators: More Examples

!! !" !# !$!%
T T T T

!, XV !, XV !, XV !̅, V !, V

?,C ⊨ ! R (QV)

?, C ⊨ M(Q!)

Temporal Operators: More Examples

!! !" !# !$!%
T T T T

!, XV !, XV !, XV !̅, V !, V

?,C ⊨ ! R (QV)

?, C ⊨ M(Q!)

Temporal Operators: More Examples

!! !" !# !$!%
T T T T

!, XV !, XV !, XV !̅, V !, V

!! !" !# !$!%
T T T T

!̅ !̅ !̅ ! !

“not	indefinitely ($! ∧ & ")”

Temporal Operators: More Examples

?,C ⊨ M (¬ $) or															?, C ⊨ ¬Q ($)

“not	indefinitely ($! ∧ & ")”

Temporal Operators: More Examples

?,C ⊨ M (¬ $) or															?, C ⊨ ¬Q ($)

!! !" !# !$!%
T T T T

?,C ⊨ J!RJ"
▸ Last example shows:
▸ Some temporal operators can be expressed in terms of others

& $ ≡ ¬)(¬$)

) $ ≡ ,-./ 0 $

Temporal Operators: Redundancies

?,C ⊨ J!RJ"
▸ Last example shows:
▸ Some temporal operators can be expressed in terms of others

& $ ≡ ¬)(¬$)

) $ ≡ ,-./ 0 $

▸ ¬,e,R are sufficient to express Q and M
▸ (c.f. “basis” (¬,∨) in propositional logic)

Temporal Operators: Redundancies

?,C ⊨ J!RJ"
▸ So far, we can only talk about individual paths
▸ To amend this, we introduce path quantifies

▸ 1, ! ⊨ 4 $ ⇔ ∃7 starting at ! such that 1,7 ⊨ $

▸ 1, ! ⊨ 8 $ ⇔ ∀7 starting at ! it holds that 1,7 ⊨ $

Temporal Operators: Path Quantifiers

▸ Remember:
▸ Unwinding transition function results in infinite tree

Unwinding Transition Relations

▸ Accordingly, our logic is appropriately called Computation Tree Logic

▸ More specifically: CTL*

Computation Tree Logic CTL*

▸ ?, 5& ⊨ fM ($)

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓

▸ ?, 5& ⊨ fe(gQ $)

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($)✓

▸ ?, 5& ⊨ fe(gQ $) ✓

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓ ?, 5& ⊨ gQe ($)
▸ ?, 5& ⊨ fe(gQ $) ✓

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓ ?, 5& ⊨ gQe ($) ✓

▸ ?, 5& ⊨ fe(gQ $) ✓

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓ ?, 5& ⊨ gQe ($) ✓

▸ ?, 5& ⊨ fe(gQ $) ✓ ?, 5& ⊨ fQe $

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ ?, 5& ⊨ fM ($) ✓ ?, 5& ⊨ gQe ($) ✓

▸ ?, 5& ⊨ fe(gQ $) ✓ ?, 5& ⊨ fQe $ ×

Computation Tree Logic CTL*: Examples

s!

s"

s#

s$

▸ Commonly used subsets of CTL*:

▸ branching-time logic

quantifies over paths possible from a given state

▸ linear-time logic

for events along a single computation path only

Branching Time and Linear Time Logic

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

Model Checking

Algorithmic framework for exhaustive exploration of finite-state transition systems to
check temporal properties

Clarke Emerson Sifakis

▸ Computation Tree Logic CTL
▸ CTL ⊂ CTL*
▸ Restriction:

", #, $, and %, must be immediately preceded by & or '

Branching Time Logic: Computation Tree Logic

▸ Computation Tree Logic CTL
▸ CTL ⊂ CTL*
▸ Restriction:

", #, $, and %, must be immediately preceeded by & or '
▸ Examples:

Branching Time Logic: Computation Tree Logic

(#(start ∧ ¬ready) There’s a path on which we start
at some point despite not being
ready

&+(req & ⇒ &# ack) Each request eventually
acknowledged

&+ (" progress No deadlocks

▸ What are the restrictions?
▸ Some properties can’t be expressed!

▸ & #+ - can’t be expressed in CTL!

▸ And the advantages?
▸ More efficient to check than cull CTL*

▸ Checking CTL-formula . for 〈0, 2, 3, 4〉 is O(. · (|S| + |T|))
▸ Checking CTL* lies in PSPACE

▸ Can be checked using fixed points!

Branching Time Logic: Computation Tree Logic

▸ Linear Temporal Logic: Another subset of CTL*
for events along a single computation path only

▸ Formulas have the form &.
▸ State formulas can only be atomic propositions
▸ In particular, $ doesn’t contain ;, <, conjunctions, or disjunctions of path formulas

Linear Temporal Logic

▸ Linear Temporal Logic: Another subset of CTL*
for events along a single computation path only

▸ Formulas have the form &.
▸ State formulas can only be atomic propositions
▸ $ doesn’t contain ; or <

▸ Intuitively, . is always interpreted over all paths

Linear Temporal Logic

Examples for LTL formulas:
▸ &(#+ -) “all paths eventually stabilize with property -”
▸ This can’t be expressed in CTL

▸ &(+# -) “- is visited infinitely often”
▸ &+(try ⇒ # succeed) “every attempt eventually succeeds”

We can’t express
▸ &+((# -)
▸ This can be expressed in CTL

Linear Temporal Logic

Today
▸ Temporal logic as a specification language
▸ Branching time logic CTL
▸ Linear time logic LTL

Next
▸ Odds and Ends

Summary

