Temporal Logics

CS560: Reasoning About Programs

Roopsha Samanta **PURDUE**

Based on slides by Georg Weissenbacher

Roadmap

Previously

- Propositional logic and SAT Solving
- First-order logic, first-order theories and SMT Solving

Today

• Temporal logic!

Specifying Correctness for Ongoing Systems

A software system controlling traffic lights

Each traffic light in the system can be in one of three states

Expresses something bad should not happen

A perfectly *safe* scenario

Expresses something good will eventually happen

Temporal logics can express safety and liveness specifications for ongoing systems

Modeling Ongoing Systems

Finite State Transition system (S, T, I)

- A finite set of states *S*
- A set of initial states $I \subseteq S$
- A total transition relation $T \subseteq S \times S$

 $\forall s \in S. \exists s' \in S. T(s, s')$

Modeling Ongoing Systems

Kripke structure $\langle S, T, I, L \rangle$

- A finite set of states *S*
- A set of initial states $I \subseteq S$
- A total transition relation $T \subseteq S \times S$

set of subcets of

• A labeling function $L: S \rightarrow 2^{AP}$

AP: set of atomic propositions

Properties of states
Abstracts values of variables

State Formulas

State Formula Boolean combination of atomic propositions in *AP*

Given Kripke structure M, state s and state formula F, we write $M, s \models F$ if F holds in s

 $\begin{array}{lll} M,s\vDash p & \text{iff} & p\in L(s) \\ M,s\vDash \neg F & \text{iff} & M,s\nvDash F \\ M,s\vDash F_1\lor F_2 & \text{iff} & M,s\vDash F_1 \text{ or } & M,s\vDash F_2 \\ M,s\vDash F_1\land F_2 & \text{iff} & M,s\vDash F_1 \text{ and } & M,s\vDash F_2 \end{array}$

Path Formulas

A path π is a

- ▶ Sequence of states s₀, s₁, ...
- Such that $T(s_i, s_{i+1})$ (where $0 \le i$)

$$s_0$$
 T s_1 T s_2 T s_3 T s_4 $--+$

We use π^i to denote the *suffix* of π starting at s_i In particular, $\pi = \pi^0$ $\pi^{\circ} = \pi$ $\pi^{\circ} = s_1, s_2, s_3,$ $\pi^{\circ} = s_3, s_4, \cdots$

Path Formulas

Given Kripke structure M, path π and path formula ϕ , we write $M, \pi \vDash \phi$ if ϕ holds for $\pi \in M$

A state formula F is also a path formula

 $M, \pi \models F$ iff ??

Path Formulas

Given Kripke structure M, path π and path formula ϕ , we write $M, \pi \vDash \phi$ if ϕ holds for $\pi \in M$

A state formula F is also a path formula

 $M, \pi \models F$ iff F holds in the first state s_0 of π

- From now on, we use
 - F to denote a state formula
 - ϕ to denote a *path formula*
- We introduce a number of temporal operators
 - Allow us to specify what's supposed to happen *along a path*

Temporal Operators: Next

 $M, \pi \models \mathbf{X}\phi$ iff $M, \pi^1 \models \phi$

It *doesn't matter* whether or not p holds in s_0 or s_2 , s_3 , ...

Temporal Operators: Next

$$M, \pi \models \mathbf{X}\phi$$
 iff $M, \pi^1 \models \phi$

For instance: $M, \pi \models \mathbf{X}p$

Temporal Operators: Eventually

$$M, \pi \models F\phi \qquad \Leftrightarrow \qquad \exists k \ge 0. M, \pi^k \models \phi$$

- ► Basic <u>liveness</u> property
- For instance: $M, \pi \models Fp$

Temporal Operators: Eventually

$$M, \pi \models \mathbf{F}\phi \qquad \Leftrightarrow \qquad \exists k \ge 0. M, \pi^k \models \phi$$

- ► Basic <u>liveness</u> property
- For instance: $M, \pi \models Fp$
 - *p* holds after a *finite* number of steps

Temporal Operators: Globally

$$M, \pi \models \mathbf{G}\phi \qquad \Leftrightarrow \qquad \forall i \ge 0, M, \pi^i \models \phi$$

- ► Basic <u>safety</u> property
- For instance: $M, \pi \models Gp$
 - *p* holds after *any* number of steps

Temporal Operators: Until

$$\begin{split} M, \pi \vDash \phi_1 \boldsymbol{U} \phi_2 & \Leftrightarrow \quad \exists k \ge 0. \, M, \pi^k \vDash \phi_2 \\ \forall \, j \in \{0..\, k-1\}. \, M, \pi^j \vDash \phi_1 \end{split}$$

- ϕ_1 holds <u>until</u> ϕ_2 holds
- Also: ϕ_2 has to hold eventually!
- For instance: $M, \pi \vDash q U p$

Temporal Operators: Until

$$\begin{split} M, \pi \vDash \phi_1 \boldsymbol{U} \phi_2 & \Leftrightarrow \quad \exists k \ge 0. \, M, \pi^k \vDash \phi_2 \\ \forall \, j \in \{0..\, k-1\}. \, M, \pi^j \vDash \phi_1 \end{split}$$

- ϕ_1 holds <u>until</u> ϕ_2 holds
- Also: ϕ_2 has to hold eventually!
- For instance: $M, \pi \vDash q U p$

Note: q doesn't have to hold anymore once discharged by p

 $M, \pi \vDash p \boldsymbol{U}(\boldsymbol{G}q)$

 $M, \pi \models F(Gp)$

.

Temporal Operators: Redundancies

 $M,\pi \vDash \phi_1 \pmb{U} \phi_2$

- Last example shows:
 - Some temporal operators can be expressed in terms of others

$$G \phi \equiv \neg F(\neg \phi) \qquad \neg G \phi \equiv F(\neg \phi)$$
$$F \phi \equiv true U \phi$$

Temporal Operators: Redundancies

$$M, \pi \vDash \phi_1 U \phi_2$$

- Last example shows:
 - Some temporal operators can be expressed in terms of others

 $\boldsymbol{G}\,\phi\equiv\neg\boldsymbol{F}(\neg\phi)$

 $\pmb{F} \phi \equiv true \; \pmb{U} \phi$

- ▶ ¬, X, U are sufficient to express G and F
- ► (c.f. "basis" (¬,V) in propositional logic)

Temporal Operators: Path Quantifiers

 $M, \pi \models \phi_1 U \phi_2$

(m

- So far, we can only talk about individual paths
- To amend this, we introduce *path quantifies*
 - $M, s \models E \phi \quad \Leftrightarrow \quad \exists \pi \text{ starting at } s \text{ such that } M, \pi \models \phi$
 - $M, s \models A \phi \iff \forall \pi$ starting at s it holds that $M, \pi \models \phi \ge d$

Unwinding Transition Relations

- Remember:
 - Unwinding transition function results in infinite tree

Computation Tree Logic CTL*

- Accordingly, our logic is appropriately called Computation Tree Logic
- ▶ More specifically: CTL*

- $M, s_0 \models AF() \checkmark$
- $M, s_0 \models AX(EG())$

- ► $M, s_0 \models AF() \checkmark$
- ► $M, s_0 \models AX(EG()) \checkmark$

• $M, s_0 \models AX(EG()) \checkmark$

Branching Time and Linear Time Logic

- Commonly used subsets of CTL*:
 - *branching-time* logic

CTL

quantifies over paths possible from a given state

► *linear-time* logic

LTL

for events along a single computation path only

Model Checking

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal Logic, 1981

Algorithmic framework for exhaustive exploration of finite-state transition systems to check temporal properties

Branching Time Logic: Computation Tree Logic

- Computation Tree Logic CTL
- CTL \subset CTL*
- Restriction:
 X, F, G, and U, must be immediately preceded by A or E

AX EF FE AFEG AFAG

Branching Time Logic: Computation Tree Logic

- Computation Tree Logic CTL
- CTL \subset CTL*
- Restriction:
 X, F, G, and U, must be immediately preceded by A or E
- Examples: **EF(start** $\land \neg$ ready) **AG(req A \Rightarrow AF ack)**

AG EX progress

There's a path on which we start at some point despite not being ready Each request eventually acknowledged

No deadlocks

Branching Time Logic: Computation Tree Logic

- What are the restrictions?
 - Some properties can't be expressed!
- ► A(FG p) can't be expressed in CTL!
- And the advantages?
 - More efficient to check than cull CTL*
 - Checking CTL-formula ϕ for (S, T, I, L) is $O(|\phi| \cdot (|S| + |T|))$
 - Checking CTL* lies in PSPACE
 - Can be checked using fixed points!

Linear Temporal Logic

- Linear Temporal Logic: Another subset of CTL* for events along a single computation path only
- Formulas have the form $\mathbf{A} \boldsymbol{\phi}$
 - State formulas can only be atomic propositions
 - In particular, ϕ doesn't contain **A**, **E**, conjunctions, or disjunctions of path formulas

Linear Temporal Logic

- Linear Temporal Logic: Another subset of CTL* for events along a single computation path only
- Formulas have the form $\mathbf{A} \boldsymbol{\phi}$
 - State formulas can only be atomic propositions
 - ϕ doesn't contain **A** or **E**
- Intuitively, ϕ is always interpreted over all paths

Linear Temporal Logic

Examples for LTL formulas:

- A(FG p) "all paths eventually stabilize with property p"
 This can't be expressed in CTL
- A(GF p) "p is visited infinitely often"
- ▶ $AG(try \Rightarrow F \text{ succeed})$ "every attempt eventually succeeds"

We can't express

- ► **AG**(**EF** *p*)
 - This *can* be expressed in CTL

Summary

Today

- Temporal logic as a specification language
- Branching time logic CTL
- Linear time logic LTL

Next

Odds and Ends