SMT Solving
A Core Theory Solver
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Partly based on slides by Isil Dillig and Emina Torlak



Roadmap

Previously
» Propositional logic and SAT solving
» First-order logic and first-order theories

Today
» SMT solving
» DPLL(T) : Combine DPLL algorithm for SAT solving with theory solvers

» A core theory solver: congruence closure algorithm for T -
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Planning and scheduling in Al

Network analysis

Test-case generation

Software verification

White-box fuzzing for security

Z3 (MSR)

Yices (SRI)

MathSAT(U Trento)

CVC3(NYU, U lowa)
SMT solver STP (Stanford)

Barcelogic (Catalunya)

SMT-Lib: library of benchmarks
http://www.smtlib.org

SMT-Comp: annual SMT-Solver competition
http://www.smtcomp.org



http://www.smtlib.org/
http://www.smtcomp.org/
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| DPLL(T): Main Idea

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable
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Boolean abstraction of SMT formula: - -

Treat each atomic formula as a propositional variable

DPLL(T): Main Idea

SAT solver handles Boolean structure of formula
» If there is no satisfying assignment to Boolean 5 [A) X< z /\
abstraction, SMT formula is UNSAT
» If there is satisfying assignment to Boolean y i /\
AN

abstraction, SMT formula may not be SAT
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DPLL(T): Main Idea

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula

» If there is no satisfying assignment to Boolean
abstraction, SMT formula is UNSAT

» If there is satisfying assignment to Boolean
abstraction, SMT formula may not be SAT

Theory solver checks whether assignment made by
SAT solver is satisfiable modulo theory

If SAT solver finds assignment that
is consistent with theory, then
SMT formula is satisfiable



SMT Formulas and Boolean Abstraction

» SMT formulain theory T : _
F := a'lrlFl/\ FZ | F1V le—lF

» For each SMT formula, define a bijective function B, called Boolean abstraction function
(or Boolean skeleton), that maps SMT formula to an overapproximate SAT formula

» Function B defined inductively as follows:
B(ay) = b;
B(Fy N Fp) = B(F;) AB(F,)
B(F, V F;) = B(F1) VB(F,)
B (—F) = ~B(F)



DPLL(T)

(F)
G= F(F)
while (true) do
A, out = (@)
if (out =UNSAT) then return UNSAT
else
out = (7 4)
if (out =SAT) then return SAT
else G = GAN-A
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Boolean abstraction
(F)
G= T(F)
while (true) do
A, out = (@)
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out = (7 (4)
if (out =SAT) then return SAT
else G = GA-A

conjunction of propositional literals
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G= T(F)
(true)
A, out = (@)
(out = UNSAT) UNSAT
out = (7 (4)
(out = SAT) SAT

G = GN-A

Boolean abstraction

conjunction of propositional literals

conjunction of atomic T-formulas

theory conflict clause



DPLL(T)

G

(F)

= 5(F)

(
A, out

true)

(out = UNSAT)

out

= (
(out = SAT)
G = GA-A

(G)

(4))

UNSAT

SAT

Boolean abstraction

conjunction of propositional literals

conjunction of atomic T-formulas

theory conflict clause

Too weak! Blocks one
assignment at a time.
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DPLL(T): improvement

(F)
G= 1(F)
(true)
A,out = (@)
(out = UNSAT) UNSAT
out = (7 (4)
(out = SAT) SAT
G = GAN=(

(

(4)))

An C of A
contains a subset of atoms
in A such that B™1(C) is
still unsatisfiable.

C* has the property that if
you drop any single atom of
C*, result is satisfiable

Waits for full assignment to
the Boolean abstraction to
generate conflict clause

Solution: Integrate theory
solver into DPLL. Don’t use
SAT solver as “blackbox”.



2x+y <5

Theory
solver:
Linear Real
Arithmetic

2i+j<5

Theory
solver:
Linear Integer
Arithmetic

x=g©)

Core solver:
Equality and UF

(b>»2)=c

Theory
solver:
Fixed-Width
Bitvectors

ali] = x

Theory
solver:
Arrays
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Theory of equality T —

. ={=ab,c .., f,9,h ....,0,q71}

1.Vx. x =x

2.Vx,y. (x =y) - y=x

IV, y,z. (x=yANy=2z) > x=2Z
A.NXq, iy Xy V1 o0 Y- (N X5 =
5.VX1, e, X Y15 o Ve (N X; = yi) —

i) = (fO s X)) = f 1, oo (
(p(xl; """ an) « P(}’p ""'yn) (pr- congruence)

Eliminate predicates to get equisatisfiable
formula with only functions

Introduce fresh constant e
For each p:
1. introduce a fresh function constant f,

2'p(x1i'--1xn) > fp(xl,...,xn) = ./-

(reflexivity)

(symmetry)

(transitivity)
,yn)) fn. congruence)
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Theory of equality & uninterpreted functions T _

TEU?

. ={=a,b,c .., f,g h}

(reflexivity)
(symmetry)
(transitivity)

1.Vx. x =x

2.Vx,y. (x=y) > y=x

3Vx,y,z. (x=yANy=2z) > x=2z2
4. Vxl, o X Y1 o Y (/\1 Xi = yl) - (f(xll ---;xn) = f(yli »Yn)) (fﬂ congruence)

All first-order structures (U, I) that satisfy the axioms of T
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Is a conjunction of T _ literals satisfiable?

fFFF@)) =a f(f(f(f(f(a))))>= a A fl@)#a

“ J \ )




12

Is a conjunction of T _ literals satisfiable?

f(f(f(a))) =a A f<f<f(f(f(a)))>>= a A f(a)# a

ie, f3(a)=a A f(a=a A f(a)#* a
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Is a conjunction of T _ literals satisfiable?

f(f(f(a))) =a A f<f<f(f(f(a)))>>= a A f(a)# a
e, f3(a)=a A f(a)=a A f(a)# a

Decision procedure: Congruence closure algorithm
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Congruence closure algorithm: basic sketch

Place each subterm of F into its own
congruence class.

For each positive literal t; = tyin F:
» Merge the classes for t; and t,
» Propagate the resulting congruences

If F has a negative literal t;{ # t, with
t1 and t, in the same congruence class,
output UNSAT

Otherwise, output SAT
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Congruence closure algorithm: basic sketch

Place each subterm of F into its own
congruence class.

For each positive literal t; = t,in F: Computing the
» Merge the classes for t; and t, congruence closure” of
» Propagate the resulting congruences = over the subterm set

If F has a negative literal t;{ # t, with
t1 and t, in the same congruence class,
output UNSAT

Otherwise, output SAT
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Congruence closure algorithm: da}a sBructure
Subfems: ¢ £lab
b 2
» Represent subterm set as a DAG: each node ’FC’F{QI ‘)-)

corresponds to a subterm and edges point _
from function symbol to arguments fla,b) = a Af(f(a,b),b) # a

» Each node stores its unique id, name of
function or variable, and list of arguments 1:f

2:f

3:a 4:b
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Congruence closure algorithm: data structure

» Represent subterm set as a DAG: each node

corresponds to a subterm and edges point _
from function symbol to arguments fla,b) = a Af(f(a,b),b) # a

» Each node stores its unique id, name of

function or variable, and list of arguments 1:f
» Eachnodenhasa pointer field that

leads to the of its congruence

class (or to itself if it is the representative) 2:f
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Congruence closure algorithm: data structure

» Represent subterm set as a DAG: each node
corresponds to a subterm and edges point
from function symbol to arguments

» Each node stores its unique id, name of
function or variable, and list of arguments

» Eachnodenhasa pointer field that
leads to the of its congruence
class (or to itself if it is the representative)

Each congruence class has one
representative.

When merging two classes, only
need to update the representative

1:f

2:f
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Congruence closure algorithm: data structure

Ifx;y = y1,..., Xk = Y, need

» Represent subterm set as a DAG: each node to merge congruence classes of

corresponds to a subterm and edges point their parents f (x) and f (¥)
from function symbol to arguments

» Each node stores its unique id, name of

function or variable, and list of arguments 1:f
» Eachnodenhasa pointer field that

leads to the of its congruence

class (or to itself if it is the representative) 2:f
» Each representative has a field that

stores the set of parents for all subterms in its
congruence class
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Congruence closure algorithm

(F)
construct the DAG for F’s subterms
Sj = ti eEF
(si, ti)
Si ¥ j € F
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Congruence closure algorithm

(F)

construct the DAG for F’s subterms

Sj = ti EF
(si, ti)

Si ¥ j € F

(sj) =

SAT

(t;)
UNSAT

Place each subterm of F into its own
congruence class.

For each positive literal t; = ty in F:
» Merge the classes for t; and t,
» Propagate the resulting congruences

If F has a negative literal t;{ # t, with
t, and t, in the same congruence class,
output UNSAT

Otherwise, output SAT
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Congruence closure algorithm

_ Place each subterm of F into its own
— =~ congruence class.

(F) --

-

construct the DAG for F’s subterms For each positive literal t; = £z in F:
» Merge the classes for t; and t,

Si =1t € F ]

» Propagate the resulting congruences
(si, ti)
siteF . . _
_ If F has a negative literal t;{ # t, with
(si) = (t;) ; -
1 and t, in the same congruence class,
UNSAT output UNSAT
SAT

Otherwise, output SAT
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Congruence closure algorithm

_ Place each subterm of F into its own

-

- congruence class.

(F) -
construct the DAG for F’s subterms For each positive literal t; = £z in F:
S =t €F = —=- » Merge the classes for t; and t,
: : T » Propagate the resulting congruences
(i, ti)
siteF . . .
e e = —— | If F has a negative literal t;{ # t, with
(sj) = (t;) B -
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Congruence closure algorithm

_ Place each subterm of F into its own

-

- congruence class.

(F) -7

construct the DAG for F’s subterms For each positive literal t; = £z in F:
» Merge the classes for t; and t,

for si=ti€F _ _ __a—-==-=""77 .
- » Propagate the resulting congruences
(i, ti)
for si# 4 €F o _
if (s) = FIOET ~ === === -4 - If F has a negative literal t; # t, with
! ! t; and t, in the same congruence class,
then return UNSAT output UNSAT
return SAT

-
= e
—
-——_
—
—
—

Otherwise, output SAT
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Congruence closure algorithm: union-find

returns the representative of a node’s

congruence class by followin ointers until it
find% a self-loop ! ° P fla,b) = a ANf(f(a,b),b) # a

2:f
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Congruence closure algorithm: union-find

returns the representative of a node’s

congruence class by followin ointers until it
find% a self-loop ! ° P fla,b) = a ANf(f(a,b),b) # a

FIND(2)?

2:f
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Congruence closure algorithm: union-find

returns the representative of a node’s

congruence class by followin ointers until it
find% a self-loop ! ° P fla,b) = a ANf(f(a,b),b) # a

UNION combines congruence classes for nodes i

and iy: . .
ny, Ny = FIND(iy), FIND(i3) NION(1,2)
nl.ﬁnd =N, 2.f

Nny.ccp=nq.ccp U ny.ccp
ny.ccp=¢
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Congruence closure algorithm: union-find

returns the representative of a node’s

congruence class by following pointers until it
finds a self-loop f(a,b) = a Af(f(ab)b)=+ a
UNION combines congruence classes for nodes i Lf
and iy:
Ny, N, = FIND(iq), FIND(i5)
nl.ﬁnd =N, 2:f

Nny.ccp=nq.ccp U ny.ccp
ny.ccp=¢
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Congruence closure algorithm: congruent

take as input two nodes and return
true iff their:

» functions are the same

fla,b) = a Af(f(a,b),b) # a

» corresponding arguments are in the same
congruence class

2:f
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Congruence closure algorithm: congruent

take as input two nodes and return
true iff their:

» functions are the same

fla,b) = a Af(f(a,b),b) # a

» corresponding arguments are in the same
congruence class

CONGRUENT(1,2)?
2:f



23

Congruence closure algorithm: merge

(i1, i2)
ng, Ny = (i1), (i2)
np=n;
P1,P2 =MNq.CCP, Ny .CCP
(n1,n3)

t1,l2 Ep1 X P2
(£1) # (t2) A

(tll t2)

fla,b) = a Af(f(a,b),b) # a
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Congruence closure algorithm: merge

(i1, i2)
ng, Ny = (i), (i2)
np=n;
P1,P2 =MNq.CCP, Ny .CCP
(n1,n3)

t1,l2 Ep1 X P2
(£1) # (t2) A

(tll tZ)

f(a,b) = a ANf(f(a,b),b) # a
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Congruence closure algorithm: merge

(i1, i2)
ng, Ny = (i1), (i2)
np=n;
P1,P2 =MNq.CCP, Ny .CCP
(n1,n3)

t1,l2 Ep1 X P2
(£1) # (t2) A

(tll t2)

(tl; tZ )

f(a,b) = a ANf(f(a,b),b) # a

MERGE(2,3)
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Congruence closure algorithm: merge

(i1, i2)
ng, Ny = (i1), (i2)
np=n;
P1,P2 =MNq.CCP, Ny .CCP
(n1,n3)

t1,l2 Ep1 X P2
(£1) # (t2) A

(tll t2)

f(a,b) = a ANf(f(a,b),b) # a

2:f



26

Congruence closure algorithm: merge

(i1, i2)
ng, Ny = (i1), (i2)
np=n;
P1,P2 =MNq.CCP, Ny .CCP
(n1,n3)

t1,l2 Ep1 X P2
(£1) # (t2) A

(tll t2)

f(a,b) = a ANf(f(a,b),b) # a

1:f

2:f
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Congruence closure algorithm

(F) fla,b) = a ANf(f(a,b),b) # a

construct the DAG for F’s subterms
Sj = ti eEF
(si, t;)
Si ¥ j € F
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Congruence closure algorithm

(F) f(a,b) = a Af(f(a,b),b) # a

construct the DAG for F’s subterms
Sj = ti eEF
(si, t;)
Si ¥ j € F
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Congruence closure algorithm

f(a,b) = a ANf(f(a,b),b) # a

(F)
construct the DAG for F’s subterms
Sj = ti eEF 13f
(si, t;)
Si ¥ j € F
(si) = F1no(ty) 2 f
UNSAT
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Congruence closure algorithm

f(a,b) = a Nf(f(a,b),b) # a

(F)
construct the DAG for F’s subterms
Sj = ti eEF 13f
(si, t;)
Si ¥ j € F
(si) = F1no(ty) 2 f
UNSAT
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Congruence closure algorithm

f(a,b) = a Nf(f(a,b),b) # a

(F)
construct the DAG for F’s subterms
Sj = ti eEF 13f
i 1) UNSAT!
Si ¥ j € F :
(si) = F1no(ty) 2 f
UNSAT
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Definitions |

A binary relation R over a set S is an equivalence relation if it is

1. reflexive: Vs € S. R(s,s)

2. symmetric: Vsq,5, € S. R(S1,S2) = R(s3,51)

3. transitive: Vsy,S,,53 €S. R(s1,52) A R(S3,53) = R(s1,53)

The equivalence class of element s € S under R: [s]gp & {s' €S : R(s,s’)}

A equivalence relatiog R over a set S is a congruence relation if for every n-ary function f :
v3 2 /\ R(sut) - R(FG), F(2))
i=1

The congruence class of element s € S under R is its equivalence class
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A binary relation R; is a fetinement of another binary
relation R,, written Ry < R,, if

VSllSZ € S. R1(S1;52) - Rz(Sl,Sz)

The equivalence closure RE of a binary relation R
over S is the equivalence relation such that:

1. R refines RE i.e. R < RE;

2. for all other equivalence relations R" with R < R’,
either R" = RE or RE < R’

The congruence closure R¢ of a binary relation R
over S is the congruence relation such that:

1.12 refines R¢,i.e.R < RC:

2. for all other congruence relations R' s.t. R < R’,
either R = R¢ orR¢ < R’
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Definitions i

RE is the smallest equivalence
relation that includes R.

RC is the smallest congruence
relation that includes R.

A binary relation Rq is a refinement of another binary
relation R,, written Ry < R,, if
Vsy,S2 €S. R1(51,52) = Ra(51,52)

The equivalence closure RE of a binary relation R
over S is the equivalence relation such that:

1. R refines RE,i.e. R < RE;

2. for all other equivalence relations R" with R < R/,
either R" = R or RE < R’

The congruence closure R¢ of a binary relation R
over S is the congruence relation such that:

1. R refines R¢,i.e.R < R¢:

2. for all other congruence relations R’ s.t. R < R/,
either " = R¢ or R¢ < R’



Satisfiability using congruence relations

Let F be a Z: formula as follows:

F is satisfiable iff there exists a congruence relation ~
over the subterm set Sg of F such that:

1. Foreachiin[1,m], s; ~t;
2.Foreachiin[m+1,n], s; * t;



Satisfiability using congruence relations

Let F be a Z: formula as follows:

F is satisfiable iff there exists a congruence relation ~
over the subterm set Sg of F such that:

1. Foreachiin[1,m], s; ~t;
2.Foreachiin[m+1,n], s; * t;

The congruence closure
algorithm computes
such a congruence
relation ~, or,

proves that no such
relation exists



35

Summary

Today

» SMT solving

» DPLL(T) : combine DPLL algorithm for SAT solving with theory solvers
» A core theory solver: congruence closure algorithm for T —

Next
» Temporal logic
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