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CS560: Reasoning About Programs

SMT Solving
A Core Theory Solver

Partly based on slides by Isil Dillig and Emina Torlak
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Previously
▸ Propositional logic and SAT solving
▸ First-order logic and first-order theories

Today
▸ SMT solving
▸ DPLL(T) : Combine DPLL algorithm for SAT solving with theory solvers
▸ A core theory solver: congruence closure algorithm for !!

Roadmap
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SMT solver
Software verification

Test-case generation

Network analysis

White-box fuzzing for security

⋮

Planning and scheduling in AI
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SMT solver
Software verification

Test-case generation

Network analysis

White-box fuzzing for security

⋮

Z3 (MSR)

Yices (SRI)

CVC3(NYU, U Iowa)

STP (Stanford)

MathSAT(U Trento)

Barcelogic (Catalunya)

⋮
SMT-Lib: library of benchmarks
http://www.smtlib.org

SMT-Comp: annual SMT-Solver competition
http://www.smtcomp.org

Planning and scheduling in AI
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SMT solver
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2! + ) < 10
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Decision procedure for checking satisfiability 
in quantifier-free conjunctive fragment

Type equation here.

Core solver

DPLL(8)

Theory 
solver

Theory 
solver

…

Theories First-order logic

4



Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable 

DPLL(!): Main Idea
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Theory solver checks whether assignment made by 
SAT solver is satisfiable modulo theory

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable 

SAT solver handles Boolean structure of formula 
‣ If there is no satisfying assignment to Boolean 

abstraction, SMT formula is UNSAT
‣ If there is satisfying assignment to Boolean 

abstraction, SMT formula may not be SAT

If SAT solver finds assignment that 
is consistent with theory, then 
SMT formula is satisfiable

DPLL(!): Main Idea
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▸ SMT formula in theory : :
; ∶= //0 ;1 ∧ ;2 ;1∨ ;2 | ¬;

▸ For each SMT formula, define a bijective function ℬ, called Boolean abstraction function 
(or Boolean skeleton), that maps SMT formula to an overapproximate SAT formula

▸ Function ℬ defined inductively as follows:

ℬ(//0 ) = ?0
ℬ ;1 ∧ ;2 = ℬ ;1 ∧ ℬ(;2)
ℬ ;1 ∨ ;2 = ℬ ;1 ∨ ℬ(;2)

ℬ ¬; = ¬ℬ(;)

SMT Formulas and Boolean Abstraction
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DPLL(!)

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@) 
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A)) 
if (out = SAT) then return SAT
else @ = @ ∧ ¬A
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DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@) 
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A)) 
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)

conjunction of propositional literals

conjunction of atomic 8-formulas

theory conflict clause

Too weak! Blocks one 
assignment at a time.

Boolean abstraction
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DPLL(!): improvement
8
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DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@) 
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A)) 
if (out = SAT) then return SAT
else @ = @ ∧ ¬ℬ(MINIMALUNSATCORE(ℬ31(A)))

DPLL(!): improvement An unsatisfiable core C of A
contains a subset of atoms 
in A such that ℬ31(C) is 
still unsatisfiable.

Minimal unsatisfiable core 
C∗ has the property that if 
you drop any single atom of 
C∗, result is satisfiable

Waits for full assignment to 
the Boolean abstraction to 
generate conflict clause

Solution: Integrate theory 
solver into DPLL. Don’t use 
SAT solver as “blackbox”. 
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5 = 7 8

Core solver: 
Equality and UF

25 + 8 ≤ 5 2= + > ≤ 5 ? ≫ 2 = A B = = 5

Theory 
solver: 

Linear Real 
Arithmetic

Theory 
solver: 

Linear Integer 
Arithmetic

Theory 
solver: 

Fixed-Width 
Bitvectors

Theory 
solver: 
Arrays

9



Theory of equality !"
Signature 
ΣC ≔ =, /, ?, F, … , #, G, ℎ, … , I, J, K

Axioms  
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %, ). (! = % ∧ % = )) → ! = ) (transitivity) 
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence) 
5. ∀!1, … , !D, %1, … %D. (⋀i !0 = %0) → ((p !1, …… , !D ↔ I %1, … . , %D (pr. congruence)
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Theory of equality !"
Signature 
ΣC ≔ =, /, ?, F, … , #, G, ℎ, … , I, J, K

Axioms  
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %, ). (! = % ∧ % = )) → ! = ) (transitivity) 
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence) 
5. ∀!1, … , !D, %1, … %D. (⋀i !0 = %0) → ((p !1, …… , !D ↔ I %1, … . , %D (pr. congruence)

Eliminate predicates to get equisatisfiable
formula with only functions

Introduce fresh constant ●
For each I:
1. introduce a fresh function constant #E
2. I !1, . . . , !D ⇢ #E(!1, . . . , !D) = ●
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Theory of equality & uninterpreted functions !"
Signature 
ΣC ≔ =, /, ?, F, … , #, G, ℎ

Axioms  
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %, ). (! = % ∧ % = )) → ! = ) (transitivity) 
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence) 

:C models    
All first-order structures R, S that satisfy the axioms of 8C
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" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?
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" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?

i.e, ""(#) = # ∧ "#(#) = # ∧ " # ≠ #
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" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?

i.e, ""(#) = # ∧ "#(#) = # ∧ " # ≠ #

Decision procedure: Congruence closure algorithm
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Congruence closure algorithm: basic sketch
Place each subterm of ; into its own 
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with 
T1 and T2 in the same congruence class, 
output UNSAT

Otherwise, output SAT
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Congruence closure algorithm: basic sketch
Place each subterm of ; into its own 
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with 
T1 and T2 in the same congruence class, 
output UNSAT

Otherwise, output SAT

Computing the 
“congruence closure” of 
= over the subterm set

13



Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node 
corresponds to a subterm and edges point 
from function symbol to arguments

▸ Each node stores its unique id, name of 
function or variable, and list of arguments 1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node 
corresponds to a subterm and edges point 
from function symbol to arguments

▸ Each node stores its unique id, name of 
function or variable, and list of arguments 

▸ Each node V has a find pointer field that 
leads to  the representative of its congruence 
class (or to itself if it is the representative)

1:$

2:$

Each congruence class has one 
representative.
When merging two classes, only 
need to update the representative 

3:% 4:&
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{1,2}{1,2}

Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node 
corresponds to a subterm and edges point 
from function symbol to arguments

▸ Each node stores its unique id, name of 
function or variable, and list of arguments 

▸ Each node V has a find pointer field that 
leads to  the representative of its congruence 
class (or to itself if it is the representative)

▸ Each representative has a ccpar field that 
stores the set of parents for all subterms in its 
congruence class

1:$

2:$

3:% 4:&

If !1 = %1, . . . , !F = %F , need 
to merge congruence classes of 
their parents # (!⃗) and # (%⃗)
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Congruence closure algorithm

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG) 
then return UNSAT

return SAT
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Congruence closure algorithm: union-find

FIND returns the representative of a node’s 
congruence class by following find pointers until it 
finds a self-loop

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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Congruence closure algorithm: union-find

FIND returns the representative of a node’s 
congruence class by following find pointers until it 
finds a self-loop

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /

FIND(2)?
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Congruence closure algorithm: union-find

FIND returns the representative of a node’s 
congruence class by following find pointers until it 
finds a self-loop

UNION combines congruence classes for nodes 11
and 12:

V1, V2 = FIND(11), FIND(12)
V1.find = V2
V2.ccp = V1.ccp ∪ V2.ccp
V1.ccp = ]

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /

UNION(1,2)?
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Congruence closure algorithm: union-find

FIND returns the representative of a node’s 
congruence class by following find pointers until it 
finds a self-loop

UNION combines congruence classes for nodes 11
and 12:

V1, V2 = FIND(11), FIND(12)
V1.find = V2
V2.ccp = V1.ccp ∪ V2.ccp
V1.ccp = ]

# /, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&
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Congruence closure algorithm: congruent

CONGRUENT take as input two nodes and return 
true iff their:
▸ functions are the same
▸ corresponding arguments are in the same 

congruence class 
{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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1:$

2:$

3:% 4:&
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{}

{1}

Congruence closure algorithm: merge

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return 
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2)  ∧ CONGRUENT(T1, T2 )
then MERGE(T1, T2)

{1,2}{2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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{}

{1}

Congruence closure algorithm: merge

{1,2}{2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /

24
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{}

{1}

Congruence closure algorithm: merge

{1,2}{2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /

MERGE(2,3)

24

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return 
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2)  ∧ CONGRUENT(T1, T2 )
then MERGE(T1, T2)



{}

Congruence closure algorithm: merge

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return 
I1, I2 = V1.ccp, V2.ccp
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Congruence closure algorithm: merge

{1,2}{1,2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return 
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2)  ∧ CONGRUENT(T1, T2 )
then MERGE(T1, T2)



Congruence closure algorithm

{}

{1}

{1,2}{2}

1:$

2:$

3:% 4:&

# /, ? = / ∧ #(# /, ? , ?) ≠ /
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construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG) 
then return UNSAT

return SAT
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Congruence closure algorithm
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3:% 4:&
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Congruence closure algorithm
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DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;
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Congruence closure algorithm

# /, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&

UNSAT!
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DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG) 
then return UNSAT

return SAT



A binary relation ! over a set " is an equivalence relation if it is

1. reflexive: ∀$ ∈ ". !($, $)
2. symmetric: ∀$#, $$ ∈ ". !($#, $$) → !($$, $#)
3. transitive:   ∀$#, $$, $% ∈ ". ! $#, $$ ∧ !($$, $%) → !($#, $%)
The equivalence class of element $ ∈ " under !: $ & ≝ {$' ∈ " ∶ !($, $')}

A equivalence relation ! over a set " is a congruence relation if for every 1-ary function 2 :   

∀$⃗, 4⃗.5
()#

*
!($( , 4() → !(2 $⃗ , 2 4⃗ )

The congruence class of element $ ∈ " under ! is its equivalence class

Definitions I
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Definitions II
A binary relation _1 is a refinement of another binary 
relation _2, written _1 ≺ _2, if

∀[1, [2 ∈ a. _1([1, [2) → _2([1, [2)

The equivalence closure _H of a binary relation _
over a is the equivalence relation such that:
1. _ refines _H, i.e. _ ≺ _H;
2. for all other equivalence relations _′ with _ ≺ _I, 
either _I = _H or _H ≺ _I

The congruence closure _J of a binary relation _
over a is the congruence relation such that:
1. _ refines _J, i.e. _ ≺ _J ;
2. for all other congruence relations _′ s.t. _ ≺ _′, 
either _′ = _J or _J ≺ _I

33



Definitions II
A binary relation _1 is a refinement of another binary 
relation _2, written _1 ≺ _2, if

∀[1, [2 ∈ a. _1([1, [2) → _2([1, [2)

The equivalence closure _H of a binary relation _
over a is the equivalence relation such that:
1. _ refines _H, i.e. _ ≺ _H;
2. for all other equivalence relations _′ with _ ≺ _I, 
either _I = _H or _H ≺ _I

The congruence closure _J of a binary relation _
over a is the congruence relation such that:
1. _ refines _J, i.e. _ ≺ _J ;
2. for all other congruence relations _′ s.t. _ ≺ _′, 
either _′ = _J or _J ≺ _I

_H is the smallest equivalence 
relation that includes _.

_J is the smallest congruence 
relation that includes _.
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Satisfiability using congruence relations

Let ; be a ∑= formula as follows:
[1 = T1 ∧ . . .∧ [K = TK ∧ [KL1 ≠ TKL1 ∧ . . .∧ [D ≠ TD

; is satisfiable iff there exists a congruence relation ~
over the subterm set aM of ; such that:

1. For each 1 in 1,e , [0 ~ T0
2. For each 1 in e + 1, V , [0 ≁ T0
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Satisfiability using congruence relations

Let ; be a ∑= formula as follows:
[1 = T1 ∧ . . .∧ [K = TK ∧ [KL1 ≠ TKL1 ∧ . . .∧ [D ≠ TD

; is satisfiable iff there exists a congruence relation ~
over the subterm set aM of ; such that:

1. For each 1 in 1,e , [0 ~ T0
2. For each 1 in e + 1, V , [0 ≁ T0

The congruence closure 
algorithm computes 
such a congruence 
relation ~, or, 
proves that no such 
relation exists
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Today
▸ SMT solving
▸ DPLL(T) : combine DPLL algorithm for SAT solving with theory solvers
▸ A core theory solver: congruence closure algorithm for !!

Next
▸ Temporal logic

Summary
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