SMT Solving

A Core Theory Solver

CS560: Reasoning About Programs

Roopsha Samanta PuRDUE

Partly based on slides by Isil Dillig and Emina Torlak

Roadmap

Previously

- Propositional logic and SAT solving
- First-order logic and first-order theories

Today

- SMT solving
- DPLL(T) : Combine DPLL algorithm for SAT solving with theory solvers
- A core theory solver: congruence closure algorithm for $\boldsymbol{T}_{=}$

Planning and scheduling in AI

Network analysis

Test-case generation

SMT solver

White-box fuzzing for security
\vdots

SMT solver

SMT solver

DPLL(T): Main Idea

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

5
DPLL(T): Main Idea

$$
\begin{aligned}
& F: x=z \wedge((y=z \wedge x<z) \vee \tau(x=z) \\
& B(F): b_{1} \wedge\left(b_{2} \wedge b_{3}\right) \vee \tau b_{1}
\end{aligned}
$$

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula

- If there is no satisfying assignment to Boolean abstraction, SMT formula is UNSAT
- If there is satisfying assignment to Boolean abstraction, SMT formula may not be SAT

$$
\begin{aligned}
& A: b_{1} \wedge b_{2} \wedge b_{3} \\
& B^{-1}(A)=x=z \\
& y=z \wedge \\
& x<z
\end{aligned}
$$

DPLL(T): Main Idea

Boolean abstraction of SMT formula:

Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula

- If there is no satisfying assignment to Boolean abstraction, SMT formula is UNSAT
- If there is satisfying assignment to Boolean abstraction, SMT formula may not be SAT

Theory solver checks whether assignment made by SAT solver is satisfiable modulo theory

5

DPLL(T): Main Idea

Boolean abstraction of SMT formula:

Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula

- If there is no satisfying assignment to Boolean abstraction, SMT formula is UNSAT
- If there is satisfying assignment to Boolean abstraction, SMT formula may not be SAT

Theory solver checks whether assignment made by SAT solver is satisfiable modulo theory

If SAT solver finds assignment that is consistent with theory, then SMT formula is satisfiable

SMT Formulas and Boolean Abstraction

- SMT formula in theory \boldsymbol{T} :

$$
F:=a_{T}^{i}\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2} \mid \neg F
$$

- For each SMT formula, define a bijective function \mathcal{B}, called Boolean abstraction function (or Boolean skeleton), that maps SMT formula to an overapproximate SAT formula

Function \mathcal{B} defined inductively as follows:

$$
\begin{aligned}
\mathcal{B}\left(a_{T}^{i}\right) & =b_{i} \\
\mathcal{B}\left(F_{1} \wedge F_{2}\right) & =\mathcal{B}\left(F_{1}\right) \wedge \mathcal{B}\left(F_{2}\right) \\
\mathcal{B}\left(F_{1} \vee F_{2}\right) & =\mathcal{B}\left(F_{1}\right) \vee \mathcal{B}\left(F_{2}\right) \\
\mathcal{B}(\neg F) & =\neg \mathcal{B}(F)
\end{aligned}
$$

DPLL(T)

```
DPLL
G=\mathcal{B}(F)
while (true) do
    A,out = SAT-SOLVER(G)
    if (out = UNSAT) then return UNSAT
    else
        out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
    if (out = SAT) then return SAT
    else G = G^\negA
```


DPLL(T)

Boolean abstraction

```
DPLL
G=\mathcal{B}(F)
    while (true) do
    A,out = SAT-SOLVER(G)
    if (out = UNSAT) then return UNSAT
    else
        out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
    if (out = SAT) then return SAT
    else G = G^\negA
```


DPLL(T)

```
DPLL
G=\mathcal{B}(F)
```


Boolean abstraction

conjunction of propositional literals

DPLL(T)

```
DPLL
    G=\mathcal{B}(F)
    while (true) do
    A,out = SAT-SOLVER(G)
    if (out = UNSAT) then return UNSAT
    else
    out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
    if (out = SAT) then return SAT
    else G = G^\negA
```


DPLL(T)

```
```

DPLL

```
```

DPLL
G=\mathcal{B}(F)
G=\mathcal{B}(F)
while (true) do
while (true) do
A,out = SAT-SOLVER(G)
A,out = SAT-SOLVER(G)
if (out = UNSAT) then return UNSAT
if (out = UNSAT) then return UNSAT
else
else
out = T-SOLVER (}\mp@subsup{\mathcal{B}}{}{-1}(A)
out = T-SOLVER (}\mp@subsup{\mathcal{B}}{}{-1}(A)
if (out = SAT) then return SAT
if (out = SAT) then return SAT
else G = G^\negA

```
```

 else G = G^\negA
    ```
```


Boolean abstraction

 conjunction of propositional literals
 conjunction of atomic \(T\)-formulas
 theory conflict clause

DPLL(T)

```
```

DPLL

```
```

DPLL
G=\mathcal{B}(F)
G=\mathcal{B}(F)
while (true) do
while (true) do
A,out = SAT-SOLVER(G)
A,out = SAT-SOLVER(G)
if (out = UNSAT) then return UNSAT
if (out = UNSAT) then return UNSAT
else
else
out = T-SOLVER (}\mp@subsup{\mathcal{B}}{}{-1}(A)
out = T-SOLVER (}\mp@subsup{\mathcal{B}}{}{-1}(A)
if (out = SAT) then return SAT
if (out = SAT) then return SAT
else G = G^\negA

```
```

 else G = G^\negA
    ```
```


Boolean abstraction

 conjunction of propositional literals
 conjunction of atomic \(T\)-formulas
 theory conflict clause

Too weak! Blocks one assignment at a time.

DPLL(T): improvement

```
DPLL
G=\mathcal{B}(F)
while (true) do
    A,out = SAT-SOLVER(G)
    if (out = UNSAT) then return UNSAT
    else
    out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
    if (out = SAT) then return SAT
    else G=G^\neg\mathcal{B}(MinImalUnsatCore( }\mp@subsup{\mathcal{B}}{}{-1}(A))
```


DPLL(T): improvement

```
DPLL
    G=B(F)
    while (true) do
    A,out = SAT-SOLVER(G)
    if (out = UNSAT) then return UNSAT
    else
    out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
    if (out = SAT) then return SAT
    else G=G^\neg\mathcal{B}(MInImAlUnsatCore( (\mathcal{B}
```

An unsatisfiable core C of A contains a subset of atoms in A such that $\mathcal{B}^{-1}(C)$ is still unsatisfiable.

Minimal unsatisfiable core C^{*} has the property that if you drop any single atom of C^{*}, result is satisfiable

DPLL(T): inn pronenent

```
DPLL
    G=\mathcal{B}(F)
    while (true) do
        A,out = SAT-SOLVER(G)
        if (out = UNSAT) then return UNSAT
        else
        out = T-SOLVER ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
        if (out = SAT) then return SAT
        else G=G^\neg\mathcal{B}(MInImAlUnsATCore( }\mp@subsup{\mathcal{B}}{}{-1}(A))
```

An unsatisfiable core C of A contains a subset of atoms in A such that $\mathcal{B}^{-1}(C)$ is still unsatisfiable.

Minimal unsatisfiable core C^{*} has the property that if you drop any single atom of C^{*}, result is satisfiable

Waits for full assignment to the Boolean abstraction to generate conflict clause

DPLL(TH: inn ronenent

```
DPLL
    G=\mathcal{B}(F)
    while (true) do
        A,out = SAT-SOLVER(G)
        if (out = UNSAT) then return UNSAT
        else
        out = T-Solver ( }\mp@subsup{\mathcal{B}}{}{-1}(A)
        if (out = SAT) then return SAT
        else G=G^\neg\mathcal{B}(MInImalUnsatCore( }\mp@subsup{\mathcal{B}}{}{-1}(A))
```

An unsatisfiable core C of A contains a subset of atoms in A such that $\mathcal{B}^{-1}(C)$ is still unsatisfiable.

Minimal unsatisfiable core C^{*} has the property that if you drop any single atom of C^{*}, result is satisfiable

Waits for full assignment to the Boolean abstraction to generate conflict clause

Solution: Integrate theory solver into DPLL. Don't use SAT solver as "blackbox".

$$
x=g(y)
$$

Core solver:
Equality and UF

10

Theory of equality $T_{=}$

Signature

$$
\Sigma_{=}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r\}
$$

Axioms

1. $\forall x . x=x$	(reflexivity)
2. $\forall x, y .(x=y) \rightarrow y=x$	(symmetry)
3. $\forall x, y, z .(x=y \wedge y=z) \rightarrow x=z$	(transitivity)
4. $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\wedge_{i} x_{i}=y_{i}\right) \rightarrow\left(f\left(x_{1}, \ldots \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$	(fn. congruence)
5. $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(\left(\mathrm{p}\left(x_{1}, \ldots \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots ., y_{n}\right)\right.\right.$	(pr. congruence)

10

Theory of equality $T_{=}$

Signature

$$
\Sigma_{=}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r\}
$$

Axioms

1. $\forall x . x=x$
2. $\forall x, y \cdot(x=y) \rightarrow y=x$
3. $\forall x, y, z .(x=y \wedge y=z) \rightarrow x=z$
4. $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(f\left(x_{1}, \ldots \ldots, x_{n}\right)=f\left(y_{1}, \ldots ., y_{n}\right)\right)$ (fn. congruence)

For each p :

1. introduce a fresh function constant f_{p}
2. $p\left(x_{1}, \ldots, x_{n}\right) \rightarrow f_{p}\left(x_{1}, \ldots, x_{n}\right)=$

Eliminate predicates to get equisatisfiable formula with only functions

Introduce fresh constant

(reflexivity)
(symmetry)
(transitivity)

$$
\text { 5. } \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n} .\left(\Lambda_{i} x_{i}=y_{i}\right) \rightarrow\left(\left(\mathrm{p}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots . y_{n}\right)\right.\right. \text { (pr. congruence) }
$$

11

Theory of equality \& uninterpreted functions $T_{=}$

Signature

$$
\Sigma_{=}:=\{=, a, b, c, \ldots, f, g, h\}
$$

TEUF

```
Axioms
1.}\forallx.x=
2.}\forallx,y.(x=y)->y=
3.}\forallx,y,z.(x=y\wedgey=z)->x=
(reflexivity)
(symmetry)
(transitivity)
4.}\forall\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n}{}.(\mp@subsup{\Lambda}{i}{}\mp@subsup{x}{i}{}=\mp@subsup{y}{i}{})->(f(\mp@subsup{x}{1}{},\ldots\ldots,\mp@subsup{x}{n}{})=f(\mp@subsup{y}{1}{},\ldots.,\mp@subsup{y}{n}{}))\mathrm{ (fn. congruence)
```


$T=$ models

```
All first-order structures \(\langle U, I\rangle\) that satisfy the axioms of \(T_{=}\)
```


Is a conjunction of $T_{=}$literals satisfiable?

$$
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$

Is a conjunction of $T_{=}$literals satisfiable?

$$
\begin{gathered}
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a \\
\text { i.e, } f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a
\end{gathered}
$$

Is a conjunction of $T_{=}$literals satisfiable?

$$
\begin{gathered}
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a \\
\text { i.e, } f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a
\end{gathered}
$$

Decision procedure: Congruence closure algorithm

Congruence closure algorithm: basic sketch

Place each subterm of F into its own congruence class.

For each positive literal $t_{1}=t_{2}$ in F :

- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

If F has a negative literal $t_{1} \neq t_{2}$ with t_{1} and t_{2} in the same congruence class, output UNSAT

Otherwise, output SAT

Congruence closure algorithm: basic sketch

Place each subterm of F into its own congruence class.

For each positive literal $t_{1}=t_{2}$ in F :

- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

Computing the "congruence closure" of = over the subterm set

If F has a negative literal $t_{1} \neq t_{2}$ with t_{1} and t_{2} in the same congruence class, output UNSAT

Otherwise, output SAT

Congruence closure algorithm: data structure

- Represent subterm set as a DAG: each node corresponds to a subterm and edges point from function symbol to arguments
- Each node stores its unique id, name of function or variable, and list of arguments

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: data structure

- Represent subterm set as a DAG: each node corresponds to a subterm and edges point from function symbol to arguments
- Each node stores its unique id, name of function or variable, and list of arguments
- Each node n has a find pointer field that leads to the representative of its congruence class (or to itself if it is the representative)

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: data structure

- Represent subterm set as a DAG: each node corresponds to a subterm and edges point from function symbol to arguments
- Each node stores its unique id, name of function or variable, and list of arguments
- Each node n has a find pointer field that leads to the representative of its congruence class (or to itself if it is the representative)

Each congruence class has one representative.
When merging two classes, only need to update the representative

Congruence closure algorithm: data structure

- Represent subterm set as a DAG: each node corresponds to a subterm and edges point from function symbol to arguments
- Each node stores its unique id, name of function or variable, and list of arguments
- Each node n has a find pointer field that leads to the representative of its congruence class (or to itself if it is the representative)
- Each representative has a ccpar field that
stores the set of parents for all subterms in its congruence class

$$
\text { If } x_{1}=y_{1}, \ldots, x_{k}=y_{k}, \text { need }
$$

to merge congruence classes of their parents $f(\vec{x})$ and $f(\vec{y})$

18

Congruence closure algorithm

Decide (F)
construct the DAG for F 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{Find}\left(\mathbf{s}_{\mathrm{i}}\right)=\operatorname{FInd}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

Congruence closure algorithm

DECIDE(F)

construct the DAG for F 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{Find}\left(s_{i}\right)=\operatorname{Find}\left(t_{i}\right)$
then return UNSAT
return SAT
Place each subterm of F into its own congruence class.

For each positive literal $t_{1}=t_{2}$ in F :

- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

If F has a negative literal $t_{1} \neq t_{2}$ with t_{1} and t_{2} in the same congruence class, output UNSAT

Otherwise, output SAT

Congruence closure algorithm

$\operatorname{DECIDE}(F)$
construct the DAG for F 's subterms for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

Place each subterm of F into its own congruence class.

For each positive literal $t_{1}=t_{2}$ in F :

- Merge the classes for t_{1} and t_{2}
- Propagate the resulting congruences

If F has a negative literal $t_{1} \neq t_{2}$ with t_{1} and t_{2} in the same congruence class, output UNSAT

Otherwise, output SAT

Congruence closure algorithm

Congruence closure algorithm

Congruence closure algorithm

19

Congruence closure algorithm: union-find

Find returns the representative of a node's
congruence class by following find pointers until it finds a self-loop

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

19

Congruence closure algorithm: union-find

Find returns the representative of a node's
 congruence class by following find pointers until it finds a self-loop

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

FIND(2)?

20

Congruence closure algorithm: union-find

Find returns the representative of a node's
congruence class by following find pointers until it finds a self-loop

Union combines congruence classes for nodes i_{1} and i_{2} :

$$
\begin{aligned}
& n_{1}, n_{2}=\operatorname{FiND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right) \\
& n_{1} \cdot \operatorname{find}=n_{2} \\
& n_{2} \cdot \mathrm{ccp}=n_{1} \cdot \mathrm{ccp} \cup n_{2} \cdot \mathrm{ccp} \\
& n_{1} \cdot \mathrm{ccp}=\phi
\end{aligned}
$$

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

$$
\text { Union }(1,2) ?
$$

21

Congruence closure algorithm: union-find

Find returns the representative of a node's
congruence class by following find pointers until it finds a self-loop

Union combines congruence classes for nodes i_{1} and i_{2} :

$$
\begin{aligned}
& n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right) \\
& n_{1} \cdot f \text { find }=n_{2} \\
& n_{2} \cdot \mathrm{ccp}=n_{1} \cdot \mathrm{ccp} \cup n_{2} \cdot \mathrm{ccp} \\
& n_{1} \cdot \mathrm{ccp}=\phi
\end{aligned}
$$

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: congruent

Congruent take as input two nodes and return true iff their:

- functions are the same
- corresponding arguments are in the same congruence class

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: congruent

Congruent take as input two nodes and return true iff their:

- functions are the same
- corresponding arguments are in the same congruence class

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
\(\operatorname{Merge}\left(i_{1}, i_{2}\right)\)
    \(n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    \(p_{1}, p_{2}=n_{1} \cdot \mathrm{CCP}, n_{2} \cdot\) ССР
    \(\operatorname{Union}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{Find}\left(t_{1}\right) \neq \operatorname{Find}\left(t_{2}\right) \wedge \operatorname{Congruent}\left(t_{1}, t_{2}\right)\)
        then \(\operatorname{Merge}\left(t_{1}, t_{2}\right)\)
```

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
\(\operatorname{Merge}\left(i_{1}, i_{2}\right)\)
    \(n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    \(p_{1}, p_{2}=n_{1} \cdot \mathrm{CCP}, n_{2} \cdot \mathrm{CCP}\)
    \(\operatorname{Union}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{Find}\left(t_{1}\right) \neq \operatorname{Find}\left(t_{2}\right) \wedge \operatorname{Congruent}\left(t_{1}, t_{2}\right)\)
        then \(\operatorname{MergE}\left(t_{1}, t_{2}\right)\)
```

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
\(\operatorname{Merge}\left(i_{1}, i_{2}\right)\)
    \(n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    \(p_{1}, p_{2}=n_{1} \cdot\) cСр, \(n_{2} \cdot\) сСр
    \(\operatorname{UNION}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{Find}\left(t_{1}\right) \neq \operatorname{Find}\left(t_{2}\right) \wedge \operatorname{Congruent}\left(t_{1}, t_{2}\right)\)
        then \(\operatorname{Merge}\left(t_{1}, t_{2}\right)\)
```

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
\(\operatorname{Merge}\left(i_{1}, i_{2}\right)\)
    \(n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    \(p_{1}, p_{2}=n_{1} \cdot \mathrm{cCP}, n_{2} \cdot \mathrm{CCP}\)
    \(\operatorname{Union}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{Find}\left(t_{1}\right) \neq \operatorname{Find}\left(t_{2}\right) \wedge \operatorname{Congruent}\left(t_{1}, t_{2}\right)\)
        then \(\operatorname{MergE}\left(t_{1}, t_{2}\right)\)
```

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm: merge

```
\(\operatorname{Merge}\left(i_{1}, i_{2}\right)\)
    \(n_{1}, n_{2}=\operatorname{FIND}\left(i_{1}\right), \operatorname{FIND}\left(i_{2}\right)\)
    if \(n_{1}=n_{2}\) then return
    \(p_{1}, p_{2}=n_{1} \cdot \mathrm{cCP}, n_{2} \cdot \mathrm{CCP}\)
    \(\operatorname{Union}\left(n_{1}, n_{2}\right)\)
    for each \(t_{1}, t_{2} \in p_{1} \times p_{2}\)
        if \(\operatorname{Find}\left(t_{1}\right) \neq \operatorname{Find}\left(t_{2}\right) \wedge \operatorname{Congruent}\left(t_{1}, t_{2}\right)\)
        then \(\operatorname{MergE}\left(t_{1}, t_{2}\right)\)
```

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm

DECIDE(F)
construct the DAG for F 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FinD}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm

DECIDE(F)

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

construct the DAG for F^{\prime} 's subterms
for $s_{i}=t_{i} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

29

Congruence closure algorithm

Decide (F)

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

construct the DAG for F^{\prime} 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(\mathbf{s}_{\mathrm{i}}\right)=\operatorname{FInD}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

Congruence closure algorithm

DECIDE(F)
construct the DAG for F 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Congruence closure algorithm

DECIDE(F)
construct the DAG for F 's subterms
for $\mathrm{s}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \in F$
$\operatorname{Merge}\left(s_{i}, t_{i}\right)$
for $\mathrm{s}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{i}} \in F$
if $\operatorname{FIND}\left(s_{i}\right)=\operatorname{FIND}\left(\mathrm{t}_{\mathrm{i}}\right)$
then return UNSAT
return SAT

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

UNSAT!

Definitions I

A binary relation R over a set S is an equivalence relation if it is

1. reflexive: $\forall s \in S . R(s, s)$
2. symmetric: $\forall s_{1}, s_{2} \in S . R\left(s_{1}, s_{2}\right) \rightarrow R\left(s_{2}, s_{1}\right)$
3. transitive: $\forall s_{1}, s_{2}, s_{3} \in S . R\left(s_{1}, s_{2}\right) \wedge R\left(s_{2}, s_{3}\right) \rightarrow R\left(s_{1}, s_{3}\right)$

The equivalence class of element $s \in S$ under $R:[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: R\left(s, s^{\prime}\right)\right\}$

A equivalence relation R over a set S is a congruence relation if for every n-ary function f :

$$
\forall \vec{s}, \vec{t} . \bigwedge_{i=1}^{n} R\left(s_{i}, t_{i}\right) \rightarrow R(f(\vec{s}), f(\vec{t}))
$$

The congruence class of element $s \in S$ under R is its equivalence class

Definitions II

A binary relation R_{1} is a refinement of another binary relation R_{2}, written $R_{1}<R_{2}$, if

$$
\forall s_{1}, s_{2} \in S . R_{1}\left(s_{1}, s_{2}\right) \rightarrow R_{2}\left(s_{1}, s_{2}\right)
$$

The equivalence closure R^{E} of a binary relation R over S is the equivalence relation such that:

1. R refines R^{E}, i.e. $R<R^{E}$;
2. for all other equivalence relations R^{\prime} with $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$

The congruence closure R^{C} of a binary relation R over S is the congruence relation such that:

1. R refines R^{C}, i.e. $R<R^{C}$;
2. for all other congruence relations R^{\prime} s.t. $R \prec R^{\prime}$, either $R^{\prime}=R^{C}$ or $R^{C} \prec R^{\prime}$

Definitions II

R^{E} is the smallest equivalence relation that includes R.
R^{C} is the smallest congruence relation that includes R.

A binary relation R_{1} is a refinement of another binary relation R_{2}, written $R_{1} \prec R_{2}$, if

$$
\forall s_{1}, s_{2} \in S . R_{1}\left(s_{1}, s_{2}\right) \rightarrow R_{2}\left(s_{1}, s_{2}\right)
$$

The equivalence closure R^{E} of a binary relation R over S is the equivalence relation such that:

1. R refines R^{E}, i.e. $R \prec R^{E}$;
2. for all other equivalence relations R^{\prime} with $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$

The congruence closure R^{C} of a binary relation R over S is the congruence relation such that:

1. R refines R^{C}, i.e. $R \prec R^{C}$;
2. for all other congruence relations R^{\prime} s.t. $R<R^{\prime}$, either $R^{\prime}=R^{C}$ or $R^{C} \prec R^{\prime}$

34

Satisfiability using congruence relations

Let F be a $\sum_{=}$formula as follows:
$s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}$
F is satisfiable iff there exists a congruence relation \sim over the subterm set S_{F} of F such that:

1. For each i in $[1, m], s_{i} \sim t_{i}$
2. For each i in $[m+1, n], s_{i} \nsim t_{i}$

34

Satisfiability using congruence relations

Let F be a $\sum_{=}$formula as follows:
$s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}$
F is satisfiable iff there exists a congruence relation \sim over the subterm set S_{F} of F such that:

1. For each i in $[1, m], s_{i} \sim t_{i}$
2. For each i in $[m+1, n], s_{i} \times t_{i}$

The congruence closure algorithm computes such a congruence relation ~, or, proves that no such relation exists

35

Summary

Today

- SMT solving
- DPLL(T) : combine DPLL algorithm for SAT solving with theory solvers
- A core theory solver: congruence closure algorithm for $\boldsymbol{T}_{=}$

Next

- Temporal logic

$$
\underset{\sim}{0} \longleftrightarrow \overbrace{R_{1}}^{\sim}
$$

