
Roopsha Samanta

CS560: Reasoning About Programs

SMT Solving
A Core Theory Solver

Partly based on slides by Isil Dillig and Emina Torlak

1

Previously
▸ Propositional logic and SAT solving
▸ First-order logic and first-order theories

Today
▸ SMT solving
▸ DPLL(T) : Combine DPLL algorithm for SAT solving with theory solvers
▸ A core theory solver: congruence closure algorithm for !!

Roadmap
2

SMT solver
Software verification

Test-case generation

Network analysis

White-box fuzzing for security

⋮

Planning and scheduling in AI

3

SMT solver
Software verification

Test-case generation

Network analysis

White-box fuzzing for security

⋮

Z3 (MSR)

Yices (SRI)

CVC3(NYU, U Iowa)

STP (Stanford)

MathSAT(U Trento)

Barcelogic (Catalunya)

⋮

Planning and scheduling in AI

3

SMT solver
Software verification

Test-case generation

Network analysis

White-box fuzzing for security

⋮

Z3 (MSR)

Yices (SRI)

CVC3(NYU, U Iowa)

STP (Stanford)

MathSAT(U Trento)

Barcelogic (Catalunya)

⋮
SMT-Lib: library of benchmarks
http://www.smtlib.org

SMT-Comp: annual SMT-Solver competition
http://www.smtcomp.org

Planning and scheduling in AI

3

http://www.smtlib.org/
http://www.smtcomp.org/

SMT solver

! = #(%)

2! +) < 10

3% = 1

⋮

/[1] = !

∨
∧

∀

∃
¬

4

SMT solver

! = #(%)

2! +) < 10

3% = 1

⋮

/[1] = !

∨
∧

∀

∃
¬

Theories

4

SMT solver

! = #(%)

2! +) < 10

3% = 1

⋮

/[1] = !

∨
∧

∀

∃
¬

Theories First-order logic

4

SMT solver

! = #(%)

2! +) < 10

3% = 1

⋮

/[1] = !

∨
∧

∀

∃
¬

Type equation here.

Core solver

DPLL(8)

Theory
solver

Theory
solver

…

Theories First-order logic

4

SMT solver

! = #(%)

2! +) < 10

3% = 1

⋮

/[1] = !

∨
∧

∀

∃
¬

Decision procedure for checking satisfiability
in quantifier-free conjunctive fragment

Type equation here.

Core solver

DPLL(8)

Theory
solver

Theory
solver

…

Theories First-order logic

4

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

DPLL(!): Main Idea
5

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula
‣ If there is no satisfying assignment to Boolean

abstraction, SMT formula is UNSAT
‣ If there is satisfying assignment to Boolean

abstraction, SMT formula may not be SAT

DPLL(!): Main Idea
5

Theory solver checks whether assignment made by
SAT solver is satisfiable modulo theory

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula
‣ If there is no satisfying assignment to Boolean

abstraction, SMT formula is UNSAT
‣ If there is satisfying assignment to Boolean

abstraction, SMT formula may not be SAT

DPLL(!): Main Idea
5

Theory solver checks whether assignment made by
SAT solver is satisfiable modulo theory

Boolean abstraction of SMT formula:
Treat each atomic formula as a propositional variable

SAT solver handles Boolean structure of formula
‣ If there is no satisfying assignment to Boolean

abstraction, SMT formula is UNSAT
‣ If there is satisfying assignment to Boolean

abstraction, SMT formula may not be SAT

If SAT solver finds assignment that
is consistent with theory, then
SMT formula is satisfiable

DPLL(!): Main Idea
5

▸ SMT formula in theory : :
; ∶= //0 ;1 ∧ ;2 ;1∨ ;2 | ¬;

▸ For each SMT formula, define a bijective function ℬ, called Boolean abstraction function
(or Boolean skeleton), that maps SMT formula to an overapproximate SAT formula

▸ Function ℬ defined inductively as follows:

ℬ(//0) = ?0
ℬ ;1 ∧ ;2 = ℬ ;1 ∧ ℬ(;2)
ℬ ;1 ∨ ;2 = ℬ ;1 ∨ ℬ(;2)

ℬ ¬; = ¬ℬ(;)

SMT Formulas and Boolean Abstraction
6

DPLL(!)

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

7

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)
Boolean abstraction

7

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)

conjunction of propositional literals

Boolean abstraction

7

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)

conjunction of propositional literals

conjunction of atomic 8-formulas

Boolean abstraction

7

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)

conjunction of propositional literals

conjunction of atomic 8-formulas

theory conflict clause

Boolean abstraction

7

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬A

DPLL(!)

conjunction of propositional literals

conjunction of atomic 8-formulas

theory conflict clause

Too weak! Blocks one
assignment at a time.

Boolean abstraction

7

DPLL(!): improvement
8

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬ℬ(MINIMALUNSATCORE(ℬ31(A)))

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬ℬ(MINIMALUNSATCORE(ℬ31(A)))

DPLL(!): improvement An unsatisfiable core C of A
contains a subset of atoms
in A such that ℬ31(C) is
still unsatisfiable.

Minimal unsatisfiable core
C∗ has the property that if
you drop any single atom of
C∗, result is satisfiable

8

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬ℬ(MINIMALUNSATCORE(ℬ31(A)))

DPLL(!): improvement An unsatisfiable core C of A
contains a subset of atoms
in A such that ℬ31(C) is
still unsatisfiable.

Minimal unsatisfiable core
C∗ has the property that if
you drop any single atom of
C∗, result is satisfiable

Waits for full assignment to
the Boolean abstraction to
generate conflict clause

8

DPLL!(;)
@ = ℬ(;)
while (true) do
A, out = SAT-SOLVER(@)
if (out = UNSAT) then return UNSAT
else

out = :-SOLVER (ℬ31(A))
if (out = SAT) then return SAT
else @ = @ ∧ ¬ℬ(MINIMALUNSATCORE(ℬ31(A)))

DPLL(!): improvement An unsatisfiable core C of A
contains a subset of atoms
in A such that ℬ31(C) is
still unsatisfiable.

Minimal unsatisfiable core
C∗ has the property that if
you drop any single atom of
C∗, result is satisfiable

Waits for full assignment to
the Boolean abstraction to
generate conflict clause

Solution: Integrate theory
solver into DPLL. Don’t use
SAT solver as “blackbox”.

8

5 = 7 8

Core solver:
Equality and UF

25 + 8 ≤ 5 2= + > ≤ 5 ? ≫ 2 = A B = = 5

Theory
solver:

Linear Real
Arithmetic

Theory
solver:

Linear Integer
Arithmetic

Theory
solver:

Fixed-Width
Bitvectors

Theory
solver:
Arrays

9

Theory of equality !"
Signature
ΣC ≔ =, /, ?, F, … , #, G, ℎ, … , I, J, K

Axioms
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %,). (! = % ∧ % =)) → ! =) (transitivity)
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence)
5. ∀!1, … , !D, %1, … %D. (⋀i !0 = %0) → ((p !1, …… , !D ↔ I %1, … . , %D (pr. congruence)

10

Theory of equality !"
Signature
ΣC ≔ =, /, ?, F, … , #, G, ℎ, … , I, J, K

Axioms
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %,). (! = % ∧ % =)) → ! =) (transitivity)
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence)
5. ∀!1, … , !D, %1, … %D. (⋀i !0 = %0) → ((p !1, …… , !D ↔ I %1, … . , %D (pr. congruence)

Eliminate predicates to get equisatisfiable
formula with only functions

Introduce fresh constant ●
For each I:
1. introduce a fresh function constant #E
2. I !1, . . . , !D ⇢ #E(!1, . . . , !D) = ●

10

Theory of equality & uninterpreted functions !"
Signature
ΣC ≔ =, /, ?, F, … , #, G, ℎ

Axioms
1. ∀!. ! = ! (reflexivity)
2. ∀!, %. (! = %) → % = ! (symmetry)
3. ∀!, %,). (! = % ∧ % =)) → ! =) (transitivity)
4. ∀!1, … , !D, %1, … , %D. (⋀i !0 = %0) → # !1, …… , !D = # %1, … . , %D (fn. congruence)

:C models
All first-order structures R, S that satisfy the axioms of 8C

11

" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?
12

" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?

i.e, ""(#) = # ∧ "#(#) = # ∧ " # ≠ #

12

" " " # = # ∧ " " " " " # = # ∧ " # ≠ #

Is a conjunction of !" literals satisfiable?

i.e, ""(#) = # ∧ "#(#) = # ∧ " # ≠ #

Decision procedure: Congruence closure algorithm

12

Congruence closure algorithm: basic sketch
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

13

Congruence closure algorithm: basic sketch
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

Computing the
“congruence closure” of
= over the subterm set

13

Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node
corresponds to a subterm and edges point
from function symbol to arguments

▸ Each node stores its unique id, name of
function or variable, and list of arguments 1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

14

Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node
corresponds to a subterm and edges point
from function symbol to arguments

▸ Each node stores its unique id, name of
function or variable, and list of arguments

▸ Each node V has a find pointer field that
leads to the representative of its congruence
class (or to itself if it is the representative)

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

15

Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node
corresponds to a subterm and edges point
from function symbol to arguments

▸ Each node stores its unique id, name of
function or variable, and list of arguments

▸ Each node V has a find pointer field that
leads to the representative of its congruence
class (or to itself if it is the representative)

1:$

2:$

Each congruence class has one
representative.
When merging two classes, only
need to update the representative

3:% 4:&

16

{1,2}{1,2}

Congruence closure algorithm: data structure

▸ Represent subterm set as a DAG: each node
corresponds to a subterm and edges point
from function symbol to arguments

▸ Each node stores its unique id, name of
function or variable, and list of arguments

▸ Each node V has a find pointer field that
leads to the representative of its congruence
class (or to itself if it is the representative)

▸ Each representative has a ccpar field that
stores the set of parents for all subterms in its
congruence class

1:$

2:$

3:% 4:&

If !1 = %1, . . . , !F = %F , need
to merge congruence classes of
their parents # (!⃗) and # (%⃗)

17

Congruence closure algorithm

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

18

Congruence closure algorithm
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

18

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

18

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

18

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

18

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm
Place each subterm of ; into its own
congruence class.

For each positive literal T1 = T2 in ;:
▸ Merge the classes for T1 and T2
▸ Propagate the resulting congruences

If ; has a negative literal T1 ≠ T2 with
T1 and T2 in the same congruence class,
output UNSAT

Otherwise, output SAT

18

Congruence closure algorithm: union-find

FIND returns the representative of a node’s
congruence class by following find pointers until it
finds a self-loop

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

19

Congruence closure algorithm: union-find

FIND returns the representative of a node’s
congruence class by following find pointers until it
finds a self-loop

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

FIND(2)?

19

Congruence closure algorithm: union-find

FIND returns the representative of a node’s
congruence class by following find pointers until it
finds a self-loop

UNION combines congruence classes for nodes 11
and 12:

V1, V2 = FIND(11), FIND(12)
V1.find = V2
V2.ccp = V1.ccp ∪ V2.ccp
V1.ccp =]

{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

UNION(1,2)?

20

Congruence closure algorithm: union-find

FIND returns the representative of a node’s
congruence class by following find pointers until it
finds a self-loop

UNION combines congruence classes for nodes 11
and 12:

V1, V2 = FIND(11), FIND(12)
V1.find = V2
V2.ccp = V1.ccp ∪ V2.ccp
V1.ccp =]

/, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&

21

Congruence closure algorithm: congruent

CONGRUENT take as input two nodes and return
true iff their:
▸ functions are the same
▸ corresponding arguments are in the same

congruence class
{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

22

Congruence closure algorithm: congruent

CONGRUENT take as input two nodes and return
true iff their:
▸ functions are the same
▸ corresponding arguments are in the same

congruence class
{}

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

CONGRUENT(1,2)?

22

{}

{1}

Congruence closure algorithm: merge

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2) ∧ CONGRUENT(T1, T2)
then MERGE(T1, T2)

{1,2}{2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

23

{}

{1}

Congruence closure algorithm: merge

{1,2}{2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

24

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2) ∧ CONGRUENT(T1, T2)
then MERGE(T1, T2)

{}

{1}

Congruence closure algorithm: merge

{1,2}{2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

MERGE(2,3)

24

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2) ∧ CONGRUENT(T1, T2)
then MERGE(T1, T2)

{}

Congruence closure algorithm: merge

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

25

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2) ∧ CONGRUENT(T1, T2)
then MERGE(T1, T2)

Congruence closure algorithm: merge

{1,2}{1,2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

26

MERGE(11, 12)
V1, V2 = FIND(11), FIND(12)
if V1 = V2 then return
I1, I2 = V1.ccp, V2.ccp
UNION V1, V2
for each T1, T2 ∈ I1 × I2

if FIND(T1) ≠ FIND(T2) ∧ CONGRUENT(T1, T2)
then MERGE(T1, T2)

Congruence closure algorithm

{}

{1}

{1,2}{2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

27

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm

{}

{1}

{1,2}{2}

1:$

2:$

3:% 4:&

/, ? = / ∧ #(# /, ? , ?) ≠ /

28

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm

/, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&

29

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm

/, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&

30

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

Congruence closure algorithm

/, ? = / ∧ #(# /, ? , ?) ≠ /

{1,2}{1,2}

1:$

2:$

3:% 4:&

UNSAT!

31

DECIDE(;)
construct the DAG for ;’s subterms
for sG = tG ∈ ;

MERGE([0, T0)
for sG ≠ tG ∈ ;

if FIND(sG) = FIND(tG)
then return UNSAT

return SAT

A binary relation ! over a set " is an equivalence relation if it is

1. reflexive: ∀$ ∈ ". !($, $)
2. symmetric: ∀$#, $$ ∈ ". !($#, $$) → !($$, $#)
3. transitive: ∀$#, $$, $% ∈ ". ! $#, $$ ∧ !($$, $%) → !($#, $%)
The equivalence class of element $ ∈ " under !: $ & ≝ {$' ∈ " ∶ !($, $')}

A equivalence relation ! over a set " is a congruence relation if for every 1-ary function 2 :

∀$⃗, 4⃗.5
()#

*
!($(, 4() → !(2 $⃗ , 2 4⃗)

The congruence class of element $ ∈ " under ! is its equivalence class

Definitions I
32

Definitions II
A binary relation _1 is a refinement of another binary
relation _2, written _1 ≺ _2, if

∀[1, [2 ∈ a. _1([1, [2) → _2([1, [2)

The equivalence closure _H of a binary relation _
over a is the equivalence relation such that:
1. _ refines _H, i.e. _ ≺ _H;
2. for all other equivalence relations _′ with _ ≺ _I,
either _I = _H or _H ≺ _I

The congruence closure _J of a binary relation _
over a is the congruence relation such that:
1. _ refines _J, i.e. _ ≺ _J ;
2. for all other congruence relations _′ s.t. _ ≺ _′,
either _′ = _J or _J ≺ _I

33

Definitions II
A binary relation _1 is a refinement of another binary
relation _2, written _1 ≺ _2, if

∀[1, [2 ∈ a. _1([1, [2) → _2([1, [2)

The equivalence closure _H of a binary relation _
over a is the equivalence relation such that:
1. _ refines _H, i.e. _ ≺ _H;
2. for all other equivalence relations _′ with _ ≺ _I,
either _I = _H or _H ≺ _I

The congruence closure _J of a binary relation _
over a is the congruence relation such that:
1. _ refines _J, i.e. _ ≺ _J ;
2. for all other congruence relations _′ s.t. _ ≺ _′,
either _′ = _J or _J ≺ _I

_H is the smallest equivalence
relation that includes _.

_J is the smallest congruence
relation that includes _.

33

Satisfiability using congruence relations

Let ; be a ∑= formula as follows:
[1 = T1 ∧ . . .∧ [K = TK ∧ [KL1 ≠ TKL1 ∧ . . .∧ [D ≠ TD

; is satisfiable iff there exists a congruence relation ~
over the subterm set aM of ; such that:

1. For each 1 in 1,e , [0 ~ T0
2. For each 1 in e + 1, V , [0 ≁ T0

34

Satisfiability using congruence relations

Let ; be a ∑= formula as follows:
[1 = T1 ∧ . . .∧ [K = TK ∧ [KL1 ≠ TKL1 ∧ . . .∧ [D ≠ TD

; is satisfiable iff there exists a congruence relation ~
over the subterm set aM of ; such that:

1. For each 1 in 1,e , [0 ~ T0
2. For each 1 in e + 1, V , [0 ≁ T0

The congruence closure
algorithm computes
such a congruence
relation ~, or,
proves that no such
relation exists

34

Today
▸ SMT solving
▸ DPLL(T) : combine DPLL algorithm for SAT solving with theory solvers
▸ A core theory solver: congruence closure algorithm for !!

Next
▸ Temporal logic

Summary
35

