First-Order Theories

CS560: Reasoning About Programs

Roopsha Samanta **PURDUE**

Partly based on slides by Aaron Bradley and Isil Dillig

Roadmap

Previously

► FOL

2

Today

Overview of first-order theories

Review

Syntax of FOL

constants: a, b, cvariables: x, y, zn-ary functions: f, g, hn-ary predicates: p, q, r

logical connectives: \neg , V, \land , \rightarrow , \leftrightarrow quantifiers: \exists , \forall

Term

constant, variable, or, *n*-ary function applied to *n* terms

Atom T, \bot , or, *n*-ary predicate applied to *n* terms

Literal atom or its negation

FOL formula:

Literal, or, application of logical connectives to an FOL formula, or, application of a quantifier to an FOL formula

Semantics of FOL: first-order structure $\langle U, I \rangle$

- Universe of discourse/domain, U:
 - Non-empty set of values or objects of interest
 - May be finite (set of students at Purdue), countably infinite (integers) or uncountable infinite (positive reals)
- Interpretation, I: Mapping of variables, functions and predicates to values in U
 - I maps each variable symbol x to some value $I[x] \in U$
 - I maps each n-ary function symbol f to some function $f_I: U^n \to U$
 - I maps each n-ary predicate symbol p to some predicate $p_I: U^n \rightarrow \{true, false\}$

Evaluation of formulas: inductive definition

Base Cases:

$$\begin{split} & \langle U, I \rangle \vDash \top \\ & \langle U, I \rangle \nvDash \bot \\ & \langle U, I \rangle \vDash p(t_1, \dots, t_n) \\ & \quad \text{iff } I[p(t_1, \dots, t_n)] = true \end{split}$$

Inductive Cases:

 $\begin{array}{ll} \langle U,I\rangle \vDash \neg F & \text{iff } \langle U,I\rangle \not \vDash F \\ \langle U,I\rangle \vDash F_1 \lor F_2 & \text{iff } \langle U,I\rangle \vDash F_1 \text{ or } \langle U,I\rangle \vDash F_2 \\ & \dots \\ \langle U,I\rangle \vDash \forall x.F & \text{iff for all } v \in U,I[x \mapsto v] \vDash F \\ \langle U,I\rangle \vDash \exists x.F & \text{iff there exists } v \in U,I[x \mapsto v] \vDash F \end{array}$

x-variant of $\langle U, I \rangle$ that agrees with U, I on everything except the variable x, with I[x] = v.

Soundness and Completeness of Proof Rules

Soundness:

If every branch of semantic argument proof derives \bot , then F is valid

Completeness: If *F* is valid, there exists a finite-length semantic argument proof in which every branch derives \bot .

Undecidability of FOL

A problem is decidable if there exists a procedure that, for any input:1. halts and says "yes" if answer is positive, and2. halts and says "no" if answer is negative(Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]: Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable The truth table method is a decision procedure

Turing

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes". If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

Motivation

10

- FOL is very expressive, powerful and undecidable in general
- Some application domains do not need the full power of FOL
- First-order theories are useful for reasoning about specific applications
 - e.g., programs with arithmetic operations over integers
- Specialized, efficient decision procedures!

Signature Σ_T : set of constant, function, and predicate symbols Axioms A_T : set of closed formulas over Σ_T 11

Signature Σ_T : set of constant, function, and predicate symbols Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T

11

Signature Σ_T : set of constant, function, and predicate symbols Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T

 Σ_{T} -formula : constructed from symbols of Σ_{T} , and variables, logical connectives, and quantifiers

Signature Σ_T : set of constant, function, and predicate symbols Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T

 Σ_{T} -formula : constructed from symbols of Σ_{T} , and variables, logical connectives, and quantifiers

T-model

11

: a first-order structure $M = \langle U, I \rangle$ such that $M \models A$ for all $A \in A_T$

Satisfiability and Validity Modulo T

F is satisfiable modulo T iff there exists some T-model $M : M \models F$

F is valid modulo T (written $T \models F$) iff for all T-models $M : M \models F$

Satisfiability and Validity Modulo T

F is satisfiable modulo T iff there exists some T-model $M : M \models F$

F is valid modulo T (written $T \models F$) iff for all T-models $M : M \models F$

The theory \boldsymbol{T} consists of all closed formulas that are valid modulo T

Satisfiability and Validity Modulo T

F is satisfiable modulo T iff there exists some T-model $M : M \models F$

F is valid modulo T (written $T \models F$) iff for all T-models $M : M \models F$

The theory \boldsymbol{T} consists of all closed formulas that are valid modulo T

- ▶ How is validity modulo *T* different from FOL-validity?
- If a formula is valid in FOL, is it also valid modulo T for any T?
- If a formula is valid modulo T for some T, is it valid in FOL?

Theory of heights TH ZM: {tallen } A_H : $(\forall x, y)$. tailer $(x, y) \rightarrow 7$ taller (γ, x) ? $V = \left(A_{f} B \right)$ $T[fallon] \neq (A,B), (B,A)$ [7 faller (X,X) Tyrvalid LI [tamen] = (AB) Notrahid (VII) is Trymodel! FOL

Equivalence Modulo T

Two formulas F_1 and F_2 are equivalent modulo T

iff $T \models F_1 \leftrightarrow F_2$, i.e.,

14

iff for every *T*-model *M*, $M \models F_1$ iff $M \models F_2$

$$T_{=}: \sum_{i=1}^{2} \{i = j\}, A_{=}: \{Equality_{axioms}\}$$
$$T_{=} \stackrel{?}{\models} x = y \iff y = x$$
$$M \models x = y \quad i\{f \ M \models y = x\}$$

Completeness of a theory

15

F: F ration provable

A theory T is complete iff for every formula F, either $T \models F$ or $T \models \neg F$

Decidability of a theory

A theory T is decidable iff for every formula F, there is an algorithm that :

- 1. terminates and answers "yes" if F is valid modulo T, and
- 2. terminates and answers "no", if F is not valid modulo T

Next: decidable first-order theories, and theories with decidable fragments

¹⁷**Common first-order theories**

- Theory of equality (with uninterpreted functions)
- Peano arithmetic (first-order arithmetic)
- Presburger arithmetic
- Theory of reals
- Theory of rationals
- Theory of arrays

Theory of equality $T_{=}$

Signature

- = binary predicate, interpreted by axioms
- all constant, function, and predicate symbols

$$\Sigma_{=} \coloneqq \{=, a, b, c, \dots, f, g, h, \dots, p, q, r\}$$

Theory of equality $T_{=}$

Axioms

1. $\forall x. x = x$ (reflexivity) 2. $\forall x, y. (x = y) \rightarrow y = x$ (symmetry) 3. $\forall x, y, z$. $(x = y \land y = z) \rightarrow x = z$ (transitivity) 4. for *n*-ary function symbol f, (function congruence) $\forall x_1, \dots, x_n, y_1, \dots, y_n \colon (\Lambda_i \ x_i = y_i) \to (f(x_1, \dots, x_n) = f(y_1, \dots, y_n))$ 5. for each *n*-ary predicate symbol p, (predicate congruence) $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $(\bigwedge_i x_i = y_i) \rightarrow ((p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n)))$

Theory of equality $T_{=}$

Axioms

1.	$\forall x. \ x = x$	(reflexivity)	- · ·	
2.	$\forall x, y. \ (x = y) \rightarrow y = x$	(symmetry)	Equivalence relation	
З.	$\forall x, y, z. \ (x = y \land y = z) \rightarrow x = z$	(transitivity)		
4.	for n -ary function symbol f ,	(function congruence)		
	$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ (\bigwedge_i x_i = y_i)$	$\rightarrow (f(x_1, \dots, x_n) = j)$	$f(y_1,\ldots,y_n)$	
5.	for each n -ary predicate symbol p ,	(predicate congruence	nce)	
	$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ (\bigwedge_i x_i = y_i) $	$\rightarrow ((p(x_1, \dots, x_n) \leftrightarrow p))$	$p(y_1,\ldots,y_n))$	

Proving validity in $T_{=}$ using semantic arguments

Example: Prove F is valid in T_{\pm} $F: a = b \land b = c \rightarrow q(f(a), b) = q(f(c), a)$

Suppose not; then there exists a $T_{=}$ -model M such that $M \not\models F$. Then,

1. $M \not\models F$ 2. $M \models a = b \land b = c$ 3. $M \not\models g(f(a), b) = g(f(c), a) \quad 1, \rightarrow$ 4. $M \vDash a = c$ 5. $M \models f(a) = f(c)$ 6. $M \models a = b$ 7. $M \models b = a$ 8. $M \models g(f(a), b) = g(f(c), a)$ 9 $M \models 1$

assumption $1. \rightarrow$

- 2, transitivity
- 4, function congruence

2, **A**

6, symmetry

5, 7, function congruence

3,8

Decidability results for $T_{=}$

 $T_{=}$ is undecidable

Decidability results for T_{-}

 $T_{=}$ is undecidable

21

Quantifier-free fragment of $T_{=}$ is (efficiently) decidable

Congruence

Theories with natural numbers and integers

Natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Peano arithmetic *T*_{*PA***} : natural numbers with addition and multiplication</sub>**

Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition

Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >

Peano arithmetic T_{PA}

Signature

- 0, 1 constants
- ▶ +,. binary functions
- = binary predicate

$$\Sigma_{PA} = \{0, 1, +, ., =\}$$

Peano arithmetic T_{PA}

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

$$1. \quad \forall x. \ \neg(x+1=0)$$

- $2. \quad \forall x. \ x + 0 = x$
- $3. \quad \forall x. \ x. \ 0 = 0$

4.
$$\forall x, y. (x + 1 = y + 1) \rightarrow x = y$$

5. $\forall x, y, x + (y + 1) = (x + y) + 1$

- 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ 6. $\forall x, y. x. (y + 1) = (x. y) + x$
- 7. $(F[0] \land (\forall x. F[x] \rightarrow F[x+1])) \rightarrow \forall x. F[x]$

(zero) (plus zero) (times zero) (successor) (plus successor) (times successor) (induction) Ax Tom 5 Chema

Peano arithmetic T_{PA}

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

$$1. \quad \forall x. \ \neg(x+1=0)$$

- $2. \quad \forall x. \ x + 0 = x$
- $3. \quad \forall x. \ x. \ 0 = 0$

4.
$$\forall x, y. (x + 1 = y + 1) \rightarrow x = y$$

5. $\forall x, y, x + (y + 1) = (x + y) + 1$

- 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ 6. $\forall x, y. x. (y + 1) = (x. y) + x$
- 7. $(F[0] \land (\forall x. F[x] \rightarrow F[x+1])) \rightarrow \forall x. F[x]$

(zero) (plus zero) (times zero) (successor) (plus successor) (times successor) (induction) Ax Tom 5 Chema

Can we express $<, \leq, >, \geq$ in T_{PA} ?

2x = y+3

 T_{PA} : X + X = Y + [+] + [

ur att). × $2 \times \beta y + 3$ $\exists n, n \neq 0 \land 2x = y + 3 + n$

Validity in T_{PA} is undecidable

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

 T_{PA} does not capture true arithmetic [Gödel]

Gödel

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

 T_{PA} does not capture true arithmetic [Gödel]

 \exists valid propositions of number theory that cannot be proven valid in T_{PA}

Matiyasevitch

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

 T_{PA} does not capture true arithmetic [Gödel]

\exists valid propositions of number theory that cannot be proven valid in T_{PA}

Drop multiplication to get decidability and completeness!

Presburger arithmetic T_N

Signature

- 0, 1 constants
- + binary function
- = binary predicate

$$\Sigma_{\mathbb{N}} = \{0, 1, +, =\}$$

Presburger arithmetic $T_{\mathbb{N}}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

1.
$$\forall x. \neg (x + 1 = 0)$$
 (zero)

2.
$$\forall x. x + 0 = x$$
 (plus zero)

3. $\forall x, y. (x + 1 = y + 1) \rightarrow x = y$ (successor)

4. $\forall x, y. \ x + (y + 1) = (x + y) + 1$ (plus successor)

5. $(F[0] \land (\forall x. F[x] \rightarrow F[x+1])) \rightarrow \forall x. F[x]$ (induction)

²⁹ Decidability and completeness results for $m{T}_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Decidability and completeness results for $T_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]

29

6

Presburger

Decidability and completeness results for $T_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]

 $T_{\mathbb{N}}$ is also complete

Presburger

Decidability and completeness results for T_N $\exists x \cdot a x^2 + b x + c = 0 \equiv b - 4ac$ 70

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]

 $T_{\mathbb{N}}$ is also complete

Presburger

 $T_{\mathbb{N}}$ admits quantifier elimination: for every formula F, there exists an equivalent quantifier-free formula F'

Theory of integers $T_{\mathbb{Z}}$

Signature

- ▶ ..., -2, -1, 0, 1, 2, ... constants
- ..., $-3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, ...$ unary functions
- ► +, binary functions
- ► =, > binary predicates

$$\Sigma_{\mathbb{Z}} = \{\dots, -2, -1, 0, 1, 2, \dots, -3, -2, 2, 2, 3, \dots, +, -, =, >\}$$

Theory of integers $T_{\mathbb{Z}}$

Signature

- → …, -2, -1, 0, 1, 2, … constants
- ..., $-3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, ...$ unary functions
- ► +, binary functions
- =, > binary predicates

$$\Sigma_{\mathbb{Z}} = \{\dots, -2, -1, 0, 1, 2, \dots, -3, -2, 2, 2, 3, \dots, +, -, =, >\}$$

- Also referred to as the theory of linear arithmetic over integers
- Equivalent in expressiveness to Presburger arithemetic
- More convenient notation

Theory of reals $T_{\mathbb{R}}$

Signature

- 0, 1 constants
- ▶ +, -, . binary functions
- ► =, ≥ binary predicates

$$\Sigma_{\mathbb{R}} = \{0, 1, +, =, \geq\} \{0, 1, +, -, \cdot, \eta =, \mathcal{F}\}$$

Too many axioms, won't discuss.

Decidability results for $T_{\mathbb{R}}$

Validity in $T_{\mathbb{R}}$ is decidable

Tarski

Decidability results for $T_{\mathbb{R}}$

Validity in $T_{\mathbb{R}}$ is decidable

Validity in quantifier-free fragment of $T_{\mathbb{R}}$ is decidable

Tarski

Decidability results for $T_{\mathbb{R}}$

Validity in $T_{\mathbb{R}}$ is decidable

Validity in quantifier-free fragment of $T_{\mathbb{R}}$ is decidable

 $T_{\mathbb{R}}$ admits quantifier elimination: for every formula F, there exists an equivalent quantifier-free formula F'

Signature

- 0, 1 constants
- + binary function
- ► =, ≥ binary predicates

$$\Sigma_{\mathbb{Q}} = \{0, 1, +, =, \geq\}$$

Signature

- 0, 1 constants
- + binary function
- ► =, ≥ binary predicates

$$\Sigma_{\mathbb{Q}} = \{0, 1, +, =, \geq\}$$

Can we express > in $T_{\mathbb{Q}}$?

¥x,y. Jz. xty 72 ¥x, y. -J Z-. $x+y > z \land$ $\gamma(x+y = 2)$

Too many axioms, won't discuss.

Divisibility axiom

For each positive tx. = ny integer n,

Too many axioms, won't discuss.

3x. 2x=3 If a formula is valid in $T_{\mathbb{Z}}$, is it valid in $T_{\mathbb{O}}$? If a formula is valid in $T_{\mathbb{O}}$, is it valid in $T_{\mathbb{Z}}$? $T_q: X \stackrel{=3}{=} I_z:$?! ¥×.y. ×>y → ×>y+1

Decidability results for $T_{\mathbb{Q}}$

Validity in $T_{\mathbb{Q}}$ is decidable

Decidability results for $T_{\mathbb{Q}}$

Validity in $T_{\mathbb{Q}}$ is decidable

Validity in conjunctive quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Theory of arrays T_A

Signature

- ▶ a[i] binary function "read(a,i)"
- $a\langle i \lhd v \rangle$ ternary function "write(a, i, v)"

$$\Sigma_A = \{ \cdot [\cdot], \cdot \langle \cdot \lhd \cdot \rangle, = \}$$

Theory of arrays T_A

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

1.
$$\forall a, i, j. (i = j) \rightarrow a[i] = a[j]$$
 (array congruence)

2.
$$\forall a, v, i, j. (i = j) \rightarrow a \langle i \triangleleft v \rangle [j] = v$$
 (read-over-write 1)

3. $\forall a, v, i, j. (i \neq j) \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

 $\int_{a}^{33} a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$ $\int_{a}^{33} T_{a} \cdot valid? No$ The Extensionality: +a.b.(-ti.a[i]=b[i])

Decidability results for T_A

Validity in T_A is not decidable

Decidability results for T_A

Validity in T_A is not decidable

Quantifier-free fragment of T_A is decidable

Given theories T_1 and T_2 that have the = predicate, define combined theory $T_1 \cup T_2$:

Signature $\Sigma_1 \cup \Sigma_2$

Axioms $A_1 \cup A_2$

 $\frac{1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(i) \wedge f(x) \neq f(2)}{2}$ $\left(\begin{array}{c} T_{\pm} \cup T_{q} \\ T_{\pm} \cup T_{N} \end{array}\right) - \text{valid}$ $\left(\begin{array}{c} T_{\pm} \cup T_{N} \\ T_{\pm} \cup T_{N} \end{array}\right) - \text{not valid}$

Decision procedures for combined theories

lf

- 1. quantifier-free fragment of T_1 is decidable
- 2. quantifier-free fragment of T_2 is decidable
- 3. and T_1 and T_2 meet certain technical requirements then quantifier-free fragment of $T_1 \cup T_2$ is also decidable. [Nelson and Oppen]

Today

Overview of of first-order theories

Next

SMT solving