First-Order Theories

CS560: Reasoning About Programs

Roopsha Samanta
PuRDUE

Partly based on slides by Aaron Bradley and Isil Dillig

Roadmap

Previously
 - FOL

Today

- Overview of first-order theories

Review

Syntax of FOL

constants: a, b, c
variables: x, y, z
n-ary functions: f, g, h
n-ary predicates: p, q, r
logical connectives: $\neg, \vee, \wedge, \rightarrow, \leftrightarrow$ quantifiers: \exists, \forall

Term
 constant, variable, or,
 n-ary function applied to n terms

Atom

T, \perp, or,
n-ary predicate applied to n terms

Literal

atom or its negation
FOL formula:
Literal, or, application of logical connectives to an FOL formula, or, application of a quantifier to an FOL formula

Semantics of FOL: first-order structure $\langle U, I\rangle$

- Universe of discourse/domain, U :
- Non-empty set of values or objects of interest
- May be finite (set of students at Purdue), countably infinite (integers) or uncountable infinite (positive reals)
- Interpretation, I : Mapping of variables, functions and predicates to values in U - I maps each variable symbol x to some value $I[x] \in U$
- I maps each n-ary function symbol f to some function $f_{I}: U^{n} \rightarrow U$
- I maps each n-ary predicate symbol p to some predicate $p_{I}: U^{n} \rightarrow\{$ true, false $\}$

Evaluation of formulas: inductive definition

Base Cases:

$$
\begin{aligned}
& \langle U, I\rangle \vDash \mathrm{T} \\
& \langle U, I\rangle \not \vDash \perp \\
& \langle U, I\rangle \vDash p\left(t_{1}, \ldots, t_{n}\right) \\
& \quad \text { iff } I\left[p\left(t_{1}, \ldots, t_{n}\right)\right]=\text { true }
\end{aligned}
$$

Inductive Cases:

$$
\begin{array}{rlrl}
\langle U, I\rangle & \vDash \neg F & & \text { iff }\langle U, I\rangle \not \vDash F \\
\langle U, I\rangle & \vDash F_{1} \vee F_{2} & \text { iff }\langle U, I\rangle \vDash F_{1} \text { or }\langle U, I\rangle \vDash F_{2} \\
& \ldots & & \\
\langle U, I\rangle \vDash \forall x . F & & \text { iff for all } v \in U, I[x \mapsto v] \vDash F \\
\langle U, I\rangle \vDash \exists x . F & & \text { iff there exists } v \in U, I[x \mapsto v] \vDash F
\end{array}
$$

x -variant of $\langle\mathrm{U}, \mathrm{I}\rangle$ that agrees with U, I on everything except the variable x , with $\mathrm{I}[\mathrm{x}]=\mathrm{v}$.

Soundness and Completeness of Proof Rules

Soundness:
If every branch of semantic argument proof derives \perp, then F is valid

Completeness:

If F is valid, there exists a finite-length semantic argument proof in which every branch derives \perp.

Undecidability of FOL

A problem is decidable if there exists a procedure that, for any input:

1. halts and says "yes" if answer is positive, and
2. halts and says "no" if answer is negative (Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]:
 Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable The truth table method is a decision procedure

Turing

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:

1. halts and says "yes" if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:

1. halts and says "yes" if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes".
If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

10

Motivation

- $F O L$ is very expressive, powerful and undecidable in general
- Some application domains do not need the full power of FOL
- First-order theories are useful for reasoning about specific applications
- e.g., programs with arithmetic operations over integers
- Specialized, efficient decision procedures!

First-Order Theories

Signature Σ_{T} : set of constant, function, and predicate symbols Axioms A_{T} : set of closed formulas over Σ_{T}

First-Order Theories

Signature Σ_{T} : set of constant, function, and predicate symbols Axioms A_{T} : set of closed formulas over Σ_{T}

Axioms provide the meaning of symbols in Σ_{T}

First-Order Theories

Signature Σ_{T} : set of constant, function, and predicate symbols Axioms A_{T} : set of closed formulas over Σ_{T}

Axioms provide the meaning of symbols in Σ_{T}
Σ_{T}-formula : constructed from symbols of Σ_{T}, and variables, logical connectives, and quantifiers

First-Order Theories

Signature Σ_{T} : set of constant, function, and predicate symbols Axioms A_{T} : set of closed formulas over Σ_{T}

Axioms provide the meaning of symbols in Σ_{T}
Σ_{T}-formula : constructed from symbols of Σ_{T}, and variables, logical connectives, and quantifiers
T-model : a first-order structure $M=\langle U, I\rangle$ such that $M \vDash A$ for all $A \in A_{T}$

Satisfiability and Validity Modulo T

F is satisfiable modulo \boldsymbol{T} iff there exists some T-model M : $M \vDash F$
F is valid modulo \boldsymbol{T} (written $T \vDash F$) iff for all T-models $M: M \vDash F$

Satisfiability and Validity Modulo T

F is satisfiable modulo \boldsymbol{T} iff there exists some T-model M : $M \vDash F$
F is valid modulo \boldsymbol{T} (written $T \vDash F$) iff for all T-models $M: M \vDash F$

The theory \boldsymbol{T} consists of all closed formulas that are valid modulo T

12
 Satisfiability and Validity Modulo T

F is satisfiable modulo \boldsymbol{T} iff there exists some T-model $M: M \vDash F$
F is valid modulo \boldsymbol{T} (written $T \vDash F$) iff for all T-models $M: M \vDash F$

The theory \boldsymbol{T} consists of all closed formulas that are valid modulo T

- How is validity modulo T different from FOL-validity?
- If a formula is valid in FOL, is it also valid modulo T for any T ?
- If a formula is valid modulo T for some T, is it valid in FOL?
${ }^{13}$ Theory of heights T_{1}

$$
\begin{aligned}
& \Sigma_{H}:\{\text { tallen }\} \\
& A_{H}:\{\forall x, y . \text { taller }(x, y) \rightarrow 7 \text { tallen }(y, x)\}
\end{aligned}
$$

$$
\begin{aligned}
& V=\{A, B\} \\
& I[\text { taller }] \neq\{(A, B),(B, A)\} \\
& I[\text { tamen }]=\{[A, B)\} \quad \frac{7 \text { tallen }(x, x)}{V} T_{H} \text {-ralid } \\
& \langle V, I\rangle \text { is } T_{M} \text { moded ! }
\end{aligned}
$$

Equivalence Modulo T

Two formulas F_{1} and F_{2} are equivalent modulo \boldsymbol{T} iff $T \vDash F_{1} \leftrightarrow F_{2}$, ie.,
iff for every T-model $M, \quad M \vDash F_{1}$ iff $M \vDash F_{2}$

$$
\begin{aligned}
& T=: \Sigma=\{=\}, A=\{\text { Equality/pioms }\} \\
& T_{=} \neq \stackrel{\rightharpoonup}{\bullet} x=y \leftrightarrow y=x \\
& M \neq x=y \text { ifs } M F y=x
\end{aligned}
$$

Equisat:
Frat if F_{2} sat $\exists M_{1} M_{1} k F_{1} \quad i f$ $\exists M_{2} \cdot M_{2} \neq F$
$M_{1} \& M_{2}$ can be different

Completeness of a theory

A theory T is complete iff for every formula F, either $T \vDash F$ or $T \vDash \neg F$

Decidability of a theory

A theory T is decidable iff for every formula F, there is an algorithm that :

1. terminates and answers "yes" if F is valid modulo T, and
2. terminates and answers "no", if F is not valid modulo T

Next: decidable first-order theories, and theories with decidable fragments

Common first-order theories

- Theory of equality (with uninterpreted functions)
- Peano arithmetic (first-order arithmetic)
- Presburger arithmetic
- Theory of reals
- Theory of rationals
- Theory of arrays

Theory of equality $T_{=}$

Signature

- = binary predicate, interpreted by axioms
- all constant, function, and predicate symbols

$$
\Sigma_{=}:=\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r\}
$$

Theory of equality $T_{=}$

Axioms

1. $\forall x \cdot x=x$
(reflexivity)
2. $\forall x, y \cdot(x=y) \rightarrow y=x$
(symmetry)
3. $\forall x, y, z$. $(x=y \wedge y=z) \rightarrow x=z$ (transitivity)
4. for n-ary function symbol f,
(function congruence)
$\forall x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots . y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(f\left(x_{1}, \ldots \ldots, x_{n}\right)=f\left(y_{1}, \ldots ., y_{n}\right)\right)$
5. for each n-ary predicate symbol p, (predicate congruence) $\forall x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(\left(p\left(x_{1}, \ldots \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots ., y_{n}\right)\right)\right.$

19

Theory of equality $T_{=}$

Axioms

1. $\forall x . x=x$
(reflexivity)
2. $\forall x, y$. $(x=y) \rightarrow y=x$
(symmetry)

Equivalence relation

3. $\forall x, y, z$. $(x=y \wedge y=z) \rightarrow x=z$ (transitivity)
4. for n-ary function symbol f,
(function congruence) $\forall x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots . y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(f\left(x_{1}, \ldots \ldots, x_{n}\right)=f\left(y_{1}, \ldots ., y_{n}\right)\right)$
5. for each n-ary predicate symbol p, (predicate congruence) $\forall x_{1}, \ldots \ldots, x_{n}, y_{1}, \ldots y_{n} .\left(\Lambda_{\mathrm{i}} x_{i}=y_{i}\right) \rightarrow\left(\left(p\left(x_{1}, \ldots \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots ., y_{n}\right)\right)\right.$

20

Proving validity in $T_{=}$using semantic arguments

Example: Prove F is valid in $T_{=}$

$$
F: a=b \wedge b=c \rightarrow g(f(a), b)=g(f(c), a)
$$

Suppose not; then there exists a $T_{=}$-model M such that $M \not \vDash F$. Then,

1. $M \nRightarrow F$
2. $M \vDash a=b \wedge b=c$ assumption
3. $M \not \vDash g(f(a), b)=g(f(c), a) \quad 1, \rightarrow$
4. $M \vDash a=c$
5. $M \vDash f(a)=f(c) \quad$ 4, function congruence
6. $M \vDash a=b$

2, 1
7. $M \vDash b=a$
8. $M \vDash g(f(a), b)=g(f(c), a)$
9. $M \vDash \perp$

6, symmetry
5, 7, function congruence
3, 8

Decidability results for $T_{=}$

$\boldsymbol{T}_{=}$is undecidable

Decidability results for $T_{=}$

$\boldsymbol{T}_{=}$is undecidable

Quantifier-free fragment of $\boldsymbol{T}_{=}$is (efficiently) decidable

Theories with natural numbers and integers

$$
\begin{array}{ll}
\text { Natural numbers } \mathbb{N} & =\{0,1,2, \ldots\} \\
\text { Integers } & \mathbb{Z}
\end{array}=\{\ldots,-2,-1,0,1,2, \ldots\} \text {, }
$$

Peano arithmetic $\boldsymbol{T}_{\boldsymbol{P A}}$: natural numbers with addition and multiplication

Presburger arithmetic $\boldsymbol{T}_{\mathbb{N}}$: natural numbers with addition

Theory of integers $\boldsymbol{T}_{\mathbb{Z}}: \quad$ integers with +, - , >

Peano arithmetic $\boldsymbol{T}_{P A}$

Signature

- 0,1 constants
- +,. binary functions
- = binary predicate

$$
\Sigma_{\mathrm{PA}}=\{0,1,+, .,=\}
$$

Peano arithmetic $\boldsymbol{T}_{P A}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

1. $\forall x \cdot \neg(x+1=0)$
2. $\forall x \cdot x+0=x$
3. $\forall x \cdot x \cdot 0=0$
4. $\forall x, y \cdot(x+1=y+1) \rightarrow x=y$
5. $\forall x, y \cdot x+(y+1)=(x+y)+1$
6. $\forall x, y \cdot x \cdot(y+1)=(x \cdot y)+x$
7. $(F[0] \wedge(\forall x . F[x] \rightarrow F[x+1])) \rightarrow \forall x . F[x]$
(zero)
(plus zero)
(times zero)
(successor)
(plus successor)
(times successor)
(induction) Axiomschema

Peano arithmetic $\boldsymbol{T}_{P A}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

```
1. \(\forall x . \neg(x+1=0)\)
2. \(\forall x \cdot x+0=x\)
3. \(\forall x \cdot x \cdot 0=0\)
4. \(\forall x, y \cdot(x+1=y+1) \rightarrow x=y\)
5. \(\forall x, y \cdot x+(y+1)=(x+y)+1\)
6. \(\forall x, y \cdot x \cdot(y+1)=(x \cdot y)+x\)
7. \((F[0] \wedge(\forall x . F[x] \rightarrow F[x+1])) \rightarrow \forall x . F[x]\)
```

Can we express $<, \leq,>, \geq$ in $T_{P A}$?

$$
\begin{aligned}
& 2 x=y+3 \\
& T_{\text {PA: }}: \underline{x+x}=y+1+1+1 \\
& \text { ur, }(4+4) \cdot x \\
& 2 x \sqrt{3} y+3 \\
& \exists n, n \neq 0 \wedge 2 x=y+3+n
\end{aligned}
$$

Decidability and completeness results for $\boldsymbol{T}_{P A}$

Validity in $T_{P A}$ is undecidable

26

Decidability and completeness results for $\boldsymbol{T}_{P A}$

Matiyasevitch
Validity in $T_{P A}$ is undecidable

Validity in quantifier-free fragment of $T_{P A}$ is also undecidable [Matiyasevitch, 1970]

26

Decidability and completeness results for $\boldsymbol{T}_{P A}$

Validity in $T_{P A}$ is undecidable

Validity in quantifier-free fragment of $T_{P A}$ is also undecidable [Matiyasevitch, 1970]
$T_{P A}$ does not capture true arithmetic [Gödel]

26

Decidability and completeness results for $\boldsymbol{T}_{P A}$

Validity in $T_{P A}$ is undecidable

Validity in quantifier-free fragment of $T_{P A}$ is also undecidable [Matiyasevitch, 1970]

$T_{P A}$ does not capture true arithmetic [Gödel]
\exists valid propositions of number theory that cannot be proven valid in $T_{P A}$

Decidability and completeness results for $\boldsymbol{T}_{P A}$

Validity in $T_{P A}$ is undecidable

Validity in quantifier-free fragment of $T_{P A}$ is also undecidable [Matiyasevitch, 1970]

$T_{P A}$ does not capture true arithmetic [Gödel]

\exists valid propositions of number theory that cannot be proven valid in $T_{P A}$

Drop multiplication to get decidability and completeness!

Presburger arithmetic $\boldsymbol{T}_{\mathbb{N}}$

Signature

- 0,1 constants
- + binary function
- = binary predicate

$$
\Sigma_{\mathbb{N}}=\{0,1,+,=\}
$$

28

Presburger arithmetic $\boldsymbol{T}_{\mathbb{N}}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

1. $\forall x \cdot \neg(x+1=0)$
2. $\forall x \cdot x+0=x$
3. $\forall x, y \cdot(x+1=y+1) \rightarrow x=y$
4. $\forall x, y \cdot x+(y+1)=(x+y)+1$
5. $(F[0] \wedge(\forall x . F[x] \rightarrow F[x+1])) \rightarrow \forall x . F[x]$
(zero)
(plus zero)
(successor)
(plus successor)
(induction)

Decidability and completeness results for $T_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Decidability and completeness results for $\boldsymbol{T}_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]

Decidability and completeness results for $\boldsymbol{T}_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]
$T_{\mathbb{N}}$ is also complete

29

Decidability and completeness results for $T_{\mathbb{N}}$ $-7 x \cdot a x^{2}+b x+c=0 \equiv b^{2}-4 a c \geqslant 0$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]
$T_{\mathbb{N}}$ is also complete
$T_{\mathbb{N}}$ admits quantifier elimination:
for every formula F, there exists an equivalent quantifier-free formula F^{\prime}

Theory of integers $T_{\mathbb{Z}}$

Signature

- $. .,-2,-1,0,1,2, \ldots$ constants
$\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ unary functions
,+- binary functions

$$
\Sigma_{\mathbb{Z}}=\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,>\}
$$

Theory of integers $T_{\mathbb{Z}}$

Signature

- ..., $-2,-1,0,1,2, \ldots$ constants
- $\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ unary functions
-,+- binary functions
- $=,>$ binary predicates

$$
\Sigma_{\mathbb{Z}}=\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,>\}
$$

Also referred to as the theory of linear arithmetic over integers

- Equivalent in expressiveness to Presburger arithemetic
- More convenient notation

Theory of reals $\boldsymbol{T}_{\mathbb{R}}$
Signature

- 0,1 constants
-,+- , . binary functions
- $=, \geq$ binary predicates

$$
\Sigma_{R}=\{0,1, y<\geq \geq\}\{0,1,+,-, \cdot,=, \geqslant\}
$$

Too many axioms, won't discuss.

Decidability results for $\boldsymbol{T}_{\mathbb{R}}$

Validity in $T_{\mathbb{R}}$ is decidable

Decidability results for $\boldsymbol{T}_{\mathbb{R}}$

Tarski
Validity in $T_{\mathbb{R}}$ is decidable

Validity in quantifier-free fragment of $T_{\mathbb{R}}$ is decidable

Decidability results for $\boldsymbol{T}_{\mathbb{R}}$

Tarski
Validity in $T_{\mathbb{R}}$ is decidable

Validity in quantifier-free fragment of $T_{\mathbb{R}}$ is decidable

$T_{\mathbb{R}}$ admits quantifier elimination:
for every formula F, there exists an equivalent quantifier-free formula F^{\prime}

Theory of rationals $\boldsymbol{T}_{\mathbb{Q}}$

Signature

- 0,1 constants
- + binary function
- $=, \geq$ binary predicates

$$
\Sigma_{\mathbb{Q}}=\{0,1,+,=, \geq\}
$$

Theory of rationals $\boldsymbol{T}_{\mathbb{Q}}$
Signature
$\forall x, y . \exists z . x+y>z$

- 0,1 constants
- + binary function
- =, \geq binary predicates

$$
\Sigma_{\mathbb{Q}}=\{0,1,+,=, \geq\}
$$

$$
\begin{aligned}
& \forall x, y . \exists z \\
& x+y \geqslant z \wedge \\
& 7(x+y=z)
\end{aligned}
$$

Can we express $>$ in $T_{\mathbb{Q}}$?

Theory of rationals $\boldsymbol{T}_{\mathbb{Q}}$
Too many axioms, won't discuss.
Divisibility axiom
For each positive $\forall x: \exists y . x=n y$ integer 17 ,

Theory of rationals $\boldsymbol{T}_{\mathbb{Q}}$
Too many axioms, won't discuss.

If a formula is valid in $T_{\mathbb{Z}}$, is it valid in $T_{\mathbb{Q}}$?
If a formula is valid in $T_{\mathbb{Q}}$, is it valid in $T_{\mathbb{Z}}$?
ix. $2 x=3$

$$
\begin{aligned}
T_{Q}: x & =\frac{3}{2} T_{z}: ? \\
? ?, \forall x, y \cdot x>y & \rightarrow x \geqslant y+1
\end{aligned}
$$

Decidability results for $\boldsymbol{T}_{\mathbb{Q}}$

Validity in $T_{\mathbb{Q}}$ is decidable

Decidability results for $\boldsymbol{T}_{\mathbb{Q}}$

Validity in $T_{\mathbb{Q}}$ is decidable

Validity in conjunctive quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Theory of arrays T_{A}

Signature

- $a[i]$ binary function "read (a, i) "
- $a\langle i \triangleleft v\rangle$ ternary function "write (a, i, v) "

$$
\Sigma_{A}=\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

Theory of arrays $\boldsymbol{T}_{\boldsymbol{A}}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:

1. $\forall a, i, j .(i=j) \rightarrow a[i]=a[j]$
(array congruence)
2. $\forall a, v, i, j .(i=j) \rightarrow a\langle i \triangleleft v\rangle[j]=v$
(read-over-write 1)
3. $\forall a, v, i, j . ~(i \neq j) \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$
(read-over-write 2)

$$
a[i]=e \rightarrow a\langle i \Delta e\rangle=a
$$

T_{n}-valid? No
$T_{A}^{=}$Extensionality: $\forall a b \cdot(\forall i . a[i]=b[i])$
T_{A} :

$$
\begin{aligned}
a[i]=e & \rightarrow \quad \leftrightarrow \quad a=b \\
& \forall j-a\langle i \Delta e\rangle[j]=a[j]
\end{aligned}
$$

Decidability results for $\boldsymbol{T}_{\boldsymbol{A}}$

Validity in T_{A} is not decidable

Decidability results for $\boldsymbol{T}_{\boldsymbol{A}}$

Validity in T_{A} is not decidable

Quantifier-free fragment of T_{A} is decidable

Combination of Theories

Given theories T_{1} and T_{2} that have the $=$ predicate, define combined theory $T_{1} \cup T_{2}$:

Signature $\Sigma_{1} \cup \Sigma_{2}$

Axioms $A_{1} \cup A_{2}$

$$
\underbrace{\sim T_{\mathbb{N}}}_{\binom{\frac{T}{}=U T_{Q}}{T=U \leqslant 2}-\text { valid }})^{1 \leqslant n(x) f f(1) \wedge f(x) \neq f(2)} \text { not valid }
$$

Decision procedures for combined theories

If

1. quantifier-free fragment of T_{1} is decidable
2. quantifier-free fragment of T_{2} is decidable
3. and T_{1} and T_{2} meet certain technical requirements then quantifier-free fragment of $T_{1} \cup T_{2}$ is also decidable. [Nelson and Oppen]

Summary

Today

- Overview of of first-order theories

Next

- SMT solving

