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Previously
▸ FOL 

Today
▸ Overview of first-order theories

Roadmap
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Review
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constants:  !, #, $
variables:  %, &, '
(-ary functions:  ), *, ℎ
(-ary predicates:  ,, -, .

Syntax of FOL

logical connectives:  ¬, ∨, ∧, →, ↔
quantifiers: ∃, ∀

Term
constant, variable, or, 
(-ary function applied to ( terms 

Atom
⊤, ⊥, or, 
(-ary predicate applied to ( terms

Literal
atom or its negation

FOL formula: 
Literal, or, application of logical 
connectives to an FOL formula, or, 
application of a quantifier to an FOL 
formula 
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▸ Universe of discourse/domain, 8: 
▸ Non-empty set of values or objects of interest
▸ May be finite (set of students at Purdue), countably infinite (integers) or 

uncountable infinite (positive reals)

▸ Interpretation, 9: Mapping of variables, functions and predicates to values in 8
▸ ! maps each variable symbol " to some value  !["] ∈ &
▸ ! maps each '-ary function symbol ( to some function (!: &" → &
▸ ! maps each '-ary predicate symbol + to some predicate +!: &" → {-./0, (2340}

Semantics of FOL: first-order structure !, #
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Evaluation of formulas: inductive definition

Base Cases:

&, ! ⊨ ⊤
&, ! ⊭ ⊥
&, ! ⊨ + -#, … , -"

iff ! + -#, … , -" = -./0

Inductive Cases:

&, ! ⊨ ¬= iff &, ! ⊭ =
&, ! ⊨ =# ∨ =$ iff &, ! ⊨ =# or &, ! ⊨ =$

…
&, ! ⊨ ∀". = iff for all A ∈ &, ! " ↦ A ⊨ =
&, ! ⊨ ∃". = iff there exists A ∈ &, ! " ↦ A ⊨ =

x-variant of U, I that agrees with U, I on everything 
except the variable x, with I x = v.
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Soundness and Completeness of Proof Rules

Soundness:
If every branch of semantic argument proof derives ⊥, then : is valid

Completeness:
If : is valid, there exists a finite-length semantic argument proof in 
which every branch derives ⊥.
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Undecidability of FOL

Undecidability of FOL [Church and Turing]:
Deciding the validity of an FOL formula is undecidable

A problem is decidable if there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. halts and says “no” if answer is negative
(Such a procedure is called an algorithm or a decision procedure)

Deciding the validity of a PL formula is decidable
The truth table method is a decision procedure

Church Turing
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Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.
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Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:
For every valid FOL formula, there exists a procedure (semantic 
argument method) that always terminates and says “yes”.
If an FOL formula is invalid, there exists no procedure that is 
guaranteed to terminate. 
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▸ FOL is very expressive, powerful and undecidable in general

▸ Some application domains do not need the full power of FOL

▸ First-order theories are useful for reasoning about specific applications
▸ e.g.,  programs with arithmetic operations over integers

▸ Specialized, efficient decision procedures!

Motivation
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First-Order Theories

Signature Σ! :   set of constant, function, and predicate symbols
Axioms =" :   set of closed formulas over Σ"
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First-Order Theories

Signature Σ! :   set of constant, function, and predicate symbols
Axioms =" :   set of closed formulas over Σ"

Σ!-formula   : constructed from symbols of Σ", and 
variables, logical connectives, and quantifiers

>-model       : a first-order structure ? = 8, 9 such that 
? ⊨ = for all = ∈ ="

Axioms provide the meaning of symbols in Σ"
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Satisfiability and Validity Modulo $
: is satisfiable modulo C iff there exists some >-model ? : ? ⊨ :

: is valid modulo C (written > ⊨ :) iff for all >-models ? : ? ⊨ :
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Satisfiability and Validity Modulo $
: is satisfiable modulo C iff there exists some >-model ? : ? ⊨ :

: is valid modulo C (written > ⊨ :) iff for all >-models ? : ? ⊨ :

▸ How is validity modulo > different from FOL-validity?
▸ If a formula is valid in FOL, is it also valid modulo > for any >?
▸ If a formula is valid modulo > for some >, is it valid in FOL?

The theory C consists of all closed formulas that are valid modulo >
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Equivalence Modulo $
Two formulas :# and :$ are equivalent modulo  C

iff > ⊨ :# ↔ :$, i.e.,  

iff for every >- model ?, ? ⊨ :# iff ? ⊨ :$
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Completeness of a theory

A theory > is complete iff for every formula :, either > ⊨ : or > ⊨ ¬:
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Decidability of a theory

A theory > is decidable iff for every formula :, there is an algorithm that :
1. terminates and answers “yes” if : is valid modulo >, and 
2. terminates and answers “no”, if F is not valid modulo >

Next: decidable first-order theories, and theories with decidable fragments 
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Common first-order theories

▸ Theory of equality (with uninterpreted functions)

▸ Peano arithmetic (first-order arithmetic)

▸ Presburger arithmetic

▸ Theory of reals

▸ Theory of rationals

▸ Theory of arrays
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Theory of equality $!
Signature 
▸ = binary predicate, interpreted by axioms
▸ all constant, function, and predicate symbols

Σ% ≔ =, !, #, $, … , ), *, ℎ, … , ,, -, .
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Theory of equality $!
Axioms  
1. ∀%. % = % (reflexivity)
2. ∀%, &. (% = &) → & = % (symmetry)
3. ∀%, &, '. (% = & ∧ & = ') → % = ' (transitivity) 
4. for (-ary function symbol ), (function congruence)  

∀%#, …… , %& , &#, … . && . (⋀i %' = &') → ) %#, …… , %& = ) &#, … . , &&
5. for each (-ary predicate symbol ,,        (predicate congruence)
∀%#, …… , %& , &#, … . && . (⋀i %' = &') → ((, %#, …… , %& ↔ , &#, … . , && )

19



Theory of equality $!
Axioms  
1. ∀%. % = % (reflexivity)
2. ∀%, &. (% = &) → & = % (symmetry)
3. ∀%, &, '. (% = & ∧ & = ') → % = ' (transitivity) 
4. for (-ary function symbol ), (function congruence)  

∀%#, …… , %& , &#, … . && . (⋀i %' = &') → ) %#, …… , %& = ) &#, … . , &&
5. for each (-ary predicate symbol ,,        (predicate congruence)
∀%#, …… , %& , &#, … . && . (⋀i %' = &') → ((, %#, …… , %& ↔ , &#, … . , && )

Equivalence 
relation
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Example: Prove ! is valid in ""
! ∶ $ = & ∧ & = ( → * + $ , & = * + ( , $

Suppose not; then there exists a ""-model - such that - ⊭ !. Then,
1. - ⊭ ! assumption
2. - ⊨ $ = & ∧ & = ( 1, →
3. - ⊭ * + $ , & = * + ( , $ 1, →
4. - ⊨ $ = ( 2, transitivity
5. - ⊨ +($) = +(() 4, function congruence
6. - ⊨ $ = & 2, ∧
7. - ⊨ & = $ 6, symmetry
8. - ⊨ *(+ $ , &) = *(+ ( , $) 5, 7, function congruence
9. - ⊨ ⊥ 3, 8

Proving validity in $! using semantic arguments
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Decidability results for $!

C% is undecidable
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Decidability results for $!

C% is undecidable

Quantifier-free fragment of C% is (efficiently) decidable
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Theories with natural numbers and integers

Natural numbers  ℕ =		 0,1,2, …
Integers                  ℤ =		 … ,−2,−1, 0,1,2, …

Peano arithmetic C() :       natural numbers with addition and multiplication

Presburger arithmetic Cℕ : natural numbers with addition

Theory of integers Cℤ :        integers with +, - , >
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Peano arithmetic $"#
Signature
▸ 0, 1 constants 
▸ +, . binary functions 
▸ = binary predicate

Σ*+ = 0, 1, +, . , =
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Peano arithmetic $"#
Axioms
▸ Includes equivalence axioms: reflexivity, symmetry, transitivity
▸ In addition: 

1. ∀". ¬ " + 1 = 0 (zero)
2. ∀". " + 0 = " (plus zero)
3. ∀". ". 0 = 0 (times zero)
4. ∀", N. (" + 1 = N + 1) ⟶ " = N (successor)
5. ∀", N. " + N + 1 = " + N + 1 (plus successor)
6. ∀", N. ". N + 1 = ". N + " (times successor)
7. (= 0 ∧ (∀". = " → =[" + 1])) → ∀". = " (induction)
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Peano arithmetic $"#
Axioms
▸ Includes equivalence axioms: reflexivity, symmetry, transitivity
▸ In addition: 

1. ∀". ¬ " + 1 = 0 (zero)
2. ∀". " + 0 = " (plus zero)
3. ∀". ". 0 = 0 (times zero)
4. ∀", N. (" + 1 = N + 1) ⟶ " = N (successor)
5. ∀", N. " + N + 1 = " + N + 1 (plus successor)
6. ∀", N. ". N + 1 = ". N + " (times successor)
7. (= 0 ∧ (∀". = " → =[" + 1])) → ∀". = " (induction)

Can we express <,≤,>,≥ in Z%& ? 
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Decidability and completeness results for $"#
Validity in >,- is undecidable
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Decidability and completeness results for $"#
Validity in >,- is undecidable

Validity in quantifier-free fragment of >,- is also undecidable   
[Matiyasevitch, 1970]

>,- does not capture true arithmetic    [Gödel]

∃ valid propositions of number theory that cannot be proven  valid in Z%&

Drop multiplication to get decidability and completeness!

Matiyasevitch

Gödel
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Presburger arithmetic $ℕ
Signature
▸ 0, 1 constants 
▸ + binary function 
▸ = binary predicate

Σℕ = 0, 1, +,=
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Axioms 
▸ Includes equivalence axioms: reflexivity, symmetry, transitivity
▸ In addition: 

1. ∀". ¬ " + 1 = 0 (zero)

2. ∀". " + 0 = " (plus zero)

3. ∀", N. (" + 1 = N + 1) ⟶ " = N (successor)

4. ∀", N. " + N + 1 = " + N + 1 (plus successor)

5. (= 0 ∧ (∀". = " → =[" + 1])) → ∀". = " (induction)

Presburger arithmetic $ℕ
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Decidability and completeness results for $ℕ
Validity in quantifier-free fragment of >ℕ is (efficiently) decidable
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Decidability and completeness results for $ℕ

Validity in >ℕ is also decidable  [Presburger, 1929]

>ℕ is also complete

>ℕ admits quantifier elimination: 
for every formula :, there exists an equivalent quantifier-free formula :’

Validity in quantifier-free fragment of >ℕ is (efficiently) decidable

Presburger
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Theory of integers $ℤ
Signature 
▸ … ,−2,−1, 0, 1, 2, … constants 
▸ … ,−3 ⋅, −2 ⋅, 2 ⋅, 3 ⋅, … unary functions
▸ +,− binary functions 
▸ =, > binary predicates

Σℤ = … ,−2,−1, 0, 1, 2, … ,−3 ⋅, −2 ⋅, 2 ⋅, 3 ⋅, … , +,− ,=,>
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Theory of integers $ℤ
Signature 
▸ … ,−2,−1, 0, 1, 2, … constants 
▸ … ,−3 ⋅, −2 ⋅, 2 ⋅, 3 ⋅, … unary functions
▸ +,− binary functions 
▸ =, > binary predicates

Σℤ = … ,−2,−1, 0, 1, 2, … ,−3 ⋅, −2 ⋅, 2 ⋅, 3 ⋅, … , +,− ,=,>

▸ Also referred to as the theory of linear arithmetic over integers 

▸ Equivalent in expressiveness to Presburger arithemetic
▸ More convenient notation
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Signature 
▸ 0, 1 constants 
▸ + ,−, . binary functions 
▸ =,≥ binary predicates

Σℝ = 0, 1, +,=,≥

Theory of reals $ℝ

Too many axioms, won’t discuss. 
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Decidability results for $ℝ
Validity in >ℝ is decidable

Tarski
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Decidability results for $ℝ
Validity in >ℝ is decidable

Validity in quantifier-free fragment of >ℝ is decidable
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Tarski
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Signature 
▸ 0, 1 constants 
▸ + binary function 
▸ =,≥ binary predicates

Σℚ = 0, 1, +,=,≥

Theory of rationals $ℚ
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Signature 
▸ 0, 1 constants 
▸ + binary function 
▸ =,≥ binary predicates

Σℚ = 0, 1, +,=,≥

Theory of rationals $ℚ

Can we express > in >ℚ ? 
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Too many axioms, won’t discuss. 

Theory of rationals $ℚ
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Too many axioms, won’t discuss. 

Theory of rationals $ℚ

If a formula is valid in Zℤ , is it valid in Zℚ? 
If a formula is valid in Zℚ, is it valid in Zℤ?

34



Decidability results for $ℚ
Validity in >ℚ is decidable
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Decidability results for $ℚ
Validity in >ℚ is decidable

Validity in conjunctive quantifier-free fragment of >ℕ is (efficiently) decidable
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Signature 
▸ ![X] binary function “read(!,X)” 
▸ !⟨X ⊲ \⟩ ternary function “write(!, X, \)”

Σ) = ⋅ ⋅ ,⋅ ⟨⋅⊲⋅⟩, =

Theory of arrays $#
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Axioms
▸ Includes equivalence axioms: reflexivity, symmetry, transitivity 
▸ In addition: 
1. ∀!, X, ^. X = ^ → ! X = ! ^ (array congruence)

2. ∀!, \, X, ^. X = ^ → !⟨X ⊲ \⟩ ^ = \ (read-over-write 1)

3. ∀!, \, X, ^. X ≠ ^ → !⟨X ⊲ \⟩ ^ = ! ^ (read-over-write 2)

Theory of arrays $#
37
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Decidability results for $#
Validity in >- is not decidable
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Decidability results for $#
Validity in >- is not decidable

Quantifier-free fragment of >- is decidable

39



Combination of Theories

Given theories ># and >$ that have the = predicate, 
define combined theory ># ∪ >$:

Signature Σ# ∪ Σ$

Axioms =# ∪ =$
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Decision procedures for combined theories

If 
1. quantifier-free fragment of >#is decidable
2. quantifier-free fragment of >$is decidable
3. and ># and >$ meet certain technical requirements
then quantifier-free fragment of ># ∪ >$ is also decidable.
[Nelson and Oppen] 
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Today
▸ Overview of of first-order theories

Next
▸ SMT solving

Summary
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