First-Order Theories

CS560: Reasoning About Programs

Roopsha Samanta

Partly based on slides by Aaron Bradley and Isil Dillig
Roadmap

Previously

▸ FOL

Today

▸ Overview of first-order theories
Review
Syntax of FOL

constants: a, b, c
variables: x, y, z
n-ary functions: f, g, h
n-ary predicates: p, q, r

logical connectives: $\neg, \lor, \land, \rightarrow, \leftrightarrow$
quantifiers: \exists, \forall

Term
constant, variable, or,
n-ary function applied to n terms

Atom
T, \bot, or,
n-ary predicate applied to n terms

Literal
atom or its negation

FOL formula:
Literal, or, application of logical
connectives to an FOL formula, or,
application of a quantifier to an FOL formula
Semantics of FOL: first-order structure \(\langle U, I\rangle\)

- **Universe** of discourse/domain, \(U\):
 - Non-empty set of values or objects of interest
 - May be finite (set of students at Purdue), countably infinite (integers) or uncountable infinite (positive reals)

- **Interpretation**, \(I\): Mapping of variables, functions and predicates to values in \(U\)
 - \(I\) maps each variable symbol \(x\) to some value \(I[x] \in U\)
 - \(I\) maps each \(n\)-ary function symbol \(f\) to some function \(f_I: U^n \rightarrow U\)
 - \(I\) maps each \(n\)-ary predicate symbol \(p\) to some predicate \(p_I: U^n \rightarrow \{true, false\}\)
Evaluation of formulas: inductive definition

Base Cases:

\[\langle U, I \rangle \models T \]
\[\langle U, I \rangle \not\models \bot \]
\[\langle U, I \rangle \models p(t_1, \ldots, t_n) \quad \text{iff} \quad I[p(t_1, \ldots, t_n)] = \text{true} \]

Inductive Cases:

\[\langle U, I \rangle \models \neg F \quad \text{iff} \quad \langle U, I \rangle \not\models F \]
\[\langle U, I \rangle \models F_1 \lor F_2 \quad \text{iff} \quad \langle U, I \rangle \models F_1 \text{ or } \langle U, I \rangle \models F_2 \]
\[\ldots \]
\[\langle U, I \rangle \models \forall x. F \quad \text{iff for all } v \in U, I[x \mapsto v] \models F \]
\[\langle U, I \rangle \models \exists x. F \quad \text{iff there exists } v \in U, I[x \mapsto v] \models F \]

x-variant of \(\langle U, I \rangle \) that agrees with \(U, I \) on everything except the variable \(x \), with \(I[x] = v \).
Soundness and Completeness of Proof Rules

Soundness:
If every branch of semantic argument proof derives \bot, then F is valid.

Completeness:
If F is valid, there exists a finite-length semantic argument proof in which every branch derives \bot.
Undecidability of FOL

A problem is decidable if there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. halts and says “no” if answer is negative
(Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]:
Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable
The truth table method is a decision procedure
Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.
Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:
For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says “yes”.
If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.
Motivation

- FOL is very expressive, powerful and undecidable in general
- Some application domains do not need the full power of FOL
- First-order theories are useful for reasoning about specific applications
 - e.g., programs with arithmetic operations over integers
- Specialized, efficient decision procedures!
First-Order Theories

Signature Σ_T : set of constant, function, and predicate symbols

Axioms A_T : set of closed formulas over Σ_T
First-Order Theories

Signature Σ_T : set of constant, function, and predicate symbols

Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T
First-Order Theories

Signature Σ_T : set of constant, function, and predicate symbols
Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T

Σ_T-formula : constructed from symbols of Σ_T, and variables, logical connectives, and quantifiers
First-Order Theories

Signature Σ_T : set of constant, function, and predicate symbols

Axioms A_T : set of closed formulas over Σ_T

Axioms provide the meaning of symbols in Σ_T

Σ_T-formula : constructed from symbols of Σ_T, and variables, logical connectives, and quantifiers

T-model : a first-order structure $M = \langle U, I \rangle$ such that $M \models A$ for all $A \in A_T$
Satisfiability and Validity Modulo T

F is satisfiable modulo T iff there exists some T-model $M : M \models F$

F is valid modulo T (written $T \models F$) iff for all T-models $M : M \models F$
Satisfiability and Validity Modulo T

F is satisfiable modulo T iff there exists some T-model $M : M \models F$.

F is valid modulo T (written $T \models F$) iff for all T-models $M : M \not\models F$.

The theory T consists of all closed formulas that are valid modulo T.
Satisfiability and Validity Modulo T

F is **satisfiable modulo** T iff there exists some T-model $M : M ⊨ F$

F is **valid modulo** T (written $T ⊨ F$) iff for all T-models $M : M ⊨ F$

The theory T consists of all closed formulas that are valid modulo T

- How is validity modulo T different from FOL-validity?
- If a formula is valid in FOL, is it also valid modulo T for any T?
- If a formula is valid modulo T for some T, is it valid in FOL?
Theory of heights \(T_H \)

\[\Sigma_H : \{ \text{taller} \} \]

\[\Delta_H : \{ \forall x, y. \text{taller}(x, y) \rightarrow \text{taller}(y, x) \} \]

\[U = \{ A, B \} \]

\[I[\text{taller}] = \{ (A, B), (B, A) \} \]

\[I[\text{taller}] = \{ (A, B) \} \]

\[\langle U, I \rangle \text{ is } T_H \text{-model!} \]

\[\text{valid} \]

\[\text{not valid} \]

\[\text{FOL} \]
Equivalence Modulo T

Two formulas F_1 and F_2 are equivalent modulo T iff $T \models F_1 \iff F_2$, i.e.,

iff for every T-model M, $M \models F_1$ iff $M \models F_2$

$$T = \Sigma \cup \{x = y \iff y = x\}$$
$$A = \{\text{Equality axioms}\}$$

$T \vdash x = y \iff y = x$

$M \models x = y$ iff $M \models y = x$

$\exists M_1, M_1 \models F_1$ iff $\exists M_2, M_2 \models F_2$

M_1 & M_2 can be different
Completeness of a theory

A theory T is complete iff for every formula F, either $T \models F$ or $T \models \neg F$.
Decidability of a theory

A theory T is decidable iff for every formula F, there is an algorithm that:
1. terminates and answers “yes” if F is valid modulo T, and
2. terminates and answers “no”, if F is not valid modulo T

Next: decidable first-order theories, and theories with decidable fragments
Common first-order theories

- Theory of equality (with uninterpreted functions)
- Peano arithmetic (first-order arithmetic)
- Presburger arithmetic
- Theory of reals
- Theory of rationals
- Theory of arrays
Theory of equality $T_=$

Signature

- $=$ binary predicate, interpreted by axioms
- all constant, function, and predicate symbols

$$\Sigma_:= \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r\}$$
Theory of equality $T_=$

Axioms

1. $\forall x. x = x$ (reflexivity)
2. $\forall x, y. (x = y) \rightarrow y = x$ (symmetry)
3. $\forall x, y, z. (x = y \land y = z) \rightarrow x = z$ (transitivity)
4. for n-ary function symbol $f,$ (function congruence)
 $$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\land_i x_i = y_i) \rightarrow (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$
5. for each n-ary predicate symbol $p,$ (predicate congruence)
 $$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\land_i x_i = y_i) \rightarrow ((p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$$
Theory of equality $T_=$

Axioms

1. $\forall x. \ x = x$ (reflexivity)
2. $\forall x, y. \ (x = y) \rightarrow y = x$ (symmetry)
3. $\forall x, y, z. \ (x = y \land y = z) \rightarrow x = z$ (transitivity)
4. for n-ary function symbol f, (function congruence)
 $$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\Lambda_i x_i = y_i) \rightarrow (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$
5. for each n-ary predicate symbol p, (predicate congruence)
 $$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ (\Lambda_i x_i = y_i) \rightarrow ((p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$$
Proving validity in $T_{=} \models$ using semantic arguments

Example: Prove F is valid in $T_{=}$

$F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$

Suppose not; then there exists a $T_{=}$-model M such that $M \nvdash F$. Then,

1. $M \nvdash F$ \hspace{1cm} \text{assumption}$
2. $M \models a = b \land b = c$ \hspace{1cm} 1, \rightarrow
3. $M \nvdash g(f(a), b) = g(f(c), a)$ \hspace{1cm} 1, \rightarrow
4. $M \models a = c$ \hspace{1cm} 2, transitivity
5. $M \models f(a) = f(c)$ \hspace{1cm} 4, function congruence
6. $M \models a = b$ \hspace{1cm} 2, \land
7. $M \models b = a$ \hspace{1cm} 6, symmetry
8. $M \models g(f(a), b) = g(f(c), a)$ \hspace{1cm} 5, 7, function congruence
9. $M \models \bot$ \hspace{1cm} 3, 8
Decidability results for T_\subseteq

T_\subseteq is undecidable
Decidability results for $T_=$

$T_=$ is undecidable

Quantifier-free fragment of $T_=$ is (efficiently) decidable
Theories with natural numbers and integers

Natural numbers $\mathbb{N} = \{0,1,2,\ldots\}$
Integers $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$

Peano arithmetic T_{PA}: natural numbers with addition and multiplication

Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition

Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >
Peano arithmetic T_{PA}

Signature
- 0, 1 constants
- +, . binary functions
- = binary predicate

$\Sigma_{PA} = \{0, 1, +, ., =\}$
Peano arithmetic T_{PA}

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:
 1. $\forall x. \neg (x + 1 = 0)$ \hspace{1cm} (zero)
 2. $\forall x. x + 0 = x$ \hspace{1cm} (plus zero)
 3. $\forall x. x.0 = 0$ \hspace{1cm} (times zero)
 4. $\forall x,y. (x + 1 = y + 1) \rightarrow x = y$ \hspace{1cm} (successor)
 5. $\forall x,y. x + (y + 1) = (x + y) + 1$ \hspace{1cm} (plus successor)
 6. $\forall x,y. x.(y + 1) = (x.y) + x$ \hspace{1cm} (times successor)
 7. $(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x]$ \hspace{1cm} (induction)
Peano arithmetic T_{PA}

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:
 1. $\forall x. \neg(x + 1 = 0)$ (zero)
 2. $\forall x. x + 0 = x$ (plus zero)
 3. $\forall x. x \cdot 0 = 0$ (times zero)
 4. $\forall x, y. (x + 1 = y + 1) \rightarrow x = y$ (successor)
 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
 6. $\forall x, y. x \cdot (y + 1) = (x \cdot y) + x$ (times successor)
 7. $(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x]$ (induction)

Can we express $<, \leq, >, \geq$ in T_{PA}?
\[2x = y + 3 \]

\[T \quad \text{PA} \]

\[x + x = y + 1 + 1 \]

or \((G+1) \cdot x\)

\[2x \text{ } \text{ } \text{ } \text{ } y + 3 \]

\[\exists n, n \neq 0 \land 2x = y + 3 + n \]
Decidability and completeness results for T_{PA}

Validity in T_{PA} is undecidable
Decidability and completeness results for T_{PA}

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]
Decidability and completeness results for T_{PA}

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

T_{PA} does not capture true arithmetic [Gödel]
Decidability and completeness results for T_{PA}

Validity in T_{PA} is undecidable

Validity in quantifier-free fragment of T_{PA} is also undecidable [Matiyasevitch, 1970]

T_{PA} does not capture true arithmetic [Gödel]

∃ valid propositions of number theory that cannot be proven valid in T_{PA}
Decidability and completeness results for \(T_{PA} \)

Validity in \(T_{PA} \) is undecidable.

Validity in quantifier-free fragment of \(T_{PA} \) is also undecidable [Matiyasevitch, 1970]

\(T_{PA} \) does not capture true arithmetic [Gödel]

\(\exists \) valid propositions of number theory that cannot be proven valid in \(T_{PA} \)

Drop multiplication to get decidability and completeness!
Presburger arithmetic $T_\mathbb{N}$

Signature
- 0, 1 constants
- + binary function
- = binary predicate

$\Sigma_\mathbb{N} = \{0, 1, +, =\}$
Presburger arithmetic $T^\mathbb{N}$

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:
 1. $\forall x. \neg(x + 1 = 0)$ (zero)
 2. $\forall x. x + 0 = x$ (plus zero)
 3. $\forall x, y. (x + 1 = y + 1) \rightarrow x = y$ (successor)
 4. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
 5. $(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x]$ (induction)
Decidability and completeness results for $T_\mathbb{N}$

Validity in quantifier-free fragment of $T_\mathbb{N}$ is (efficiently) decidable
Decidability and completeness results for $T_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]
Decidability and completeness results for $T_{\mathbb{N}}$

Validity in quantifier-free fragment of $T_{\mathbb{N}}$ is (efficiently) decidable

Validity in $T_{\mathbb{N}}$ is also decidable [Presburger, 1929]

$T_{\mathbb{N}}$ is also complete
Decidability and completeness results for T_N

$\exists x. ax^2 + bx + c = 0 \equiv b^2 - 4ac > 0$

Validity in quantifier-free fragment of T_N is (efficiently) decidable

Validity in T_N is also decidable [Presburger, 1929]

T_N is also complete

T_N admits quantifier elimination:
for every formula F, there exists an equivalent quantifier-free formula F'
Theory of integers T_Z

Signature
- $\ldots, -2, -1, 0, 1, 2, \ldots$ constants
- $\ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots$ unary functions
- $+, -$ binary functions
- $=, >$ binary predicates

$\Sigma_Z = \{\ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, >\}$
Theory of integers $\mathcal{T}_\mathbb{Z}$

Signature

- $\ldots, -2, -1, 0, 1, 2, \ldots$ constants
- $\ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots$ unary functions
- $+, -$ binary functions
- $=, >$ binary predicates

$$\Sigma_\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, > \}$$

- Also referred to as the theory of linear arithmetic over integers (LIA)
- Equivalent in expressiveness to Presburger arithmetic
- More convenient notation
Theory of reals $T_{\mathbb{R}}$

Signature
- 0, 1 constants
- $+, -, \cdot$ binary functions
- $=, \geq$ binary predicates

$\Sigma_{\mathbb{R}} = \{0, 1, +, =, \geq\}$

Too many axioms, won’t discuss.
Decidability results for T_R

Validity in T_R is decidable
Decidability results for $T_\mathbb{R}$

Validity in $T_\mathbb{R}$ is decidable

Validity in quantifier-free fragment of $T_\mathbb{R}$ is decidable
Decidability results for $T_{\mathbb{R}}$

Validity in $T_{\mathbb{R}}$ is decidable

Validity in quantifier-free fragment of $T_{\mathbb{R}}$ is decidable

$T_{\mathbb{R}}$ admits quantifier elimination:
for every formula F, there exists an equivalent quantifier-free formula F'
Theory of rationals $T_{\mathbb{Q}}$

Signature

- 0, 1 constants
- + binary function
- $=, \geq$ binary predicates

$\Sigma_{\mathbb{Q}} = \{0, 1, +, =, \geq\}$
Theory of rationals $T_\mathbb{Q}$

Signature
- 0, 1 constants
- + binary function
- =, \geq binary predicates

$\Sigma_\mathbb{Q} = \{0, 1, +, =, \geq\}$

Can we express $> \text{ in } T_\mathbb{Q}$?

$$\forall x, y. \exists z. x + y \geq z$$

$$\forall x, y. \exists z. (x + y \geq z \land (x + y = z))$$
Theory of rationals $T_{\mathbb{Q}}$

Too many axioms, won’t discuss.

[Divisibility axiom]

For each positive x, there exist integers n, y such that $x = ny$.

Theory of rationals $T_{\mathbb{Q}}$

Too many axioms, won’t discuss.

If a formula is valid in $T_{\mathbb{Z}}$, is it valid in $T_{\mathbb{Q}}$?
If a formula is valid in $T_{\mathbb{Q}}$, is it valid in $T_{\mathbb{Z}}$?

$\exists x. \mathbb{Z} x = 3$

$T_{\mathbb{Q}}: x = \frac{3}{2}$

$T_{\mathbb{Z}}: ?$

$\forall x, y. x > y \rightarrow x \geq y + 1$
Decidability results for $T_\mathbb{Q}$

Validity in $T_\mathbb{Q}$ is decidable
Decidability results for T_Q

Validity in T_Q is decidable

Validity in conjunctive quantifier-free fragment of T_N is (efficiently) decidable
Theory of arrays T_A

Signature

- $a[i]$ binary function “read(a, i)”
- $a<i \cdot v>$ ternary function “write(a, i, v)”

$$\Sigma_A = \{ \cdot [\cdot], \cdot \langle \cdot \cdot \cdot \rangle, = \}$$
Theory of arrays T_A

Axioms

- Includes equivalence axioms: reflexivity, symmetry, transitivity
- In addition:
 1. $\forall a, i, j. (i = j) \rightarrow a[i] = a[j]$ (array congruence)
 2. $\forall a, v, i, j. (i = j) \rightarrow a(i < v)[j] = v$ (read-over-write 1)
 3. $\forall a, v, i, j. (i \neq j) \rightarrow a(i < v)[j] = a[j]$ (read-over-write 2)
\[a[i] = e \Rightarrow a \langle i < e \rangle = a \]

\[T_A \text{ - valid? } \ No \]

\[\forall a, b. (\forall i. a[i] = b[i]) \leftrightarrow a = b \]

\[\forall j. a \langle i < e \rangle [j] = a[j] \]
Decidability results for T_A

Validity in T_A is not decidable
Decidability results for T_A

Validity in T_A is not decidable

Quantifier-free fragment of T_A is decidable
Combination of Theories

Given theories T_1 and T_2 that have the $=$ predicate, define combined theory $T_1 \cup T_2$:

Signature $\Sigma_1 \cup \Sigma_2$

Axioms $A_1 \cup A_2$
$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$

$T = U \cup T_Q$ — valid

$T = U \cup T_{\text{in}}$ — not valid
If
1. quantifier-free fragment of T_1 is decidable
2. quantifier-free fragment of T_2 is decidable
3. and T_1 and T_2 meet certain technical requirements
then quantifier-free fragment of $T_1 \cup T_2$ is also decidable. [Nelson and Oppen]
Summary

Today
- Overview of first-order theories

Next
- SMT solving