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Roadmap

Previously
» Propositional logic
» SAT solving

Today

» Syntax and semantics of first-order logic (FOL)
» Semantic argument method for FOL validity

» Properties of FOL



Propositional Logic First-Order Logic
(predicate logic/predicate calculus/
relational logic)
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Syntax of FOL

- a,b,c
X, Y, Z

. f,9,h
D, q,T

4, V

: _I) V) /\) %) H

Term
constant, variable, or,
n-ary function applied to n terms

Atom
T,1,or,
n-ary predicate applied to n terms

Literal
atom or its negation

FOL formula:

Literal, or, application of logical
connectives to an FOL formula, or,
application of a quantifier to an FOL
formula



Quantifiers

existential quantifier: Ax. F(x)  “there exists an x such that F(x)”
universal quantifier: Vx.F(x)  “forall x, F(x)”

Quantified variable Scope of quantified variable

A variable is bound if there exists an Closed/Ground formula:
occurrence in the scope of some quantifier  no free variables

A variable is free if there exists an Open formula: some free variables
occurrence not bound by any quantifier

Ground, quantifier-free formula:
A variable may be both bound and free! no variables
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Semantics of FOL: first-order structure (U, I)

» Universe of discourse/domain, U:
» Non-empty set of values or objects of interest

» May be finite (set of students at Purdue), countably infinite (integers) or
uncountable infinite (positive reals)

» Interpretation, I: Mapping of variables, functions and predicates to values in U
» I maps each variable symbol x to some value I|x] € U
» [ maps each n-ary function symbol f to some function f;: U™ - U
» [ maps each n-ary predicate symbol p to some predicate p;: U™ — {true, false}



Evavluation of formulas

If F evaluates to T under U, I, we write {(U,I) E F
If F evaluates to L under U, I, we write {(U,I) ¥ F

Evaluation of terms: I|f(tq,...,t,)] = I|f]1U]t{], ...
Evaluation of atoms: I|p(tq, ..., t,,)| = I|p]U[t{], ...
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Evaluation of formulas: inductive definition

Base Cases: Inductive Cases:
(UDET (U,1) & —F iff (U,I) ¥ F
(U,I) ¥ L (U,I) E F;V F, iff (U, I) e Fyor(U,I) EF,

(U,I) E p(ty, ..., t,)
iff I[p(ty, ..., tn)] = true (U, I EVx.F iffforallv eU,I[x » v] EF

(U,I) E3x.F iffthereexistsve U,I[x » v] EF

x-variant of (U, I) that agrees with U, I on everything
except the variable x, with I[x] = v.






Satisfiability and Validity

F is satisfiable iff there exists some structure (U, I) : {(U,I) E F

F is valid iff for all structures (U, I) : {(U,I) E F

Duality:
F is valid iff =F is unsatisfiable
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Semantic argument
method for validity

Proof by contradiction:

1. Assume F is not valid

2. Apply proof rules

3. Contradiction (i.e, 1) along every
branch of proof tree = F is valid

4. Otherwise, F is not valid

(U,I) & =F (U,I) # —F
(UI)¥ F (UIEF
(UIDYEFAG (UIY#FAG
(UI)EF (UID®F | (UI¥G
(U,I) E G
(UIYEF -G (UI)®EF - G
(UI¥F (U EG (UI)EF
(UI) ¥ G



Semantic argument
method for validity

(U,I) E Vx.F
(U,I[x N C]) E F (for C € U)

(U,I) ¥ Vx.F
(U, I[x > c]) # F (for some c € U)

(U,I) E3x.F
(U, I[x »c]) = F

(for some c € U)

(U,I) # 3x.F
(U,I[x » c]) # F

(for cel)

(U,I) & =F (U,I) # —F
(UI)¥ F (UIEF
(UIDYEFAG (UIY#FAG
(UI)EF (UID®F | (UI¥G
(U,I) E G
(UIYEF -G (UI)®EF - G
(UI¥F (U EG (UI)EF
(UI) ¥ G

(U,I) E p(S1,.-5n)
(U,I) H p(tl,...,tn)
I[s;] = I|t;] for all ie[1,n]

(U,I) E L






Soundness and Completeness of Proof Rules

Soundness:
If every branch of semantic argument proof derives L, then F is valid

Completeness:

If F is valid, there exists a finite-length semantic argument proof in
which every branch derives 1.



Undecidability of FOL

A problem is decidable if there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and

2. halts and says “no” if answer is negative
(Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]:
Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable
The truth table method is a decision procedure




Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic
argument method) that always terminates and says “yes”.

If an FOL formula is invalid, there exists no procedure that is
guaranteed to terminate.



Summary

Today

» Syntax and semantics of first-order logic (FOL)
» Semantic argument method for FOL validity

» Properties of FOL

Next
» First-order theories



