First-Order Logic

CS560: Reasoning About Programs

Roopsha Samanta PURDUE

Partly based on slides by Aaron Bradley

Roadmap

Previously

- Propositional logic
- SAT solving

Today

- Syntax and semantics of first-order logic (FOL)
- Semantic argument method for FOL validity
- Properties of FOL

Propositional Logic

 $\mathsf{P} \land Q \to \mathsf{P} \lor \neg Q$

First-Order Logic (predicate logic/predicate calculus/ relational logic)

 $\forall x. p(x, y) \rightarrow \exists y. \neg q(x, y)$

- Simple, not very expressive
- Decidable
 - Automated reasoning about satisfiability/validity

- Very expressive
- Semi-decidable
 - Not fully automated

Syntax of FOL

constants: a, b, cvariables: x, y, zn-ary functions: f, g, hn-ary predicates: p, q, r

logical connectives: \neg , V, \land , \rightarrow , \leftrightarrow quantifiers: \exists , \forall

Term

constant, variable, or, *n*-ary function applied to *n* terms

Atom T, \bot , or, *n*-ary predicate applied to *n* terms

Literal atom or its negation

FOL formula:

Literal, or, application of logical connectives to an FOL formula, or, application of a quantifier to an FOL formula

Quantifiers

existential quantifier: $\exists x.F(x)$ universal quantifier: $\forall x.F(x)$ "there exists an x such that F(x)" "for all x, F(x)"

Quantified variable

Scope of quantified variable

A variable is **bound** if there exists an occurrence in the scope of some quantifier

A variable is **free** if there exists an occurrence not bound by any quantifier

A variable may be both bound and free!

Closed/Ground formula: no free variables

Open formula: some free variables

Ground, quantifier-free formula: no variables

Terms: X, a, g(a), f(x, g(y, 2))age (child (Bob, mother (Alice)) Atoms: p(x), 7p(f(x)), 9(x, f(x))faller (mother (Atrice), Bob) Formula: $4x.(P(x,y) \rightarrow (\exists y. \neg q(x,y)))$ Open (Fore Bounder (Bounder (Mosed formula: $\forall x. (\forall y. p(x,y) \longrightarrow \exists y. \exists q(x,y)))$

Gound : p(a, f(b, c))

Semantics of FOL: first-order structure $\langle U, I \rangle$

- Universe of discourse/domain, U:
 - Non-empty set of values or objects of interest
 - May be finite (set of students at Purdue), countably infinite (integers) or uncountable infinite (positive reals)
- ▶ Interpretation, *I*: Mapping of variables, functions and predicates to values in *U*
 - I maps each variable symbol x to some value $I[x] \in U$
 - I maps each *n*-ary function symbol f to some function $f_I: U^n \to U$
 - I maps each *n*-ary predicate symbol *p* to some predicate $p_I: U^n \rightarrow \{true, false\}$

Evaluation of formulas

If *F* evaluates to T under *U*, *I*, we write $\langle U, I \rangle \vDash F$ If *F* evaluates to \bot under *U*, *I*, we write $\langle U, I \rangle \nvDash F$

Evaluation of terms: $I[f(t_1, ..., t_n)] = I[f](I[t_1], ..., I[t_n])$ Evaluation of atoms: $I[p(t_1, ..., t_n)] = I[p](I[t_1], ..., I[t_n])$

 $V = \{ \Box, D \}$ T[x] = A, T[a] = D, T[b] = AICAJ = {AHD, DHD} I[P] = f(D,D) + strue, (A,A) + sfalse 3 F: p(F(a), f(x)) $I[f(\sigma)] = I[f](I[\sigma]) = (\Delta H) I_{\tau}(D) = \Delta$ I[f(x] =] $T[p(f(\alpha), f(x)) = T[p](\Delta, I) = false$

Evaluation of formulas: inductive definition

Base Cases:

$$\begin{split} \langle U, I \rangle &\vDash \top \\ \langle U, I \rangle &\nvDash \bot \\ \langle U, I \rangle &\vDash p(t_1, \dots, t_n) \\ & \quad \text{iff } I[p(t_1, \dots, t_n)] = true \end{split}$$

Inductive Cases:

 $\begin{array}{ll} \langle U,I\rangle \vDash \neg F & \text{iff } \langle U,I\rangle \nvDash F \\ \langle U,I\rangle \vDash F_1 \lor F_2 & \text{iff } \langle U,I\rangle \vDash F_1 \text{ or } \langle U,I\rangle \vDash F_2 \\ & \cdots \\ \langle U,I\rangle \vDash \forall x.F & \text{iff for all } v \in U,I[x \mapsto v] \vDash F \\ \langle U,I\rangle \vDash \exists x.F & \text{iff there exists } v \in U,I[x \mapsto v] \vDash F \end{array}$

x-variant of $\langle U, I \rangle$ that agrees with U, I on everything except the variable x, with I[x] = v.

F: $\forall x \cdot p(x, \alpha) \leq A \cdot p(\Delta, \Pi) = F(\psi, \Pi)$ $F: \forall x \cdot p(x, \alpha) \leq A \cdot p(\Delta, \Pi) = F(\psi, \Pi)$ G_{i} , $\exists x$, $p(f(x), f(x)) \rightarrow p(x,x)$ $P(X,A) \rightarrow P(A,D)$ ATT FG

Satisfiability and Validity

F is satisfiable iff there exists some structure $\langle U, I \rangle : \langle U, I \rangle \vDash F$

F is valid iff for all structures $\langle U, I \rangle : \langle U, I \rangle \vDash F$

Duality: F is valid iff $\neg F$ is unsatisfiable

 $\forall x . \exists y . p(x, y)$

valid?

satisfying studius? Satisfiable? falsifying structure?

Semantic argument method for validity

Proof by contradiction:

- 1. Assume F is not valid
- 2. Apply proof rules
- 3. Contradiction (i.e, \bot) along every branch of proof tree \Rightarrow *F* is valid
- 4. Otherwise, F is not valid

$\frac{\langle U,I\rangle \vDash \neg F}{\langle U,I\rangle \nvDash F}$	$\frac{\langle U,I \rangle \not\vDash \neg F}{\langle U,I \rangle \vDash F}$
$\frac{\langle U,I \rangle \vDash F \land G}{\langle U,I \rangle \vDash F}$ $\langle U,I \rangle \vDash G$	$\frac{\langle U,I \rangle \not\vDash F \land G}{\langle U,I \rangle \not\vDash F \mid \langle U,I \rangle \not\vDash G}$
$\frac{\langle U,I \rangle \vDash F \to G}{\langle U,I \rangle \nvDash F \mid \langle U,I \rangle \vDash G}$	$\frac{\langle U,I \rangle \not\vDash F \to G}{\langle U,I \rangle \vDash F}$ $\langle U,I \rangle \not\vDash G$

Semantic argument method for validity

 $\langle U,I\rangle \models \forall x.F$ (for any $c \in U$) $\langle U, I[x \mapsto c] \rangle \vDash F$ $\langle U, I \rangle \not\models \forall x.F$ $\overline{\langle U, I[x \mapsto c] \rangle \not\models F}$ (for some fresh $c \in U$) $\frac{\langle U, I \rangle \models \exists x. F}{\langle U, I[x \mapsto c] \rangle \models F} \text{ (for some fresh } c \in U)$ $\langle U, I \rangle \not\vDash \exists x. F$ (for any $c \in U$) $\overline{\langle U, I[x \mapsto c] \rangle \not\vDash F}$

$\frac{\langle U,I\rangle \vDash \neg F}{\langle U,I\rangle \nvDash F}$	$\frac{\langle U,I \rangle \nvDash \neg F}{\langle U,I \rangle \vDash F}$
$\frac{\langle U,I \rangle \vDash F \land G}{\langle U,I \rangle \vDash F}$ $\langle U,I \rangle \vDash G$	$\frac{\langle U,I \rangle \not\vDash F \land G}{\langle U,I \rangle \not\vDash F \mid \langle U,I \rangle \not\vDash G}$
$\frac{\langle U,I\rangle \vDash F \to G}{\langle U,I\rangle \nvDash F \ \langle U,I\rangle \vDash G}$	$\frac{\langle U,I \rangle \not\vDash F \rightarrow G}{\langle U,I \rangle \vDash F}$ $\frac{\langle U,I \rangle \vDash F}{\langle U,I \rangle \not\vDash G}$
	•••

 $\begin{array}{l} \langle U,I \rangle \vDash p(s_1,...,s_n) \\ \langle U,I \rangle \nvDash p(t_1,...,t_n) \\ I[s_i] = I[t_i] \text{ for all } i \in [1,n] \\ \hline \langle U,I \rangle \vDash \bot \end{array}$

 $F: (\forall x, p(x)) \rightarrow (\forall y, p(y))$ $I. (V, I) \neq F \qquad ass.$ 2. $(V,I) \neq \forall X. P(X)$ $(,) \neq (,)$ 3. $(V,I) \notin \forall Y. P(Y)$ (,)3, \$4, 860 4. WIEMPVJK P(Y) $V5\langle V, T[X \rightarrow V]/FP(X) Z, Y$ I (XH), YH) $6 \cdot \langle v, T \rangle \neq \bot$

Soundness and Completeness of Proof Rules

Soundness:

If every branch of semantic argument proof derives \bot , then F is valid

Completeness:

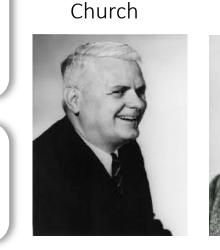
If F is valid, there exists a finite-length semantic argument proof in which every branch derives \bot .

Undecidability of FOL

A problem is decidable if there exists a procedure that, for any input:1. halts and says "yes" if answer is positive, and2. halts and says "no" if answer is negative(Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]: Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable The truth table method is a decision procedure



Turing

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes". If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

Summary

Today

- Syntax and semantics of first-order logic (FOL)
- Semantic argument method for FOL validity
- Properties of FOL

Next

First-order theories