
Roopsha Samanta

CS560: Reasoning About Programs

First-Order Logic

Partly based on slides by Aaron Bradley

Previously
▸ Propositional logic
▸ SAT solving

Today
▸ Syntax and semantics of first-order logic (FOL)
▸ Semantic argument method for FOL validity
▸ Properties of FOL

Roadmap

Propositional Logic

P ∧ 𝑄 → 𝑃 ∨ ¬𝑄

First-Order Logic
(predicate logic/predicate calculus/

relational logic)

∀𝑥. 𝑝 𝑥, 𝑦 → ∃𝑦.¬𝑞 𝑥, 𝑦

▸ Simple, not very expressive
▸ Decidable
▸ Automated reasoning about
satisfiability/validity

▸ Very expressive
▸ Semi-decidable
▸ Not fully automated

constants: 𝑎, 𝑏, 𝑐
variables: 𝑥, 𝑦, 𝑧
𝑛-ary functions: 𝑓, 𝑔, ℎ
𝑛-ary predicates: 𝑝, 𝑞, 𝑟

Syntax of FOL

logical connectives: ¬, ∨, ∧, →, ↔
quantifiers: ∃, ∀

Term
constant, variable, or,
𝑛-ary function applied to 𝑛 terms

Atom
⊤, ⊥, or,
𝑛-ary predicate applied to 𝑛 terms

Literal
atom or its negation

FOL formula:
Literal, or, application of logical
connectives to an FOL formula, or,
application of a quantifier to an FOL
formula

existential quantifier: ∃𝑥. 𝐹 𝑥 “there exists an 𝑥 such that 𝐹 𝑥 ”
universal quantifier: ∀𝑥. 𝐹 𝑥 “for all 𝑥, 𝐹 𝑥 ”

Quantifiers

Quantified variable Scope of quantified variable

!

A variable is bound if there exists an
occurrence in the scope of some quantifier

A variable is free if there exists an
occurrence not bound by any quantifier

A variable may be both bound and free!

Closed/Ground formula:
no free variables

Open formula: some free variables

Ground, quantifier-free formula:
no variables

▸ Universe of discourse/domain, 𝑈:
▸ Non-empty set of values or objects of interest
▸ May be finite (set of students at Purdue), countably infinite (integers) or

uncountable infinite (positive reals)

▸ Interpretation, 𝐼: Mapping of variables, functions and predicates to values in 𝑈
▸ 𝐼 maps each variable symbol 𝑥 to some value 𝐼[𝑥] ∈ 𝑈
▸ 𝐼 maps each 𝑛-ary function symbol 𝑓 to some function 𝑓": 𝑈# → 𝑈
▸ 𝐼 maps each 𝑛-ary predicate symbol 𝑝 to some predicate 𝑝": 𝑈# → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

Semantics of FOL: first-order structure 𝑈, 𝐼

If 𝐹 evaluates to ⊤ under 𝑈, 𝐼, we write 𝑈, 𝐼 ⊨ 𝐹
If 𝐹 evaluates to ⊥ under 𝑈, 𝐼, we write 𝑈, 𝐼 ⊭ 𝐹

Evaluation of formulas

Evaluation of terms: 𝐼 𝑓 𝑡!, … , 𝑡" = 𝐼 𝑓 𝐼 𝑡! , … , 𝐼 𝑡"
Evaluation of atoms: 𝐼 𝑝 𝑡!, … , 𝑡" = 𝐼 𝑝 𝐼 𝑡! , … , 𝐼 𝑡"

Evaluation of formulas: inductive definition

Base Cases:

𝑈, 𝐼 ⊨ ⊤
𝑈, 𝐼 ⊭ ⊥
𝑈, 𝐼 ⊨ 𝑝 𝑡$, … , 𝑡#

iff 𝐼 𝑝 𝑡$, … , 𝑡# = 𝑡𝑟𝑢𝑒

Inductive Cases:

𝑈, 𝐼 ⊨ ¬𝐹 iff 𝑈, 𝐼 ⊭ 𝐹
𝑈, 𝐼 ⊨ 𝐹$ ∨ 𝐹% iff 𝑈, 𝐼 ⊨ 𝐹$ or 𝑈, 𝐼 ⊨ 𝐹%

…
𝑈, 𝐼 ⊨ ∀𝑥. 𝐹 iff for all 𝑣 ∈ 𝑈, 𝐼 𝑥 ↦ 𝑣 ⊨ 𝐹
𝑈, 𝐼 ⊨ ∃𝑥. 𝐹 iff there exists 𝑣 ∈ 𝑈, 𝐼 𝑥 ↦ 𝑣 ⊨ 𝐹

x-variant of U, I that agrees with U, I on everything
except the variable x, with I x = v.

Satisfiability and Validity

Duality:
𝐹 is valid iff ¬𝐹 is unsatisfiable

𝐹 is satisfiable iff there exists some structure 𝑈, 𝐼 : 𝑈, 𝐼 ⊨ 𝐹

𝐹 is valid iff for all structures 𝑈, 𝐼 : 𝑈, 𝐼 ⊨ 𝐹

Semantic argument
method for validity

Proof by contradiction:
1. Assume 𝐹 is not valid
2. Apply proof rules
3. Contradiction (i.e, ⊥) along every

branch of proof tree ⇒ 𝐹 is valid
4. Otherwise, 𝐹 is not valid

#,% ⊨ ¬(
#,% ⊭ (

#,% ⊭ ¬(
#,% ⊨ (

#,% ⊨ (∧ +
#,% ⊨ (
#,% ⊨ +

#,% ⊭ (∧ +
#,% ⊭ (| #,% ⊭ +

#,% ⊨ (→ +
#,% ⊭ (| #,% ⊨ +

#,% ⊭ (→ +
#,% ⊨ (
#,% ⊭ +

…

Semantic argument
method for validity #,% ⊨ ¬(

#,% ⊭ (
#,% ⊭ ¬(
#,% ⊨ (

#,% ⊨ (∧ +
#,% ⊨ (
#,% ⊨ +

#,% ⊭ (∧ +
#,% ⊭ (| #,% ⊭ +

#,% ⊨ (→ +
#,% ⊭ (| #,% ⊨ +

#,% ⊭ (→ +
#,% ⊨ (
#,% ⊭ +

…

𝑈, 𝐼 ⊨ ∀𝑥. 𝐹
𝑈, 𝐼[𝑥 ↦ 𝑐] ⊨ 𝐹 (for any 𝑐 ∈ 𝑈)

𝑈, 𝐼 ⊭ ∀𝑥. 𝐹
𝑈, 𝐼[𝑥 ↦ 𝑐] ⊭ 𝐹 (for some fresh 𝑐 ∈ 𝑈)

𝑈, 𝐼 ⊨ ∃𝑥. 𝐹
𝑈, 𝐼[𝑥 ↦ 𝑐] ⊨ 𝐹

𝑈, 𝐼 ⊭ ∃𝑥. 𝐹
𝑈, 𝐼[𝑥 ↦ 𝑐] ⊭ 𝐹 (for any 𝑐 ∈ 𝑈)

#,% ⊨ . /!,…,/"
#,% ⊭ . 1!,…,1"

% /# 2 % 1# 345 677 8∈[!,"]

#,% ⊨ <

(for some fresh 𝑐 ∈ 𝑈)

Soundness and Completeness of Proof Rules

Soundness:
If every branch of semantic argument proof derives ⊥, then 𝐹 is valid

Completeness:
If 𝐹 is valid, there exists a finite-length semantic argument proof in
which every branch derives ⊥.

Undecidability of FOL

Undecidability of FOL [Church and Turing]:
Deciding the validity of an FOL formula is undecidable

A problem is decidable if there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. halts and says “no” if answer is negative
(Such a procedure is called an algorithm or a decision procedure)

Deciding the validity of a PL formula is decidable
The truth table method is a decision procedure

Church Turing

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:
For every valid FOL formula, there exists a procedure (semantic
argument method) that always terminates and says “yes”.
If an FOL formula is invalid, there exists no procedure that is
guaranteed to terminate.

Today
▸ Syntax and semantics of first-order logic (FOL)
▸ Semantic argument method for FOL validity
▸ Properties of FOL

Next
▸ First-order theories

Summary

