
Roopsha Samanta

CS560: Reasoning About Programs

SAT Solving

Partly based on slides by Isil Dillig, Aarti Gupta and Emina Torlak

Previously
▸ PL and normal forms

Today
▸ DPLL algorithm for SAT solving
▸ One challenge for current SAT solvers
▸ Variations of the satisfiability problem (e.g., MaxSAT)

Roadmap

Review: Conjunctive Normal Form (CNF)

Atom ⊤ , ⊥ , propositional variables

Literal Atom | ¬Atom

Clause Literal ∨ Clause

Formula Clause ∧ Formula

Conjunction of disjunction of literals

The Boolean Satisfiability problem

Cook Karp

5

Cook, The complexity of theorem proving procedures, 1971

A bit of history

Karp, Reducibility among combinatorial problems, 1972

Cook-Levin Theorem:
SAT is NP-complete

The SAT problem
For 𝐹 in CNF, exists 𝐼 : 𝐼 ⊨ 𝐹 ?

Levin

First NP-complete problem!

SAT solver
Decision procedures

Automatic circuit testing

Interpolation

Temporal logic

Combinatorial design

Classical planning

Particle physics

Graph problems

Computational biology

⋮
SAT Live portal
http://www.satlive.org
SAT Comp: annual SAT-Solver competition
http://www.satcompetition.org

Program verification

Model checking

predicate abstraction

resolution

ATPG

BMC

Eq
uiva

len
ce

 ch
ec

kin
g

SMT

Compiler correctness

Symbolic sim
ulation Cryptanalysis

http://www.satlive.org/
http://www.satcompetition.org/

Almost all SAT solvers today are based on DPLL (Davis-Putnam-Logemann-Loveland)

A Modern SAT Solver

Original
formula

Equisatisfiable
CNF formula SAT Solver

SAT
(+model)

UNSAT

Tseitin’s
transformation

1962: the original algorithm known as DP (Davis-Putnam)
⇒ “simple” procedure for automated theorem proving

Davis and Putnam hired two programmers, Logemann and Loveland,
to implement their ideas on the IBM 704.

Not all of the original ideas worked out as planned
⇒ refined algorithm is what is known today as DPLL

DPLL: A bit of history

Two distinct approaches for the Boolean satisfiability problem
▸ Search
▸ Find satisfying assignment by searching through all possible assignments
▸ Example: truth table

▸ Deduction
▸ Deduce new facts from set of known facts, i.e, application of proof rules
▸ Example: semantic argument method

▸ DPLL combines search and deduction in a very effective way!

DPLL insight

▸ Deductive principle underlying DPLL is propositional resolution

▸ Resolution can only be applied to formulas in CNF
▸ SAT solvers convert formulas to CNF to be able to perform resolution

Propositional Resolution

Consider two clauses in CNF:
𝐶! ∶ 𝑙! ∨ . . . 𝑝 . . .∨ 𝑙"
𝐶# ∶ (𝑙!$ ∨ . . . ¬𝑝 . . .∨ 𝑙%$)

We can deduce a new clause 𝐶&, called resolvent:
𝐶&: (𝑙! ∨ . . .∨ 𝑙" ∨ 𝑙!$ ∨∨ 𝑙%$)

Correctness:
1. If 𝑝 is assigned ⊤ : since 𝐶! is SAT and since ¬𝑝 is ⊥, (𝑙!$ ∨∨ 𝑙%$) must be true
2. If 𝑝 is assigned ⊥ : since 𝐶# is SAT and since 𝑝 is ⊥, (𝑙! ∨∨ 𝑙")must be true
3. Thus, 𝐶& must be true

Unit Resolution

Consider two clauses in CNF:
𝐶! ∶ 𝑝
𝐶# ∶ (𝑙! ∨ . . . ¬𝑝 . . .∨ 𝑙%)

We can deduce a new resolvent:
𝐶&: (𝑙! ∨ . . .∨ 𝑙%)

Unit clause: literal

▸ DPLL uses unit resolution

▸ Boolean Constraint Propagation: all possible applications of unit resolution on input

Basic DPLL

Decision heuristics

Backtracking

Boolean constraint propagation
// returns SAT if CNF formula 𝐹 is satisfiable; //
otherwise returns UNSAT

DPLL(𝐹)
𝐺 = ℬCP(𝐹)
if 𝐺 = ⊤ then return SAT
else if (𝐺 = ⊥) then return UNSAT
𝑝 = choose_var(𝐺)
if (DPLL(𝐺[𝑝 ↦ ⊤])) then return SAT;
else return (DPLL(𝐺 𝑝 ↦ ⊥));

DPLL with Pure Literal Propagation
// returns SAT if CNF formula 𝐹 is satisfiable; //
otherwise returns UNSAT

DPLL(𝐹)
𝐻 = ℬCP(𝐹)
𝐺 = PLP(𝐻)
if 𝐺 = ⊤ then return SAT
else if (𝐺 = ⊥) then return UNSAT
𝑝 = choose_var(𝐺)
if (DPLL(𝐺[𝑝 ↦ ⊤])) then return SAT;
else return (DPLL(𝐺 𝑝 ↦ ⊥));

Pure Literal Propagation
If variable 𝑝 occurs only positively
𝑝 must be set to ⊤
If 𝑝 occurs only negatively,
𝑝 must be set to ⊥

Conflict-Driven Clause Learning
(CDCL)

Beyond DPLL

Non-chronological backtracking to earlier decision
levels based on cause of conflict

Learning conflict clauses that summarize conflicts
and augmenting 𝐹 with them

Decision heuristics choose the next literal to add to
the current partial assignment based on the state of
the search.

▸ CDCL based solvers routinely solve problems with
hundred of thousands or even millions of variables

▸ But still possible to create very small instances that
take very long!

SAT solving landscape today

▸ An example: the pigeonhole problem
▸ Is it possible to place 𝑛 pigeons into 𝑚 holes?
▸ Obvious for humans!
▸ But turns out to be very difficult to solve for SAT solvers!

Not every small SAT problem is easy

Let’s encode this for 𝑚 = 𝑛 − 1.
▸ Let 𝑝',) stand for “pigeon 𝑖 placed in 𝑗 ’th hole”

▸ Given we have 𝑛 − 1 holes, how to say 𝑖 ’th pigeon must be placed in some hole?
▸ Given we have 𝑛 pigeons, how to say every pigeon must be placed in some hole?

𝑝!,!∨ 𝑝!,# ∨ . . . 𝑝!,%*# ∨ 𝑝!,%*!
∧ 𝑝#,!∨ 𝑝#,# ∨ . . . 𝑝#,%*# ∨ 𝑝#,%*!

⋮
∧ 𝑝%,!∨ 𝑝%,# ∨ . . . 𝑝%,%*# ∨ 𝑝%,%*!

Encoding the Pigeon hole problem in PL

▸ More concise way of writing this:
⋀

+,"-%
(⋁
+,.-%*!

𝑝",.)

▸ We also need to state that multiple pigeons cannot be placed into same hole:
⋀
"
⋀
'
⋀
)/'

¬𝑝'" ∨ ¬𝑝)"

▸ With 𝑛 > 25, this formula cannot be solved by competitive SAT solvers!

▸ Problem: Conflict clauses talk about specific holes/pigeons, but problem is symmetric!
▸ Research on symmetry breaking

Pigeon hole problem, cont.

Variations of the
Boolean Satisfiability problem

Maximum Satisfiability (MaxSAT)

Given CNF formula 𝐹, find assignment maximizing the number of satisfied clauses of 𝐹

▸ If 𝐹 is satisfiable, the solution to the MaxSAT problem is the number of clauses in 𝐹.
▸ If 𝐹 is unsatisfiable, we want to find a maximum subset of 𝐹’s clauses whose

conjunction is satisfiable.

Partial MaxSAT

Given CNF formula 𝐹 where each clause is marked as hard or soft, find an assignment that
satisfies all hard clauses and maximizes the number of satisfied soft clauses

▸ Similar to MaxSAT, but we distinguish between two kinds of clauses
▸ Hard clauses: clauses that must be satisfied
▸ Soft clauses: clauses that we would like to, but do not have to, satisfy

▸ In normal SAT, all clauses are implicitly hard clauses
▸ In MaxSAT, all clauses are implicitly soft clauses
▸ In this sense, Partial MaxSAT is a generalization over both SAT and MaxSAT

Partial Weighted MaxSAT

Given CNF formula 𝐹 where each clause is marked as hard or soft and is assigned a weight,
find an assignment that satisfies all hard clauses and maximizes the sum of the weights of
satisfied soft clauses

Partial MaxSAT is an instance of partial weighted MaxSAT where all clauses have equal weight

Unsatisfiable Cores

Given CNF formula 𝐹, an unsatisfiable core is an inconsistent subset of the clauses of 𝐹.

An unsatisfiable core is minimal if dropping any one of its clauses makes it satisfiable.

Helpful for fault localization and program repair!

Today
▸ DPLL algorithm for SAT solving
▸ One challenge for current SAT solvers
▸ Variations of the satisfiability problem (e.g., MaxSAT)

Next
▸ First-order logic

Summary

