Propositional Logic Normal Forms

CS560: Reasoning About Programs

Roopsha Samanta PURDUE

Partly based on slides by Aaron Bradley

Roadmap

Previously

- Course overview
- Program synthesis overview

Today

- Review of propositional logic
- Normal forms for propositional logic

Propositional logic (PL) syntax

Atomtruth symbolsT ("true") and \bot ("false")propositional variables p, q, r, p_1, q_1

Literal atom α or its negation $\neg \alpha$

Formula literal or application of a logical connective to F, F_1, F_2

$\neg F$	"not"	(negation)
$F_1 \lor F_2$	"or"	(disjunction)
$F_1 \wedge F_2$	"and"	(conjunction)
$F_1 \rightarrow F_2$	"implies"	(implication)
$F_1 \leftrightarrow F_2$	"if and only if"	(iff)

PL semantics

Interpretation *I* : mapping of each propositional variable to a truth value

$$I: \{ p \mapsto \top, q \mapsto \bot, \dots \}$$

Satisfying interpretation : F evaluates to T under I, written $I \models F$

Falsifying interpretation : F evaluates to \bot under I, written $I \nvDash F$

 $\oint (P \land 2) \rightarrow (P \lor 72)$ 1-96 $T: \eta' PPT, TPHE$ P 2 PAQ 72 PV72 Ø

PL semantics: inductive definition

Base Cases:

 $I \vDash \top$ $I \nvDash \bot$ $I \vDash p \text{ iff } I[p] = \top$ $I \nvDash p \text{ iff } I[p] = \bot$

Inductive Cases:

 $I \models \neg F \quad \text{iff} \quad I \not\models F$ $I \models F_1 \lor F_2 \quad \text{iff} \quad I \models F_1 \text{ or } I \models F_2$ $I \models F_1 \land F_2 \quad \text{iff} \quad I \models F_1 \text{ and } I \models F_2$ $I \models F_1 \rightarrow F_2 \quad \text{iff} \quad I \not\models F_1 \text{ or } I \models F_2$ $I \models F_1 \leftrightarrow F_2 \quad \text{iff} \quad I \models F_1 \text{ and } I \models F_2, \text{ or,}$ $I \not\models F_1 \text{ and } I \not\models F_2, \text{ or,}$

 $PAq \Rightarrow (PV7q)$

I: PHT, QHAF

· I EP I EP =T 2- I#9/ I[9]=F 21 and 7 3. I = 72 2 and "r 4 I K PAQ 5. == pV72 3/1 and "V" $9,5,\sim$ $6. I \models O$

Satisfiability and Validity

F is **satisfiable** iff there exists $I : I \models F$

```
F is valid iff for all I : I \models F
```

Duality: F is valid iff $\neg F$ is unsatisfiable

Procedure for deciding satisfiability *or* validity suffices!

Deciding satisfiability/validity

- SAT solvers! (next lecture)
- Basic techniques
 - Truth table method: search-based
 - Semantic argument method: deductive technique
- SAT solvers combine search and deduction

Truth table method

- 1. Enumerate all interpretations
- 2. Search for satisfying interpretation

 $F: P \land Q \to P \lor \neg Q$

Brute-force! Impractical (2ⁿ interpretations) Can't be used if domain is not finite, e.g., for first-order logic

P	Q	$P \wedge Q$	$\neg Q$	$P \lor \neg Q$	F
L	L	L	Т	Т	Т
L	Т	Ť	T	T	Т
Т	T	T	Т	Т	Т
Т	Т	Т	L	Т	Т

Semantic argument (decide validity)

Proof by contradiction:

- 1. Assume F is not valid
- 2. Apply proof rules
- 3. Contradiction (i.e, \perp) along every branch of proof tree \Rightarrow *F* is valid
- 4. Otherwise, F is not valid

A bit of an overhead for PL Applicable to first-order logic

$\frac{I \vDash \neg F}{I \nvDash F}$	$\frac{I \not\models \neg F}{I \models F}$			
$\begin{array}{c} I \vDash F \land G \\ I \vDash F \\ \text{(and)} & I \vDash F \\ I \vDash G \end{array}$	$\frac{I \nvDash F \land G}{I \nvDash F \mid I \nvDash G}$ (or)			
$\frac{I \vDash F \lor G}{I \vDash F \mid I \vDash G}$	$ \frac{I \nvDash F \lor G}{I \nvDash F} \\ I \nvDash G $			
$\frac{I \vDash F \to G}{I \nvDash F \mid I \vDash G}$	$\frac{I \nvDash F \to G}{I \vDash F}$ $I \nvDash G$			
$I \vDash F$ $\underline{I \nvDash F}$ $I \vDash \bot$				

 $F:(P \land q) \rightarrow (P \lor 72)$ Assume Fis not valid, I / FF $I \cdot I \neq (P \land 2) \rightarrow (P \lor 2) ass.$ 2- IT= PNg $|\rangle \rightarrow$ 3. I K PV79 $(, \rightarrow)$ 41 I FPY $2, \wedge$ 3, V 5. <u>J</u> ¥ p / 4,5,1 6. T F.L

Semantic judgements

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all $I, I \models F_1 \leftrightarrow F_2$

 F_1 implies F_2 $(F_1 \Rightarrow F_2)$ iff for all $I, I \models F_1 \rightarrow F_2$

A procedure for deciding satisfiability can decide equivalence and implication!

Normal Forms

A **normal form** for a logic is a syntactical restriction such that for every formula in the logic, there is an equivalent formula in the normal form

Three useful normal forms for propositional logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

Literal Atom ¬Atom

Formula Literal | Formula op Formula

op V

VIA

The only logical connectives are \neg , \land , V

Negations appear only in literals

Conversion to NNF:

 $\mathsf{Eliminate} \rightarrow \mathsf{and} \leftrightarrow$

"Push negations in" using **DeMorgan's Laws**:

 $\neg (F_1 \land F_2) \Leftrightarrow (\neg F_1 \lor \neg F_2)$

 $\neg (F_1 \lor F_2) \Leftrightarrow (\neg F_1 \land \neg F_2)$

Disjunctive Normal Form (DNF)

- Atom T, \bot , propositional variables
- Literal Atom | ¬Atom
- Disjunct Literal ∧ Disjunct
- Formula Disjunct V Formula

Conversion to DNF:

First convert to NNF

Distribute Λ over V

 $((F_1 \lor F_2) \land F_3) \Leftrightarrow ((F_1 \land F_3) \lor (F_2 \land F_3))$

 $(F_1 \land (F_2 \lor F_3)) \Leftrightarrow ((F_1 \land F_2) \lor (F_1 \land F_3))$

Disjunction of conjunction of literals

Deciding satisfiability of DNF formulas is trivial Why not convert all PL formulas to DNF for SAT solving? Exponential blow-ùp of formula size in DNF conversion!

Conjunctive Normal Form (CNF)

- Atom T, \bot , propositional variables
- Literal Atom | ¬Atom
- Clause Literal V Clause
- Formula Clause Λ Formula

Conjunction of disjunction of literals

Conversion to CNF:

First convert to NNF

Distribute V over Λ

 $((F_1 \land F_2) \lor F_3) \Leftrightarrow ((F_1 \lor F_3) \land (F_2 \lor F_3))$

 $(F_1 \lor (F_2 \land F_3)) \Leftrightarrow ((F_1 \lor F_2) \land (F_1 \lor F_3))$

Deciding satisfiability of CNF formulas is not trivial CNF conversion must also exhibit an exponential blow-up of formula size Yet, almost all SAT solvers convert to CNF first before solving. Why?

Equisatisfiability and Tseitin's Transformation

Two formulas F_1 and F_2 are **equisatisfiable** iff: F_1 is satisfiable iff F_2 is satisfiable

Tseitin's transformation converts any PL formula F_1 to equisatisfiable formula F_2 in CNF with only a **linear** increase in size

Note that equisatisfiability is a much weaker notion than equivalence, but is adequate for checking satisfiability.

Tseitin's Transformation

- 1. Introduce an auxiliary variable rep(G) for each subformula $G = G_1 \text{ op } G_2$ of formula F_1
- 2. Constrain auxiliary variable to be equivalent to subformula: $rep(G) \leftrightarrow rep(G_1) op rep(G_2)$
- 3. Convert equivalence constraint to CNF: $CNF(rep(G) \leftrightarrow rep(G_1) op rep(G_2))$
- 4. Let F_2 be rep $(F) \land \bigwedge_G CNF(rep(G) \leftrightarrow rep(G_1) op rep(G_2))$. Check if F_2 is satisfiable.

 F_1 and F_2 are equisatisfiable!

Size of each equivalence constraint is bounded by a constant This restricts the size of F_2 to be linear in the size of F_1 : $|F_2| = 30$. $|F_1| + 2$

Summary

Today

- Review of propositional logic
- Normal forms for propositional logic

Next

SAT Solving