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Previously
▸ Course overview
▸ Program synthesis overview

Today
▸ Review of propositional logic
▸ Normal forms for propositional logic

Roadmap



Atom truth symbols ⊤ (“true”) and ⊥ (“false”)
propositional variables 𝑝, 𝑞, 𝑟, 𝑝!, 𝑞!

Literal atom 𝛼 or its negation ¬𝛼

Formula literal or application of a logical connective to 𝐹, 𝐹!, 𝐹"
¬𝐹 “not”                       (negation)
𝐹! ∨ 𝐹" “or”                          (disjunction)
𝐹! ∧ 𝐹" “and”                       (conjunction)
𝐹! → 𝐹" “implies”                 (implication)
𝐹! ↔ 𝐹" “if and only if”       (iff)

Propositional logic (PL) syntax



Interpretation 𝐼 : mapping of each propositional variable to a truth value

𝐼: { 𝑝 ↦ ⊤, 𝑞 ↦⊥,… }

Satisfying interpretation : 𝐹 evaluates to ⊤ under 𝐼, written 𝐼 ⊨ 𝐹

Falsifying interpretation : 𝐹 evaluates to ⊥ under 𝐼, written 𝐼 ⊭ 𝐹

PL semantics





PL semantics: inductive definition

Base Cases:

𝐼 ⊨ ⊤
𝐼 ⊭ ⊥
𝐼 ⊨ 𝑝 iff 𝐼 𝑝 = ⊤
𝐼 ⊭ 𝑝 iff 𝐼 𝑝 = ⊥

Inductive Cases:

𝐼 ⊨ ¬𝐹 iff 𝐼 ⊭ 𝐹
𝐼 ⊨ 𝐹! ∨ 𝐹" iff 𝐼 ⊨ 𝐹! or 𝐼 ⊨ 𝐹"
𝐼 ⊨ 𝐹! ∧ 𝐹" iff 𝐼 ⊨ 𝐹! and 𝐼 ⊨ 𝐹"
𝐼 ⊨ 𝐹! → 𝐹" iff 𝐼 ⊭ 𝐹! or  𝐼 ⊨ 𝐹"
𝐼 ⊨ 𝐹! ↔ 𝐹" iff 𝐼 ⊨ 𝐹! and 𝐼 ⊨ 𝐹", or, 

𝐼 ⊭ 𝐹! and 𝐼 ⊭ 𝐹"





Satisfiability and Validity

Duality:
𝐹 is valid iff ¬𝐹 is unsatisfiable

𝐹 is satisfiable iff there exists 𝐼 : 𝐼 ⊨ 𝐹

𝐹 is valid iff for all 𝐼 : 𝐼 ⊨ 𝐹

Procedure for deciding 
satisfiability or validity 

suffices! 



▸ SAT solvers! (next lecture)

▸ Basic techniques
▸ Truth table method: search-based
▸ Semantic argument method: deductive technique

▸ SAT solvers combine search and deduction

Deciding satisfiability/validity



𝑷 𝑸 𝑷 ∧ 𝑸 ¬𝑸 𝑷 ∨ ¬𝑸 𝑭

⊥ ⊥ ⊥ ⊤ ⊤ ⊤
⊥ ⊤ ⊥ ⊥ ⊥ ⊤
⊤ ⊥ ⊥ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊥ ⊤ ⊤

Truth table method

𝐹: 𝑃 ∧ 𝑄 → 𝑃 ∨ ¬Q
1. Enumerate all interpretations
2. Search for satisfying interpretation 

Brute-force!
Impractical (2# interpretations)
Can’t be used if domain is not 
finite, e.g., for first-order logic



Semantic argument 
(decide validity)

Proof by contradiction:
1. Assume 𝐹 is not valid
2. Apply proof rules
3. Contradiction (i.e, ⊥) along every 

branch of proof tree ⇒ 𝐹 is valid
4. Otherwise, 𝐹 is not valid

$ ⊨ ¬'
$ ⊭ '

$ ⊭ ¬'
$ ⊨ '

$ ⊨ ' ∧ *
$ ⊨ '
$ ⊨ *

$ ⊭ ' ∧ *
$ ⊭ ' | $ ⊭ *

$ ⊨ ' → *
$ ⊭ ' | $ ⊨ *

$ ⊭ ' → *
$ ⊨ '
$ ⊭ *

…
$ ⊨ '
$ ⊭ '
$ ⊨ -

(and)
(or)

$ ⊨ ' ∨ *
$ ⊨ ' | $ ⊨ *

$ ⊭ ' ∨ *
$ ⊭ '
$ ⊭ *

A bit of an overhead for PL
Applicable to first-order logic





𝐹! and 𝐹" are equivalent (𝐹! ⇔ 𝐹") iff for all 𝐼, 𝐼 ⊨ 𝐹! ↔ 𝐹"

𝐹! implies 𝐹" (𝐹! ⇒ 𝐹") iff for all 𝐼, 𝐼 ⊨ 𝐹! → 𝐹"

Semantic judgements

A procedure for deciding satisfiability can 
decide equivalence and implication!



A normal form for a logic is a syntactical restriction such that for every formula in the logic, 
there is an equivalent formula in the normal form

Normal Forms

Three useful normal forms for propositional logic:

▸ Negation Normal Form (NNF)
▸ Disjunctive Normal Form (DNF)
▸ Conjunctive Normal Form (CNF)



Negation Normal Form (NNF)

Atom ⊤ , ⊥ , propositional variables

Literal Atom | ¬Atom

Formula Literal | Formula op Formula

op  ∨ | ∧

The only logical connectives are ¬, ∧, ∨

Negations appear only in literals

Conversion to NNF:

Eliminate → and ↔

“Push negations in” using DeMorgan’s Laws:

¬ 𝐹) ∧ 𝐹* ⇔ (¬𝐹) ∨ ¬𝐹* )

¬ 𝐹) ∨ 𝐹* ⇔ (¬𝐹) ∧ ¬𝐹*)



Disjunctive Normal Form (DNF)

Atom ⊤ , ⊥ , propositional variables

Literal Atom | ¬Atom

Disjunct Literal ∧ Disjunct

Formula Disjunct ∨ Formula

Conversion to DNF:

First convert to NNF

Distribute ∧ over ∨

( 𝐹) ∨ 𝐹* ∧ 𝐹+) ⇔ ( 𝐹) ∧ 𝐹+ ∨ (𝐹* ∧ 𝐹+))

(𝐹) ∧ 𝐹* ∨ 𝐹+ ) ⇔ ( 𝐹) ∧ 𝐹* ∨ 𝐹) ∧ 𝐹+)

Deciding satisfiability of DNF formulas is trivial
Why not convert all PL formulas to DNF for SAT solving? 
Exponential blow-up of formula size in DNF conversion!

Disjunction of conjunction of literals



Conjunctive Normal Form (CNF)

Atom ⊤ , ⊥ , propositional variables

Literal Atom | ¬Atom

Clause  Literal ∨ Clause

Formula Clause ∧ Formula

Conversion to CNF:

First convert to NNF

Distribute ∨ over ∧

(𝐹) ∧ 𝐹* ∨ 𝐹+) ⇔ ( 𝐹) ∨ 𝐹+ ∧ (𝐹* ∨ 𝐹+))

(𝐹) ∨ 𝐹* ∧ 𝐹+ ) ⇔ ( 𝐹) ∨ 𝐹* ∧ (𝐹) ∨ 𝐹+))

Deciding satisfiability of CNF formulas is not trivial
CNF conversion must also exhibit an exponential blow-up of formula size
Yet, almost all SAT solvers convert to CNF first before solving. Why? 

Conjunction of disjunction of literals



Equisatisfiability and Tseitin’s Transformation

Two formulas 𝐹) and 𝐹* are equisatisfiable iff: 
𝐹) is satisfiable iff 𝐹* is satisfiable

Tseitin’s transformation converts any PL 
formula 𝐹)to equisatisfiable formula 𝐹* in 
CNF with only a linear increase in size

Note that equisatisfiability is a much weaker 
notion than equivalence, but is adequate for 
checking satisfiability. 



Tseitin’s Transformation

1. Introduce an auxiliary variable rep(𝐺) for each subformula 𝐺 = 𝐺) 𝑜𝑝 𝐺* of formula 𝐹)

2. Constrain auxiliary variable to be equivalent to subformula: rep(𝐺) ↔ rep(𝐺)) 𝑜𝑝 rep(𝐺*) 

3. Convert equivalence constraint to CNF: CNF(rep(𝐺) ↔ rep(𝐺)) 𝑜𝑝 rep(𝐺*)) 

4. Let 𝐹* be rep(𝐹) ∧ ⋀, CNF(rep(𝐺) ↔ rep(𝐺)) 𝑜𝑝 rep(𝐺*)). Check if 𝐹* is satisfiable.

Size of each equivalence constraint is bounded by a constant
This restricts the size of 𝐹" to be linear in the size of 𝐹!: | 𝐹"| = 30.| 𝐹!| + 2

𝐹! and 𝐹" are  equisatisfiable!



Today
▸ Review of propositional logic
▸ Normal forms for propositional logic

Next
▸ SAT Solving

Summary


