
Roopsha Samanta

CS560: Reasoning About Programs

Introduction to Program Synthesis

Partly based on slides by Armando Solar-Lezama and Xiaokang Qiu

Previously
▸ Course overview

Today
▸ Introduction to program synthesis
▸ Project description

Roadmap

What is program synthesis?

1950’s - 1990’s

John Backus

6

1950’s: Fortran

Backus et al., The FORTRAN Automatic Coding System, 1957

Much of my work has come from being lazy.
I didn't like writing programs, and so, when I
was working on the IBM 701, writing
programs for computing missile trajectories, I
started work on a programming system to
make it easier to write programs.

Essentially, compilation!

Alonzo Church

8

1950’s, 1960’s: Church’s Synthesis Problem
Ongoing/Reactive Programs

Church, Application of Recursive Arithmetic to the Problem of Circuit Synthesis, 1957

Church, Logic, Arithmetic and Automata, 1962

Programs represented as circuits/finite automata

Environment System

Inputs

Outputs

The goal of reactive synthesis is to generate a reactive system whose behavior satisfies a
temporal specification, in the presence of continuous interaction with an environment

Julius Richard Buchi Lawrence Landwebber

11

Buchi and Landwebber, Solving Sequential Conditions by Finite-State Strategies, 1967

1960’s, 1970’s: Church’s Synthesis Problem Solved!

Rabin, Automata on infinite objects and Church’s Problem, 1972

Michael O. Rabin

Extract program from
finite-state winning strategy

of an
infinite two-player game

For every move of the adversary (every action of the environment),
the synthesized program must make a counter-move that maintains correctness.

The game can be modeled as an automaton

Environment System

Inputs

Outputs

Zohar Manna Richard Waldinger

14

Manna and Waldinger, Dreams ⇒ Programs, 1979

1960’s, 1970’s: Deductive Synthesis
Transformational/Functional Programs

Green, Application of Theorem Proving to Problem Solving, 1963

Cordell Green

Extract LISP-y program from
proof of satisfiability of

formal specification

ProgramsDreams

Programs
Complete

Formal
Specifications

∀x,y,z.

x ≤ max(x,y,z) ∧

y ≤ max(x,y,z) ∧

z ≤ max(x,y,z) ∧

(max(x,y,z)=x ∨

max(x,y,z)=y ∨

max(x,y,z)=z)

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

Easier?
Easier?

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Easier!

20

Summers, A Methodology for LISP Program Construction
from Examples, 1977

1970’s: Inductive Programming
Transformational Programs

Biermann, Inference of Regular LISP Programs from
Examples, 1978

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

1980’s: Synthesis of Reactive Programs
Clarke Emerson

Extract program (model) from
algorithmically-constructed witness to

satisfiability of formal specification.

Pnueli & Rosner, On the Synthesis of a Reactive Module, 1989

1980’s: Synthesis of Reactive Programs
Pnueli

Better algorithms than Buchi, Landwebber, Rabin

Still an active research area!

Charles Rich Richard C. Waters

23

Rich and Waters, Programmer’s Apprentice, MIT 1987

1980’s: Programmer’s Apprentice

▸ Codify expert knowledge on
how to solve programming problems

▸ User guided synthesis

Tessa Lau

24

Lau and Weld, Programming by Demonstration: An Inductive Learning Framework, 1998

1990’s: Inductive Learning
Transformational Programs

Replaced ad-hoc approaches for PBE/PBD with
techniques based on version space generalization
and inductive logic programming

Post 2000: Modern Program Synthesis

Programs

Transformational program synthesis: A search problem

Input-output examples
Logical specifications
Equivalent programs
Natural language

Grammar
DSL
Partial program
Components

Find a program in search space
consistent with specification

Search space

Dimensions in modern program synthesis
User intent

How do you tell the system what you want?

Search strategy

How does the system find the
program you actually want?Search space

What is the space of
programs to explore?

[Gulwani 2010]

Dimensions in modern program synthesis
User intent

How do you tell the system what you want?
Specification formalism?

Interaction model?

Ambiguity?

Search space

What is the space of
programs to explore?
How do you represent
domain knowledge?

Built-in or user-defined?

Search strategy

How does the system find the
program you actually want?
How do you guide the system
towards relevant programs?

How does the system exploit the
structure of the search space?

Dimensions in modern program synthesis
User intent

Input-output examples
Logical specifications
Equivalent programs
Natural language

Search space

Grammars/DSLs
Generators
Components

Search strategy

Enumerative search + pruning
Constraint-based search
Representation-based search
Stochastic search
ML-based
…

Armando-Solar Lezamma

30

Solar-Lezamma et al., Combinatorial Sketching for Finite Programs, 2006

2006: Sketch

User intent

Input-output examples

Logical specifications

Equivalent programs

Search space

Generators

Search strategy

Constraint-based search

2006: Sketch
Goal: Output the least significant zero bit in a word/bitvector
Ex: 00100101 à 00000010

A possible program
Not the most efficient

Adding 1 to a string of 1’s turns the next 0 to a 1!

000111 + 1 = 001000

int W = 32;

bit[W] isolate0 (bit[W] x) {
bit[W] ret = 0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; return ret; }
}

Trick for an efficient program

Sketch: space of possible implementations

/* Generate the set of all bit-vector expressions
* involving +, &, xor and bitwise negation (~).
* the bound param limits the size of the generated expression.
*/
generator bit[W] gen(bit[W] x, int bound){

assert bound > 0;
if(??) return x;
if(??) return ??;
if(??) return ~gen(x, bound-1);
if(??){
return {| gen(x, bound-1) (+ | & | ^) gen(x, bound-1) |}; }

}

Sketch synthesis setup

generator bit[W] gen(bit[W] x, int bound){
assert bound > 0;
if(??) return x;
if(??) return ??;
if(??) return ~gen(x, bound-1);
if(??){
return {| gen(x, bound-1) (+ | & | ^) gen(x, bound-1) |}; }

}

int W = 32;
bit[W] isolate0 (bit[W] x) {

bit[W] ret = 0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; return ret; }
}

bit[W] isolate0fast (bit[W] x) implements isolate0 {
return gen(x, 3);

}

Naïve program

Program generator

Specification
“Program equivalence”

Sketch output

Desired efficient program
bit[W] isolate0fast (bit[W] x) implements isolate0 {

return ~x & (x+1);
}

Sumit Gulwani

35

Gulwani, Automatic String Processing in Spreadsheets using Input-Output Examples, 2011

2011: FlashFill

User intent

Input-output examples

Search space

Grammars
DSLs

Search strategy

Representation-based search

(Version space algebras)

A feature of Excel 2013!

Example: FlashFill

FlashFill synthesis setup

[Gulwani 2010]

Specification:
“1 input-output example”

FlashFill synthesizes program
consistent with user example

Other string inputs

FlashFill output

String outputs generated
by synthesized program

Many more interesting papers….later!

41

An et al., Augmented Example-based Synthesis using Relational Perturbation Properties, 2020

2020: MANTIS
Semantics-guided Inductive Program Synthesis

User intent

Input-output examples

Search space

Partial programs

*

Search strategy

Semantics-guided search

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Ambiguity!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Overfitting!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Overfitting!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis
int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Brittleness!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -3, -2) ↦ -1

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1 int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Occam’s Razor
Structured DSL

Ranking Function
Syntactic Bias

Syntactic bias can also be inadequate!

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1 int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Permutation Invariance

Program/Search Space

Permutation Invariance

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

(2, 10, 0) ↦ 10

(20, -1, 10) ↦ 20

(-2, -1, -3) ↦ -1

⋮

Semantic Bias!

Program/Search Space

Key Strategy

1. Augment examples by applying properties

2. Use PBE engine to synthesize program from augmented examples

SKETCH
197 Benchmarks: SKETCH, SYGUS

Bitvectors, Integers, Integer arrays

Set of 8 properties

SKETCHAX

Partial Programs

Reference Implementations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Benchmarks with Properties

SKETCH

SKETCHAX SELECTION

SKETCHAX VALIDATION

SKETCHAX INFERENCE

Su
cc

es
s R

at
e

60% improvement!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Benchmarks with Properties Bitvector Benchmarks with
Properties

SKETCH

SKETCHAX SELECTION

SKETCHAX VALIDATION

SKETCHAX INFERENCE

Su
cc

es
s R

at
e

60% improvement! 191% improvement!

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Properties Properties
Bitvector

Properties
Integer

No
Properties

All

SKETCH

SKETCHAX SELECTION

SKETCHAX VALIDATION

SKETCHAX INFERENCE

Su
cc

es
s R

at
e

+191%+60% +30% +1% +22%

Your project – Apply MANTIS to your domain!

▸ Imperative programs over simple datatypes (integers, Booleans, arrays, matrices)
▸ Heap-manipulating (recursive) imperative programs
▸ Functional programs with algebraic datatypes
▸ Relational queries (SQL, Datalog)
▸ String-manipulating programs
▸ Table-manipulating programs
▸ Parser synthesis
▸ Map-reduce distributed programs
▸ Web programming
▸ Regular expressions
▸ …

Example Domains

1. Identify domain

2. Identify applicable semantic properties

3. Use existing inductive synthesizer as black-box

Build your own search algorithm/synthesizer!
or

Today
▸ Introduction to program synthesis
▸ Project description

Next
▸ Propositional logic
▸ Normal Forms

Summary

