
Roopsha Samanta

CS560: Reasoning About Programs

Constraint-based Search I

Partly based on slides by Armando Solar-Lezama

Previously
▸ Inductive synthesis
▸ CFGs (SyGuS) and DSLs (FlashFill)
▸ Enumerative search and Representation-based search

Today
▸ Inductive synthesis ➜ Functional synthesis
▸ Generators (Sketch)
▸ Constraint-based Search

Roadmap

User intent

Input-output examples

Search space

Grammars
DSLs

Search strategy

Enumerative search
Representation-based (version
space algebras)

User intent

Input-output examples

Search space

Generators

Search strategy

Constraint-based search

Constraint-based search: Sketch

Key idea 1:
▸ Search as “curve fitting”
▸ “curve” is a parametric family of programs

Key idea 2:
▸ Define a language to describe parametric programs

Key idea 3:
▸ “Solve” instead of search

Sketch

sketch

implementation
(completed sketch)

▸ Sketch: a language for parametric programs

▸ Turning synthesis problems into constraints

▸ Efficient constraint solving

▸ Sketch: a language for parametric programs

▸ Turning synthesis problems into constraints

▸ Efficient constraint solving

Language design strategy

Synthesizer replaces ?? with an integer constant

int bar (int x)
{

int t = x * ??;
assert t == x + x;
return t;

}

int bar (int x)
{

int t = x * 2;
assert t == x + x;
return t;

}

Extend base language with one construct
Unknown constant hole: ??

High-level constructs defined in terms of ??

Type inferred from context

int bar (int x)
{

int t = x * ??;
assert t == x + x;
return t;

}

int bar (int x)
{

int t = x * 2;
assert t == x + x;
return t;

}

harness void test()
{

bar(2);
bar(10);
bar(1);

}

+

Assertion validity is modulo test harness
Inductive synthesis: no inputs to harness

Integer holes à sets of expressions

Expressions with ?? = sets of expressions

▸ linear expressions x*?? + y*??
▸ polynomials x*x*?? + x*?? + ??
▸ sets of variables ?? ? x : y

Example: Least significant zero bit

0010 0101 à 0000 0010

0010 0000 à 0000 0001

harness void test()
{

assert isolateSk(00100101) = 00000010;
assert isolateSk(00100000) = 00000000;

}

Example: Least significant zero bit

0010 0101 à 0000 0010

Trick for an optimized program:

Adding 1 to a string of ones turns the next zero to a one:

000111 + 1 = 001000

0010 0000 à 0000 0001

harness void test()
{

assert isolateSk(00100101) = 00000010;
assert isolateSk(00100000) = 00000000;

}

bit[W] isolateSk (bit[W] x) {

int t = !(x + ??) & (x + ??) ;
return t;

}

Example: Least significant zero bit

0010 0101 à 0000 0010

Trick for an optimized program:

Adding 1 to a string of ones turns the next zero to a one:

000111 + 1 = 001000

0010 0000 à 0000 0001

harness void test()
{

assert isolateSk(00100101) = 00000010;
assert isolateSk(00100000) = 00000000;

}

bit[W] isolateSk (bit[W] x) {

int t = !(x + ??) & (x + ??) ;
return t;

}

!(x + ??) & (x + ??)
!(x + 1) & (x + 0)

!(x + 0) & (x + 1)
à

!(x + 0) & (x + 0)

!(x + 1) & (x + 1)

Integer holes à sets of expressions

Expressions with ?? = sets of expressions

▸ linear expressions x*?? + y*??
▸ polynomials x*x*?? + x*?? + ??
▸ sets of variables ?? ? x : y

Semantically powerful but syntactically clunky

Regular Expressions are a more convenient way of defining sets

Regular expression generators (syntactic sugar)
▸ {| RegExp |}

▸ RegExp supports choice ‘|’ and optional ‘?’
▸ can be used arbitrarily within an expression

▸ to select operands {| (x | y | z) + 1 |}
▸ to select operators {| x (+ | -) y |}
▸ to select fields {| n(.prev | .next)? |}
▸ to select arguments {| foo(x | y, z) |}

▸ Set must respect the type system
▸ all expressions in the set must type-check
▸ all must be of the same type

Least significant zero bit revisited
How did I know the solution would take the form !(x + ??) & (x + ??)

What if all you know is that the solution involves x, +, & and !

bit[W] tmp=0;
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
return tmp;

This is now a set of statements
(and a really big one too)

Sets of statements

Statements with holes = sets of statements

Higher level constructs for statements too: repeat

bit[W] tmp=0;
repeat(3){
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};

}
return tmp;

repeat
Avoid copying and pasting
▸ repeat(n){ s} è s;s;…s;

▸ each of the n copies may resolve to a distinct stmt
▸ n can be a hole too.

n

bit[W] tmp=0;
repeat(??){

{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
}
return tmp;

The synthesizer won’t try to minimize n
Use --unrollamnt to set the maximum value of n

Procedures and Sets of Procedures

Two types of procedures
▸ standard procedures

▸ represents a single procedure
▸ all call sites resolve to the same procedure
▸ identified by the keyword static

▸ generators
▸ represents a set of procedures
▸ each call site resolves to a different procedure in the set
▸ can recursively define arbitrary families of programs
▸ default in the Sketch implementation

Generators are very expressive!

Example: Least significant zero bit
generator bit[W] gen(bit[W] x, int bnd){

assert bnd > 0;
if(??) return x;
if(??) return ??;
if(??) return !gen(x, bnd-1);
if(??){
return {| gen(x, bnd-1) (& | +) gen(x, bnd-1) |}; }

}

bit[W] tmp=0;
repeat(??){

{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
}
return tmp;

High order generators

/*
* Generate code from f n times
*/
generator void rep(int n, fun f){

if(n>0){
f();
repeat(n-1, f);

}
}

Defining sets of code fragments is
the key to Sketching effectively

Sets of Integer Constants

Sets of Expressions

Sets of Statements

Sets of Procedures

Sketch

▸ Overview of the Sketch language

▸ Turning synthesis problems into constraints

▸ Efficient constraint solving

Step 1: Turn holes into special inputs

The ?? operator is modeled as a special control input

bit[W] isolSk(bit[W] x)
{

return ~(x + ??) & (x + ??);
}

bit[W] isolSk(bit[W] x, bit[W] c1, c2)
{

return ~(x + c1) & (x + c2);
}

Bounded candidate spaces are important
‣ bounded unrolling of repeat is important
‣ bounded inlining of generators is important

Step 2: Constraining the set of controls

▸ Correct control
▸ causes the spec & sketch to match for all inputs
▸ causes all assertions to be satisfied for all inputs

▸ Constraints are collected into a predicate

▸ -showDAG will show you the constraints!

!(#, %)

A Sketch as a constraint system

Synthesis reduces to constraint satisfaction

∃". ∀% &' ()*(ℎ,-')**. .(%, ")

Constraints are too hard for standard techniques
▸ Universal quantification over inputs
▸ Too many inputs
▸ Too many constraints
▸ Too many holes

▸ Overview of the Sketch language

▸ Turning synthesis problems into constraints

▸ Efficient constraint solving

User intent

Input-output examples
Logical specifications
Equivalent programs

Search space

Generators

Search strategy

Constraint-based search

A Sketch as a constraint system

Synthesis reduces to constraint satisfaction

∃". ∀%. .(%, ")

Constraints are too hard for standard techniques
▸ Universal quantification over inputs
▸ Too many inputs
▸ Too many constraints
▸ Too many holes

Insight
Sketches are not arbitrary constraint systems

▸ They express the high level structure of a program

A small set of inputs can fully constrain the solution
▸ focus on corner cases

This is an inductive synthesis problem!
▸ how do we find the set !?
▸ how do we solve the inductive synthesis problem?

where ! = {$!, $", … , $#}
∃". ∀% in 2. .(%, ")

Step 3: Counterexample Guided Inductive Synthesis

Inductive Synthesizer

candidate implementation

add counterexample input

succeed

fail

fail

observation set $

Verifier

Your verifier goes here
Derive candidate implementation

from concrete inputs.

‣ Standard implementation uses Sat based bounded verifier
‣ Any verifier/checker that produces counterexamples works

Idea: Couple inductive synthesizer with a verifier
▸ Verifier is charged with detecting convergence

∃". ∀% in &. '(%, ")
Buggy Ok

Today
▸ Inductive synthesis ➜ Functional synthesis
▸ Generators (Sketch)
▸ Constraint-based Search

Next
▸ Another constraint-based approach for functional synthesis

Summary

