Constraint-based Search |

CS560: Reasoning About Programs

Roopsha Samanta

Partly based on slides by Armando Solar-Lezama

Roadmap

Previously

» Inductive synthesis

» CFGs (SyGuS) and DSLs (FlashFill)

» Enumerative search and Representation-based search

Today

» Inductive synthesis =» Functional synthesis
» Generators (Sketch)

» Constraint-based Search

User intent

Input-output examples

Search strategy
Enumerative search

Search space Representation-based (version
space algebras)
Grammars

DSLs

User intent

Input-output examples

Search strategy

Constraint-based search
Search space

Generators

Constraint-based search: Sketch

Key idea 1:
» Search as “curve fitting”
» “curve” is a parametric family of programs

Sketch

Key idea 2:

» Define a language to describe parametric programs

Key idea 3:

» “Solve” instead of search

implementation
(completed sketch)

» Sketch: a language for parametric programs

» Turning synthesis problems into constraints

) f'nob'l/\wﬁv(
Fun diMh/L

» Efficient constraint solving

» Sketch: a language for parametric programs

» Turning synthesis problems into constraints

» Efficient constraint solving

Language design strategy

{
Extend base language with one construct
Unknown constant hole:

Type inferred from context

Synthesizer replaces ? 7 with an integer constant {

High-level constructs defined in terms of

X + X;

X + X;

harness void test() int bar (int x)
{
bar(2); int t =x * ?7;
bar(10); assert t ==
bar(1); return t;

int bar (int x)

{

int t = x *
assert t ==
return t;

Integer holes = sets of expressions

Expressions with = sets of expressions
» linear expressions X* + y*
» polynomials x*x* + x*

» sets of variables ?

Example: Least significant zero bit void test()

0010 0101 -> 0000 0010 isolateSk(00100101)
isolateSk(00100000)

00000010;
00000000 ;

0010 0000 -> 0000 0001 }

Example: Least significant zero bit void test()

{
0010 0101 -> 0000 0010 assert isolateSk(00100101) = 00000010;
assert isolateSk(00100000) = 00000000;
0010 0000 -> 0000 0001 }
Trick for an optimized program: bit[W] isolatesk (bit[W] x) {
Adding 1 to a string of ones turns the next zero to a one: t=I(x+??) & (Xx+ ??) ;
000111 + 1 = 001000 t

Example: Least significant zero bit void test()

{
0010 0101 ->» 0000 0010 assert isolateSk(00100101) = 00000010;
assert isolateSk(00100000) = 00000000;
0010 0000 -> 0000 0001 }
Trick for an optimized program: bit[W] isolateSk (bit[W] x) {
Adding 1 to a string of ones turns the next zero to a one: t = I(x+ ?2?) & (x + ??) ;
000111 + 1 = 001000 , t;
I(x + 1) & (x + 9) I(x + 0) & (x + 9)

I(x + ??) & (x + ??) ->
I(x +0) & (x + 1) I(x +1) & (x + 1)

Integer holes = sets of expressions

Expressions with = sets of expressions
» linear expressions X* + y*
» polynomials x*x* + x* +
» sets of variables ?

Semantically powerful but syntactically clunky

Regular Expressions are a more convenient way of defining sets

Regular expression generators (syntactic sugar)

» {| RegExp [}

| ‘(%

» RegExp supports choice “|” and optiona
» can be used arbitrarily within an expression

» to select operands {] (x| vy | z)+1]}
» to select operators {] x (+ -y |}

» toselect fields {] n(.prev | .next)? |}
» toselect arguments {|] foo(x | vy, z) |}

» Set must respect the type system
» all expressions in the set must type-check
» all must be of the same type

Least significant zero bit revisited

How did | know the solution would take the form !(x +

What if all you know is that the solution involves x, +,

) & (x +

& and!

)

[W] tmp=0;
{I x [tmp |} ={] (D)>((x | tmp) (& | +) (x | tmp) |3
Ll x [tmp [} = {] (D2((x | tmp) (& | +) (x | tmp) |};
tmp; .

This is now a set of statements
(and a really big one too)

Sets of statements

Statements with holes = sets of statements

Higher level constructs for statements too:

bit[W] tmp=0;
(3)4
}{Ix tmp |} = {] (D)2((x | tmp) (&

return tmp;

tmp

) 1}

repeat

Avoid copying and pasting
» repeat(n){ s} = s;s;..5;
n
» each of the n copies may resolve to a distinct stmt
» ncan be aholetoo.

bit[W] tmp=0;
repeat(??){

{1 x [tmp [} ={] (1)2((x | tmp) (& | +) (x | tmp | 22)) [|};
}

return tmp;

The synthesizer won’t try to minimize n
Use --unrollamnt to set the maximum value of n

Procedures and Sets of Procedures

Two types of procedures

»

standard procedures

» represents a single procedure

» all call sites resolve to the same procedure
» identified by the keyword static
generators

» represents a set of procedures

» each call site resolves to a different procedure in the set
» can recursively define arbitrary families of programs
» default in the Sketch implementation

Generators are very expressive!

Example: Least significant zero bit

gen(X, bnd){
bnd > 0;

(77) X;

(77) ?2?;

(°?) lgen(x, bnd-1);

(221 '

{| gen(x, bnd-1) (& | +) gen(x, bnd-1) |}; }

¥
bit[W] tmp=0;

(72){

{1 x| tmp |} ={] (1)2((x | tmp) (& | +) (x | tmp) |}

}

return tmp;

High order generators

/*
* Generate code from f n times
*/
rep (n,){
(n>0){
f();
(n'1) f);

o

Sp

]

am ~ Conbrush ualh Sy fuS?

cC

I
gpeqat nofatron
cajvfp}(ff\
()qvébr\d‘f\c %\7

Defining sets of code fragments is
the key to Sketching effectively

» Overview of the Sketch language

» Efficient constraint solving

Step 1: Turn holes into special inputs

The ?? operator is modeled as a special control input

bit[W] isolSk(bit[W] x) bit[W] isolSk(bit[W] x, bit[W]
{ {

return ~(x + ??) & (x + ??); return ~(x + cl1) & (x + c2);
} }

Bounded candidate spaces are important
» bounded unrolling of repeat is important
» bounded inlining of generators is important

Step 2: Constraining the set of controls

» Correct control
» causes the spec & sketch to match for all inputs
» causes all assertions to be satisfied for all inputs

» Constraints are collected into a predicate
Q(x,c)

» -showDAG will show you the constraints!

A Sketch as a constraint system

Synthesis reduces to constraint satisfaction

dc.Vx in test harness. Q(x,c)

Constraints are too hard for standard techniques

» Universal quantification over inputs
» Too many inputs
» Too many constraints

T 8D @l O
— A LP(XK/Q

» Overview of the Sketch language

» Turning synthesis problems into constraints

Search space

Generators

User intent

Input-output examples C
3 \/6 \&°

Logical specifications S‘
(N §

Equivalent programs —

Search strategy

Constraint-based search

(
\e

A Sketch as a constraint system “Technizue |-

Synthesis reduces to constraint satisfaction @ uan l"fge)—k\
P [abion
— Con bluw WP
ﬂ’c@\m?%uf g

dc.Vx. Q(x,0)

Constraints are too hard for standard techniques
» Universal quantification over inputs

» Too many inputs 61 S
» Too many constraints CE l

» Too many holes

Insight

Sketches are not arbitrary constraint systems
» They express the high level structure of a program

A small set of inputs can fully constrain the solution
» focus on corner cases

dc.VxinE. Q(x,c)

where E = {xq, X5, ..., Xy}

This is an inductive synthesis problem!
» how do we find the set E?
» how do we solve the inductive synthesis problem?

Step 3: Counterexample Guided Inductive Synthesis

Idea: Couple inductive synthesizer with a verifier
» \Verifier is charged with detecting convergence

candidate implementation

succeed
Inductive Synthesizer Verifier
Derive candidate implementation fail e : Ok
from concrete inputs. Buggy '~ Your verifier goes here |

dc.VxinE. Q(x,c)

add counterexample input
observation set E

» Standard implementation uses Sat based bounded verifier
» Any verifier/checker that produces counterexamples works

Summary

Today
» Inductive synthesis = Functional synthesis
» Generators (Sketch)

» Constraint-based Search

Next
» Another constraint-based approach for functional synthesis

