Representation-based Search
Version Space Algebras

CS560: Reasoning About Programs

Roopsha Samanta

Partly based on slides by Armando Solar-Lezama and Xiaokang Qiu

Roadmap

Previously
» Inductive synthesis
» SyGuS

» Enumerative search

Today

» Representation-based search using version space algebras
(for inductive synthesis)

User intent

Input-output examples

Search strategy

Representation-based (version

Search space space algebras)

DSLs

Quick review: Mathematical Lattice

(

P,C) is a lattice if Vx,y. (x Uy and x M y exist).
(P,E) is a complete lattice if ¥S € P. (U S and M S exist)

All finite lattices are complete

Version spaces

Version space is the set of all hypotheses/functions/programs
in a given hypothesis/program space consistent with a set of
input-output examples

Tessa Lau

Version space algebra allows us to compose together simple
version spaces, using operators such as union (U), join (=) and
transform, in order to construct more complex version spaces

Concept learning using version spaces

Learning Boolean-valued functions

Captures generality of
hypothesis.

h, “better” than hy

Partial order over hypothesis space H
hl - hzl Vx. hl(X) = hz(X)

If H is finite, VS g is a complete lattice L is the most general

= |least upper bound G and greatest lower bound S exist hypothesis consistent with £

S is the most specific

= canrepresent VS as (G, S) hypothesis consistent with E

Boundary set (most meﬂw(LS
representation e co‘sa’eck e}\mge_)

Concept learning using version spaces

G,S :=T,1;
foreach (x,y) in E
if y = true
remove from G any h: h ¥ (x,y); Specializing G
foreach h€S: h ¥ (x,y)
remove h from S ;
add to S all minimal generalizations h; of h: Generalizing §
hi & (x,y) and 3h, € G: hy = hy;
remove from S any hy: 3h, €S: h, = hy;

if y = false

If H is partially-ordered and the VS is boundary set-representable,
one can represent and search very efficiently!

What if not?

Compose simpler version spaces!

Version Space Algebra: Union and Join

VSu, e Y VS, g = VSu,un, e

VSu, g, W VSy, g, = {(h1,h2) | hy € VSy g, ,hy € VSy, g, C({hq, ho), (E1, E2))}

“Cross-product” (hq, h,) is consistent with (Eq, E,)

Pair o : :
Application designer assigns
interpretation to (hq, h,),
Composition

Version Space Algebra: Union and Join

VSu, e Y VS, g = VSu,un, e

VSu, g, W VSy, g, = {(h1,h2) | hy € VSy g, ,hy € VSy, g, C({hq, ho), (E1, E2))}

VSu, g, W VSy, g, is an independent join iff:
VE;, Ez hy € Hy, hy € Hy. C(hy, E7) A C(hy, E3) = C({hy, hy), (E1, E2))}

Highly efficient
representation!

Flashfill o Sarerda = Samonk~

—

» Domain-specific language for string manipulating programs
» Expressive enough to cover wide range of tasks
» Restricted enough to enable efficient search

» Data structure for representing consistent programs
» Reuse ideas from version space algebra
» Start with simple version spaces
» Define combinators to construct complex version spaces from simple ones

» Synthesis algorithm for learning consistent programs in DSL
» Ranking consistent programs

[Gulwani 2010]

Flashfill

» Expressive enough to cover wide range of tasks
» Restricted enough to enable efficient search

» Data structure for representing consistent programs
» Reuse ideas from version space algebra
» Start with simple version spaces
» Define combinators to construct complex version spaces from simple ones

» Synthesis algorithm for learning consistent programs in DSL
» Ranking consistent programs

[Gulwani 2010]

Flashfill DSL (Simplified version)

Program: (String x4, .., String xx) — String

H := switch((B{,E{),...,(B,E)) | E

String Expression

E := concatenate(A,E) |

Trace Expression

A := subStr(X,P,P) | constStr(s)

Atomic Expression

P := pos(R,R,) | constPos(K)

Position Expression

R := tokenSeq(Tqyeen, T,) | T |

Regular Expression
T:=C | c+ | ...

Token Expression

. m

A Switch operator evaluates predicates over
the input string tuple, and chooses the
branch that then produces the output string

Each branch is a concatenation of atomic
string expressions, which produce pieces of
the output string

Each atomic expression can be a constant,
or a substring of one of the input strings

Position in string whose left/right side
matches with regular expressions Ry/R,

o . §an’m\n)-o\‘
Rerbe Somenle 2.
Xt e T 1

Flashfill

» Domain-specific language for string manipulating programs
» Expressive enough to cover wide range of tasks
» Restricted enough to enable efficient search

» Reuse ideas from version space algebra
» Start with simple version spaces
» Define combinators to construct complex version spaces from simple ones

» Synthesis algorithm for learning consistent programs in DSL
» Ranking consistent programs

Version spaces

Enable succinct representation of all consistent programs in memory!

Flashfill

» Domain-specific language for string manipulating programs
» Expressive enough to cover wide range of tasks
» Restricted enough to enable efficient search

» Data structure for representing consistent programs
» Reuse ideas from version space algebra
» Start with simple version spaces
» Define combinators to construct complex version spaces from simple ones

» Ranking consistent programs

Synthesis algorithm

» For each input-output example,

compute the set of all trace expressions consistent with example
» Partition examples
» Intersect sets of trace expressions for inputs in the same partition

» Learn conditionals to place inputs in appropriate partition

Partition must satisfy the following properties:
» Intersection of trace sets must be non-empty
» Number of partitions should be as small as possible
» Can learn predicates to classify the partitions

Learning & representing atomic expressions

“R|A|P| |2|@|2 l@” -2 “2020”
012345567 gma‘%@

(k%D

[{constStr(“Z@Z@”)}

“RAP 2020” > 7

[{constPos(4)}
match prefix of “2020”

[{space, alphaTok+ space}] [{numTok+}]

Flashfill

» Domain-specific language for string manipulating programs
» Expressive enough to cover wide range of tasks
» Restricted enough to enable efficient search

» Data structure for representing consistent programs
» Reuse ideas from version space algebra
» Start with simple version spaces
» Define combinators to construct complex version spaces from simple ones

» Synthesis algorithm for learning consistent programs in DSL

Ranking

» Prefer shorter programs.
» Fewer number of conditionals.
» Shorter substring expression, regular expressions.

» Prefer programs with fewer constants.

Strategies
» Baseline: Pick any minimal sized program using minimal number of constants.
» Manual: Break conflicts using a weighted score of program features.

» Machine Learning: Weights are learned from training data.

Summary

Today
» Representation-based search using version space algebras

(for inductive synthesis) Finile twee aunforn afne”
Next

» Constraint-based search

