
Roopsha Samanta

CS560: Reasoning About Programs

Representation-based Search
Version Space Algebras

Partly based on slides by Armando Solar-Lezama and Xiaokang Qiu

Previously
▸ Inductive synthesis
▸ SyGuS
▸ Enumerative search

Today
▸ Representation-based search using version space algebras

(for inductive synthesis)

Roadmap

User intent

Input-output examples

Search space

DSLs

Search strategy

Representation-based (version
space algebras)

Quick review: Mathematical Lattice
(!,⊑): partially-ordered set (poset) S
⊔: join, least upper bound (lub)
⊓: meet, greatest lower bound (glb)

! ⊔ #: join of two elements in $
⊔ S: join over subset & of $
! ⊓ #: meet of two elements in $
⊓ S: meet over subset & of $

(P, ⊑) is a lattice if ∀', (. (' ⊔ (and ' ⊓ (exist).
(P, ⊑) is a complete lattice if ∀, ⊆ !. (⊔ S and ⊓ S exist)

All finite lattices are complete

Example of a lattice that is not complete?

Version space algebra allows us to compose together simple
version spaces, using operators such as union (∪), join (⋈) and
transform, in order to construct more complex version spaces

Version spaces
Version space is the set of all hypotheses/functions/programs
in a given hypothesis/program space consistent with a set of
input-output examples

The image part with
relationship ID rId4 was
not found in the file.

Tessa Lau

Tom Mitchell

Concept learning using version spaces

Partial order over hypothesis space /
ℎ! ⊑ h": ∀'. ℎ! ' ⇒ ℎ" '

Learning Boolean-valued functions

Captures generality of
hypothesis.

ℎ" “better” than ℎ!

If / is finite, 4,#,% is a complete lattice

⇒ least upper bound 5 and greatest lower bound , exist
⇒ can represent 4,#,% as (5, ,)

5 is the most general
hypothesis consistent with 6
, is the most specific
hypothesis consistent with 6

Boundary set
representation

Concept learning using version spaces

(, & := ⊤,⊥;
foreach !, # in ,

if # = true
remove from (any ℎ: ℎ ⊭ !, # ;
foreach ℎ ∈ &: ℎ ⊭ !, #
remove ℎ from & ;
add to & all minimal generalizations ℎ! of ℎ:
ℎ! ⊨ !, # and ∃ℎ" ∈ (: ℎ! ⊏ ℎ";
remove from & any ℎ!: ∃ℎ" ∈ &: ℎ" ⊏ ℎ!;

if # = false
...

Specializing 5

Generalizing ,

If # is partially-ordered and the VS is boundary set-representable,
one can represent and search very efficiently!

What if not?

Compose simpler version spaces!

Version Space Algebra: Union and Join

4,#!,% ∪ 4,#",% = 4,#!∪#",%

4,#!,%! ⋈ 4,#",%" = ℎ!, ℎ" ℎ! ∈ 4,#!,%! , ℎ" ∈ 4,#",%" , ;(ℎ!, ℎ" , 6!, 6")}

Application designer assigns
interpretation to ℎ!, ℎ" ,

ℎ!, ℎ" is consistent with 6!, 6"

Composition

Pair

“Cross-product”

Version Space Algebra: Union and Join

4,#!,% ∪ 4,#",% = 4,#!∪#",%

4,#!,%! ⋈ 4,#",%" is an independent join iff:

∀6!, 6", ℎ! ∈ /!, ℎ" ∈ /". ; ℎ!, 6! ∧ ; ℎ", 6" ⇒ ;(ℎ!, ℎ" , 6!, 6")}

Highly efficient
representation!

4,#!,%! ⋈ 4,#",%" = ℎ!, ℎ" ℎ! ∈ 4,#!,%! , ℎ" ∈ 4,#",%" , ;(ℎ!, ℎ" , 6!, 6")}

Flashfill

▸ Domain-specific language for string manipulating programs
▸ Expressive enough to cover wide range of tasks
▸ Restricted enough to enable efficient search

▸ Data structure for representing consistent programs
▸ Reuse ideas from version space algebra
▸ Start with simple version spaces
▸ Define combinators to construct complex version spaces from simple ones

▸ Synthesis algorithm for learning consistent programs in DSL
▸ Ranking consistent programs

[Gulwani 2010]

Flashfill

▸ Domain-specific language for string manipulating programs
▸ Expressive enough to cover wide range of tasks
▸ Restricted enough to enable efficient search

▸ Data structure for representing consistent programs
▸ Reuse ideas from version space algebra
▸ Start with simple version spaces
▸ Define combinators to construct complex version spaces from simple ones

▸ Synthesis algorithm for learning consistent programs in DSL
▸ Ranking consistent programs

[Gulwani 2010]

switch((,),...,(,))

R := tokenSeq(,...,) | T | !

+

concatenate(A,E) | A

subStr(X,P,P) | constStr(S)

Position in string whose left/right side
matches with regular expressions R1/R2

Flashfill DSL (Simplified version)
Program: (String x!, …, String x#) → String

A Switch operator evaluates predicates over
the input string tuple, and chooses the
branch that then produces the output string

Each branch is a concatenation of atomic
string expressions, which produce pieces of
the output string

Each atomic expression can be a constant,
or a substring of one of the input strings

pos(R1, R2) | constPos(K)

Trace Expression

Atomic Expression

Position Expression

Regular Expression

Token Expression

String Expression

Flashfill

▸ Domain-specific language for string manipulating programs
▸ Expressive enough to cover wide range of tasks
▸ Restricted enough to enable efficient search

▸ Data structure for representing consistent programs
▸ Reuse ideas from version space algebra
▸ Start with simple version spaces
▸ Define combinators to construct complex version spaces from simple ones

▸ Synthesis algorithm for learning consistent programs in DSL
▸ Ranking consistent programs

Version spaces

Enable succinct representation of all consistent programs in memory!

Flashfill

▸ Domain-specific language for string manipulating programs
▸ Expressive enough to cover wide range of tasks
▸ Restricted enough to enable efficient search

▸ Data structure for representing consistent programs
▸ Reuse ideas from version space algebra
▸ Start with simple version spaces
▸ Define combinators to construct complex version spaces from simple ones

▸ Synthesis algorithm for learning consistent programs in DSL
▸ Ranking consistent programs

▸ For each input-output example,
compute the set of all trace expressions consistent with example

▸ Partition examples
▸ Intersect sets of trace expressions for inputs in the same partition
▸ Learn conditionals to place inputs in appropriate partition

Synthesis algorithm

Partition must satisfy the following properties:
‣ Intersection of trace sets must be non-empty
‣ Number of partitions should be as small as possible
‣ Can learn predicates to classify the partitions

Learning & representing atomic expressions

“R A P 2 0 2 0”à “2 0 2 0”
0 1 2 3 4 5 5 6 7

∪

{constStr(“2020”)}

{constPos(4)}

subStr⋈

{space, alphaTok+ space} {numTok+}

∪

“RAP 2020” à 7“RAP 2020” à 4

…
pos⋈

match suffix of “RAP ” match prefix of “2020”

Flashfill

▸ Domain-specific language for string manipulating programs
▸ Expressive enough to cover wide range of tasks
▸ Restricted enough to enable efficient search

▸ Data structure for representing consistent programs
▸ Reuse ideas from version space algebra
▸ Start with simple version spaces
▸ Define combinators to construct complex version spaces from simple ones

▸ Synthesis algorithm for learning consistent programs in DSL
▸ Ranking consistent programs

Ranking

▸ Prefer shorter programs.
▸ Fewer number of conditionals.
▸ Shorter substring expression, regular expressions.

▸ Prefer programs with fewer constants.

Strategies
▸ Baseline: Pick any minimal sized program using minimal number of constants.
▸ Manual: Break conflicts using a weighted score of program features.
▸ Machine Learning: Weights are learned from training data.

Today
▸ Representation-based search using version space algebras

(for inductive synthesis)

Next
▸ Constraint-based search

Summary

