Representation-based Search Version Space Algebras

CS560: Reasoning About Programs

Roopsha Samanta

Partly based on slides by Armando Solar-Lezama and Xiaokang Qiu

Roadmap

Previously

- Inductive synthesis
- SyGuS
- Enumerative search

Today

 Representation-based search using version space algebras (for inductive synthesis)

Quick review: Mathematical Lattice

 (P, \sqsubseteq) : partially-ordered set (poset) S

⊔: join, least upper bound (lub)

□: meet, greatest lower bound (glb)

(P, \sqsubseteq) is a lattice if $\forall x, y$. ($x \sqcup y$ and $x \sqcap y$ exist). (P, \sqsubseteq) is a complete lattice if $\forall S \subseteq P$. ($\sqcup S$ and $\sqcap S$ exist)

All finite lattices are complete

Example of a lattice that is not complete?

 $x \sqcup y$: join of two elements in P $\sqcup S$: join over subset S of P $x \sqcap y$: meet of two elements in P $\sqcap S$: meet over subset S of P

Version spaces

Version space is the set of all hypotheses/functions/programs in a given hypothesis/program space consistent with a set of input-output examples

Version space algebra allows us to compose together simple version spaces, using operators such as union (U), join (\bowtie) and transform, in order to construct more complex version spaces

Tessa Lau

Concept learning using version spaces

Learning Boolean-valued functions

Partial order over hypothesis space H $h_1 \sqsubseteq h_2 : \forall x. \ h_1(x) \Rightarrow h_2(x)$

If *H* is finite, $VS_{H,E}$ is a complete lattice \Rightarrow least upper bound *G* and greatest lower bound *S* exist \Rightarrow can represent $VS_{H,E}$ as (*G*, *S*)

Captures generality of hypothesis. h_2 "better" than h_1

G is the most general hypothesis consistent with *E S* is the most specific hypothesis consistent with *E*

(most generalis the correct phrase)

Concept learning using version spaces

```
G, S := \top, \bot;
foreach (x, y) in E
   if y = true
                                                              Specializing G
     remove from G any h: h \not\models (x, y);
     foreach h \in S: h \not\models (x, y)
        remove h from S;
                                                                            Generalizing S
        add to S all minimal generalizations h_1 of h_1:
        h_1 \models (x, y) and \exists h_2 \in G: h_1 \sqsubset h_2;
        remove from S any h_1: \exists h_2 \in S: h_2 \sqsubset h_1;
    if y = false
       . . .
```

If *H* is partially-ordered and the VS is boundary set-representable, one can represent and search very efficiently!

What if not?

Compose simpler version spaces!

Version Space Algebra: Union and Join

 $VS_{H_1,E} \cup VS_{H_2,E} = VS_{H_1 \cup H_2,E}$

Version Space Algebra: Union and Join

 $VS_{H_1,E} \cup VS_{H_2,E} = VS_{H_1 \cup H_2,E}$

 $VS_{H_1,E_1} \bowtie VS_{H_2,E_2} = \{ \langle h_1, h_2 \rangle \mid h_1 \in VS_{H_1,E_1} , h_2 \in VS_{H_2,E_2}, C(\langle h_1, h_2 \rangle, \langle E_1, E_2 \rangle) \}$

 $VS_{H_1,E_1} \bowtie VS_{H_2,E_2}$ is an independent join iff:

 $\forall E_1, E_2, h_1 \in H_1, h_2 \in H_2. \ C(h_1, E_1) \land C(h_2, E_2) \Rightarrow C(\langle h_1, h_2 \rangle, \langle E_1, E_2 \rangle) \}$

Highly efficient representation!

Roosha Sananta -> Samonter

- **Domain-specific language** for string manipulating programs
 - Expressive enough to cover wide range of tasks
 - Restricted enough to enable efficient search
- Data structure for representing consistent programs
 - Reuse ideas from version space algebra
 - Start with simple version spaces
 - Define combinators to construct complex version spaces from simple ones
- Synthesis algorithm for learning consistent programs in DSL
- Ranking consistent programs

[Gulwani 2010]

- **Domain-specific language** for string manipulating programs
 - Expressive enough to cover wide range of tasks
 - Restricted enough to enable efficient search
- Data structure for representing consistent programs
 - Reuse ideas from version space algebra
 - Start with simple version spaces
 - Define combinators to construct complex version spaces from simple ones
- Synthesis algorithm for learning consistent programs in DSL
- Ranking consistent programs

[Gulwani 2010]

Flashfill DSL (Simplified version)

Program: (String $x_1,$..., String $x_k)$ \rightarrow String

 $H := switch((B_1, E_1), \dots, (B_n, E_n)) | E$ String Expression

Trace Expression

A := subStr(X,P,P) | constStr(S) Atomic Expression

 $P := pos(R_1, R_2) | constPos(K)$

Position Expression

 $R := tokenSeq(T_1, \dots, T_m) | T | \epsilon$ Regular Expression

T := C | C+ | ...

Token Expression

A Switch operator evaluates predicates over the input string tuple, and chooses the branch that then produces the output string

Each branch is a concatenation of atomic string expressions, which produce pieces of the output string

Each atomic expression can be a constant, or a substring of one of the input strings

Position in string whose left/right side matches with regular expressions R_1/R_2

- **Domain-specific language** for string manipulating programs
 - Expressive enough to cover wide range of tasks
 - Restricted enough to enable efficient search
- **Data structure** for representing consistent programs
 - Reuse ideas from version space algebra
 - Start with simple version spaces
 - Define combinators to construct complex version spaces from simple ones
- Synthesis algorithm for learning consistent programs in DSL
- Ranking consistent programs

Version spaces

Enable succinct representation of all consistent programs in memory!

- **Domain-specific language** for string manipulating programs
 - Expressive enough to cover wide range of tasks
 - Restricted enough to enable efficient search
- Data structure for representing consistent programs
 - Reuse ideas from version space algebra
 - Start with simple version spaces
 - Define combinators to construct complex version spaces from simple ones
- Synthesis algorithm for learning consistent programs in DSL
- **Ranking** consistent programs

Synthesis algorithm

- For each input-output example,
 - compute the set of all trace expressions consistent with example
- Partition examples
- Intersect sets of trace expressions for inputs in the same partition
- Learn conditionals to place inputs in appropriate partition

Partition must satisfy the following properties:

- Intersection of trace sets must be non-empty
- Number of partitions should be as small as possible
- Can learn predicates to classify the partitions

Learning & representing atomic expressions

- **Domain-specific language** for string manipulating programs
 - Expressive enough to cover wide range of tasks
 - Restricted enough to enable efficient search
- Data structure for representing consistent programs
 - Reuse ideas from version space algebra
 - Start with simple version spaces
 - Define combinators to construct complex version spaces from simple ones
- Synthesis algorithm for learning consistent programs in DSL
- Ranking consistent programs

Ranking

- Prefer shorter programs.
 - Fewer number of conditionals.
 - Shorter substring expression, regular expressions.
- Prefer programs with fewer constants.

Strategies

- **Baseline**: Pick any minimal sized program using minimal number of constants.
- Manual: Break conflicts using a weighted score of program features.
- Machine Learning: Weights are learned from training data.

Summary

Today

 Representation-based search using version space algebras (for inductive synthesis)
 Finile tree automata

Next

Constraint-based search