
Roopsha Samanta

CS560: Reasoning About Programs

Syntax-Guided Synthesis
Enumerative Search

Based on slides by Rajeev Alur, Nadia Polikarpova, Armando Solar-Lezama, Xiaokang Qiu

Previously
▸ Logics for reasoning about programs
▸ Verification and analysis of programs

Today
▸ Syntax-guided synthesis
▸ Inductive program synthesis
▸ Enumerative search

Roadmap

Post 2000: Modern Program Synthesis

Programs

Transformational program synthesis: A search problem

Input-output examples
Logical specifications
Equivalent programs
Natural language

Grammar
DSL
Partial program
Components

Find a program in search space
consistent with specification

Domain-specific search space

Specification

Dimensions in modern program synthesis
User intent

How do you tell the system what you want?

Search strategy

How does the system find the
program you actually want?Search space

What is the space of
programs to explore?

[Gulwani 2010]

Dimensions in modern program synthesis
User intent

Input-output examples
Logical specifications
Equivalent programs
Natural language

Search space

Grammars
DSLs
Generators
Components

Search strategy

Enumerative search
Representation-based search
Constraint-based search
Stochastic search
ML-based

Dimensions in modern program synthesis
User intent

Input-output examples
Logical specifications
Equivalent programs
Natural language

Search strategy

Enumerative search
Representation-based search
Constraint-based search
Stochastic search
ML-based

Search space

Grammars
DSLs
Generators
Components

Example

L ::= sort(L) |
L[N,N] |
L + L |
[N] |
x

N ::= find(L,N) |
len(L) |
0 |
N + 1

1,4,2,0,7,9,2,5,0,3,2,4,7 à 1,2,4,0

f(x) := sort(x[0, find(x,0)]) + [0]

Context-free grammar:

Input-output example:

Synthesized program:

Dimensions in modern program synthesis
User intent

Input-output examples

Search strategy

Enumerative search
Search space

Grammars

Context-free Grammars (CFGs): <T, N, R, S>

L ::= sort(L) |
L[N,N] |
L + L |
[N] |
x

N ::= find(L,N) |
len(L) |
0 |
N + 1

N: Non-terminals

S: Starting
non-terminal

R: Rules/productions

T: Terminals

Context-free Grammars (CFGs): <T, N, R, S>

L ::= sort(L) |
L[N,N] |
L + L |
[N] |
x

N ::= find(L,N) |
len(L) |
0 |
N + 1

Common theme to many recent efforts
‣ Sketch (Bodik, Solar-Lezama et al)
‣ FlashFill (Gulwani et al)
‣ Super-optimization (Schkufza et al)
‣ Invariant generation (Many recent efforts…)
‣ TRANSIT for protocol synthesis (Udupa et al)
‣ Oracle-guided program synthesis (Jha et al)
‣ Implicit programming: Scala^Z3 (Kuncak et al)
‣ Auto-grader (Singh et al)

SYntax-GUided Synthesis (SyGuS)
Core computational problem: Find a program P such that

1. P is in a set E of programs (syntactic constraint)
2. P satisfies spec ! (semantic constraint)

But no way to share benchmarks
and/or compare solutions!

SyGuS Setup
Fix a background theory T: fixes types and operations

Function/expression to be synthesized: name f along with its type

Inputs to SyGuS problem:
▸ Specification !:

Typed formula using symbols in T + symbol f
▸ Set E of expressions given by a CFG:

Set of candidate expressions that use symbols in T

Computational problem:
Output e in E such that ![f/e] is valid modulo theory T

Expression grammar

Example
▸ Theory QF-LIA

Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

▸ Function to be synthesized f (int x, int y) : int

▸ Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

▸ Candidate Implementations: Linear expressions
LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

▸ No solution exists

Example
▸ Theory QF-LIA

▸ Function to be synthesized f (int x, int y) : int

▸ Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

▸ Candidate Implementations: Conditional expressions without +

Term := x | y | Const | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

▸ Possible solution:
If-Then-Else (x ≤ y, y, x) What about example-based specs?

Example
▸ Theory QF-LIA

▸ Function to be synthesized f (int x, int y) : int

▸ Specification: f(0,1) = 1 & f(1,0) = 1

▸ Candidate Implementations: Conditional expressions without +

Term := x | y | Const | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

▸ Possible solution:
If-Then-Else (x ≤ y, y, x)

‣ Annual SyGuS competition
‣ Standardized input language (SYNTH-LIB)
‣ Benchmarks

https://sygus.org/

https://sygus.org/

Dimensions in modern program synthesis
User intent

Input-output examples

Search strategy

Enumerative search
Search space

Grammars

Inductive synthesis
Programming by example
Example-based synthesis
Inductive programming

Synthesize a program whose behavior satisfies a set of examples

∀x,y,z.
x ≤ max(x,y,z) ∧
y ≤ max(x,y,z) ∧
z ≤ max(x,y,z) ∧
(max(x,y,z)=x ∨
max(x,y,z)=y ∨
max(x,y,z)=z)

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Ambiguity!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = z;
if (z <= y) m = y;
if (m < x) m = x;
return m;

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Overfitting!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Overfitting!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis
int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

Brittleness!

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -3, -2) ↦ -1

int max (int x,int y,int z)
int m = x;
if (y < z) m = z;
if (m < y) m = y;
return m;

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

How can these problems
be addressed?

(0, 10, 2) ↦ 10

(-1, 10, 20) ↦ 20

(-1, -2, -3) ↦ -1

Problems in inductive program synthesis

Program/Search Space

How can these problems
be addressed?

Careful design of
search space + search strategy

Dimensions in modern program synthesis
User intent

Input-output examples

Search strategy

Enumerative search
Search space

Grammars

Enumerative search

Enumerative/explicit/exhaustive search

Key issues
▸ In what order do you generate?
▸ Influences performance *and* result quality

▸ How do you prune?
▸ Essential for scalability

▸ How do you keep track of the remaining space?
▸ Especially challenging in the context of pruning

Key idea:
Generate programs from the grammar one by one and test on examples

Bottom-up enumeration
plist := set of all terminals
while true

plist := grow(plist);
forall p in plist

if isCorrect(p)
return p;

grow(plist)
// return a list of all trees generated by
// taking a non-terminal and adding
// nodes in plist as children

Starting from terminals,
combine sub-programs
into larger programs using
productions

Bottom-up enumeration
x 0Level 0

Level 1
L ::= sort(L) |

L[N,N] |
L + L |
[N] |
x

N ::= find(L,N) |
len(L) |
0 |
N + 1

Set grows very fast!
Large equivalence classes of equivalent programs

Level 1

▸ Program equivalence is hard
▸ It is also unnecessary!

▸ Observational Equivalence
▸ Are they equivalent w.r.t the inputs
▸ easy to check efficiently
▸ sufficient for the purpose of PBE

▸ Keep only the simplest one

Pruning equivalent programs

plist := set of all terminals
while true

plist := grow(plist);
plist := reduce(plist);
forall p in plist

if isCorrect(p)
return p;

Features:
▸ Search small programs before large programs
▸ Simple
▸ Works even with black-box language building blocks

▸ no need to have source for sort or find, just need to be able to execute them
▸ no need to know of any properties about them

e.g. automatically ignores sort(sort(x)) without having to know that sort is
idempotent

▸ Complexity depends on the size of the set of distinct programs

Enumerative search from grammars

Limitations:
▸ Only scales to very small programs
▸ Unsuitable for programs with unknown constants

▸ A single unknown 32-bit constant makes the problem intractable
▸ Hard to generalize to arbitrary generators

▸ Relies heavily on recursive structure of grammar
▸ Hard to take advantage of additional domain knowledge

▸ Example systems:
▸ Recursive Program Synthesis [AGK13]
▸ EUSolver [Alur et al. 2017]

Enumerative search from grammars

Today
▸ Inductive synthesis
▸ SyGuS
▸ Enumerative search

Next
▸ Representation-based search (Version Space Algebras)

Summary

