Bounded Model Checking

CS560: Reasoning About Programs

Roopsha Samanta
Roadmap

Previously

- Invariant generation and abstract interpretation

Today

- Bounded model checking for programs
Clarke & Emerson, *Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal Logic*, 1981

Algorithmic framework for exhaustive exploration of finite-state transition systems to check temporal properties
Bounded Model Checking (BMC)

- Represent the transition system as a formula in propositional logic
- Instead of exploring all states exhaustively, unroll the transition relation up to a certain fixed bound and search for violations of the property within that bound
- Transform this search to a Boolean satisfiability problem, solve using a SAT solver
- If no counterexamples found using current bound, increment bound and repeat

Great for refutation of properties!
BMC for Programs using SMT Solvers

1. Unwind loops a fixed k times
 ▸ Duplicate the loop body k times
 ▸ Guard each copy using an if statement that checks the loop condition
 ▸ At the end of k repetitions, add an unwind assertion that asserts the negation of the loop condition
 ▸ If unwinding assertion fails, then there exists a program execution that exceeds bound (loop executes > k times)
 ▸ If unwinding assertion passes, then bound is sufficient for verification!
\[x := 0 \]
\[y := 0 \]
while \(y \leq n \) do
 if \(z = 0 \) then
 \[x := x + 1 \]
 else
 \[x := x + y \]
\[y := y + 1 \]
assert \(x \leq y \)

Unwind loop k = 2 times

\[x := 0 \]
\[y := 0 \]
if \(y \leq n \)
 if \(z = 0 \) then
 \[x := x + 1 \]
 else
 \[x := x + y \]
\[y := y + 1 \]
if \(y \leq n \)
 if \(z = 0 \) then
 \[x := x + 1 \]
 else
 \[x := x + y \]
\[y := y + 1 \]
assert \(x \leq y \)
assert \(y > n \)
BMC for Programs using SMT Solvers

2. Transform program to static single assignment (SSA) form
 ▸ Rename variables so that each variable is assigned only once
 ▸ For each join point after a conditional, add new variables with selectors
\[
\begin{align*}
x &:= 0 \\
y &:= 0 \\
\text{if } (y \leq n) \\
\quad \text{if } (z == 0) \text{ then } \\
\quad \quad x := x + 1 \\
\quad \text{else} \\
\quad \quad x := x + y \\
y &:= y + 1 \\
\text{if } (y \leq n) \\
\quad \text{if } (z == 0) \text{ then } \\
\quad \quad x := x + 1 \\
\quad \text{else} \\
\quad \quad x := x + y \\
y &:= y + 1 \\
\text{assert } y > n \\
\text{assert } x \leq y
\end{align*}
\]

SSA conversion

\[
\begin{align*}
x_1 &:= 0 \\
y_1 &:= 0 \\
\text{if } (y_1 \leq n_0) \\
\quad \text{if } (z_0 == 0) \text{ then } \\
\quad \quad x_2 := x_1 + 1 \\
\quad \text{else} \\
\quad \quad x_3 := x_1 + y_1 \\
x_4 &:= \phi(x_2, x_3) \\
y_2 &:= y_1 + 1 \\
\text{if } (y_2 \leq n_0) \\
\quad \text{if } (z_0 == 0) \text{ then } \\
\quad \quad x_5 := x_4 + 1 \\
\quad \text{else} \\
\quad \quad x_6 := x_4 + y_2 \\
x_7 &:= \phi(x_5, x_6) \\
y_3 &:= y_2 + 1 \\
\text{assert } y_3 > n_0 \\
\text{assert } x_7 \leq y_3
\end{align*}
\]
BMC for Programs using SMT Solvers

3. Generate a SAT/SMT encoding
 ▸ Generate forward propagation constraints R for program
 ▸ Generate constraints A for (unwinding) assertions
 ▸ Check if $R \land \neg A$ is satisfiable
 ▸ If sat, then some (unwinding) assertion is violated
 ▸ If unsat, program satisfies all assertions!
\(x_1 := 0 \)
\(y_1 := 0 \)
\begin{verbatim}
if (y_1 <= n_0)
 if (z_0 == 0) then
 x_2 := x_1 + 1
 else
 x_3 := x_1 + y_1
 x_4 := \phi(x_2, x_3)
 y_2 := y_1 + 1
 if (y_2 <= n_0)
 if (z_0 == 0) then
 x_5 := x_4 + 1
 else
 x_6 := x_4 + y_2
 x_7 := \phi(x_5, x_6)
 y_3 := y_2 + 1
assert y_3 > n_0
assert x_7 \leq y_3
\end{verbatim}

\(R \equiv \)
\(x_1 = 0 \land \)
\(y_1 = 0 \land \)
\(x_2 = x_1 + 1 \land \)
\(x_3 = x_1 + y_1 \land \)
\(y_2 = y_1 + 1 \land \)
\(x_5 = x_4 + 1 \land \)
\(x_6 = x_4 + y_2 \land \)
\(y_3 = y_2 + 1 \land \)
\((y_1 \leq n_0 \land ((z_0 = 0 \land x_4 = x_2) \lor (z_0 \neq 0 \land x_4 = x_3)) \land (y_2 \leq n_0 \land ((z_0 = 0 \land (x_7 = x_5) \lor (z_0 \neq 0 \land (x_7 = x_6)))))
\]
\(A \equiv y_3 > n_0 \land x_7 \leq y_3 \)
\[x_1 := 0 \]
\[y_1 := 0 \]
\[\text{if } (y_1 \leq n_0) \]
\[\quad \text{if } (z_0 == 0) \text{ then } \]
\[\quad x_2 := x_1 + 1 \]
\[\quad \text{else} \]
\[\quad x_3 := x_1 + y_1 \]
\[\quad x_4 := \phi(x_2, x_3) \]
\[\quad y_2 := y_1 + 1 \]
\[\quad \text{if } (y_2 \leq n_0) \]
\[\quad \quad \text{if } (z_0 == 0) \text{ then} \]
\[\quad \quad \quad x_5 := x_4 + 1 \]
\[\quad \quad \text{else} \]
\[\quad \quad \quad x_6 := x_4 + y_2 \]
\[\quad \quad \quad x_7 := \phi(x_5, x_6) \]
\[\quad \quad y_3 := y_2 + 1 \]
\[\quad \text{assert } y_3 > n_0 \]
\[\text{assert } x_7 \leq y_3 \]

If \(R \land \neg A \) is unsat, program correct!

Else if \(R \land \neg A_2 \) is sat, program buggy!

Else \(R \land \neg A_1 \) is sat, i.e., program correct up to bound \(k \), but there exists some execution of length > \(k \); increase bound \(k \) and repeat.

\[A \equiv y_3 > n_0 \land x_7 \leq y_3 \]
\[A_1 \equiv y_3 > n_0 \quad A_2 \equiv x_7 \leq y_3 \]
Summary

Today
- Bounded model checking for programs
 - Unwinds loops a fixed, bounded number of times
 - SSA form makes forward propagation straightforward
 - An effective refutation technique
 - Unwinding assertions enable verification

Next
- Model Checking