
Roopsha Samanta

CS560: Reasoning About Programs

Bounded Model Checking

Previously
▸ Invariant generation and abstract interpretation

Today
▸ Bounded model checking for programs

Roadmap

Clarke & Emerson, Design and Synthesis of Synchronization Skeletons using Branching-
Time Temporal Logic, 1981

Model Checking

Algorithmic framework for exhaustive exploration of finite-state transition systems to
check temporal properties

Clarke Emerson Sifakis

▸ Represent the transition system as a formula in propositional logic
▸ Instead of exploring all states exhaustively, unroll the transition relation up to a

certain fixed bound and search for violations of the property within that bound
▸ Transform this search to a Boolean satisfiability problem, solve using a SAT solver
▸ If no counterexamples found using current bound, increment bound and repeat

Bounded Model Checking (BMC)

Great for refutation of properties!

BMC for Programs using SMT Solvers

1. Unwind loops a fixed k times
▸ Duplicate the loop body k times
▸ Guard each copy using an if statement that checks the loop condition
▸ At the end of k repetitions, add an unwinding assertion that asserts

the negation of the loop condition
▸ If unwinding assertion fails, then there exists a program execution

that exceeds bound (loop executes > k times)
▸ If unwinding assertion passes, then bound is sufficient for

verification!

𝑥 ∶= 0
𝑦 ∶= 0
while 𝑦 <= 𝑛 do

if (𝑧 == 0) then
𝑥 ∶= 𝑥 + 1

else
𝑥 ∶= 𝑥 + 𝑦

𝑦 ∶= 𝑦 + 1
assert 𝑥 ≤ 𝑦

Unwind loop
k = 2 times

Unwinding asserAon

𝑥 ∶= 0
𝑦 ∶= 0
if 𝑦 <= 𝑛

if (𝑧 == 0) then
𝑥 ∶= 𝑥 + 1

else
𝑥 ∶= 𝑥 + 𝑦

𝑦 ∶= 𝑦 + 1
if 𝑦 <= 𝑛

if (𝑧 == 0) then
𝑥 ∶= 𝑥 + 1

else
𝑥 ∶= 𝑥 + 𝑦

𝑦 ∶= 𝑦 + 1
assert 𝑦 > 𝑛

assert 𝑥 ≤ 𝑦

BMC for Programs using SMT Solvers

2. Transform program to static single assignment (SSA) form
▸ Rename variables so that each variable is assigned only once
▸ For each join point after a conditional, add new variables with

selectors

SSA
conversion

If 𝑧! == 0,
𝜙 𝑥", 𝑥# = x" ,
else
𝜙 𝑥", 𝑥# = x#

𝑥$ ∶= 0
𝑦$ ∶= 0
if 𝑦$ <= 𝑛!

if (𝑧! == 0) then
𝑥" ∶= 𝑥$ + 1

else
𝑥# ∶= 𝑥$ + 𝑦$

𝑥% ≔ 𝜙 𝑥", 𝑥#
𝑦" ∶= 𝑦$ + 1
if 𝑦" <= 𝑛!

if (𝑧! == 0) then
𝑥& ≔ 𝑥% + 1

else
𝑥' ≔ 𝑥% + 𝑦"

𝑥(≔ 𝜙 𝑥&, 𝑥'
𝑦# ∶= 𝑦" + 1
assert 𝑦# > 𝑛!

assert 𝑥(≤ 𝑦#

𝑥 ∶= 0
𝑦 ∶= 0
if 𝑦 <= 𝑛

if (𝑧 == 0) then
𝑥 ∶= 𝑥 + 1

else
𝑥 ∶= 𝑥 + 𝑦

𝑦 ∶= 𝑦 + 1
if 𝑦 <= 𝑛

if (𝑧 == 0) then
𝑥 ∶= 𝑥 + 1

else
𝑥 ∶= 𝑥 + 𝑦

𝑦 ∶= 𝑦 + 1
assert 𝑦 > 𝑛

assert 𝑥 ≤ 𝑦

BMC for Programs using SMT Solvers

3. Generate a SAT/SMT encoding
▸ Generate forward propagation constraints 𝑅 for program
▸ Generate constraints 𝐴 for (unwinding) assertions
▸ Check if 𝑅 ∧ ¬𝐴 is satisfiable
▸ If sat, then some (unwinding) assertion is violated
▸ If unsat, program satisfies all assertions!

𝑅 ≡
𝑥$ = 0 ∧
𝑦$ = 0 ∧
𝑥" = 𝑥$ + 1 ∧
𝑥# = 𝑥$ + 𝑦$ ∧
𝑦" = 𝑦$ + 1 ∧
𝑥& = 𝑥% + 1 ∧
𝑥' = 𝑥% + 𝑦" ∧
𝑦# = 𝑦" + 1 ∧
(y$≤ 𝑛! ∧ z! = 0 ∧ 𝑥%= 𝑥" ∨ z! ≠ 0 ∧ 𝑥% = 𝑥# ∧
(y"≤ 𝑛! ∧ z! = 0 ∧ (𝑥(= 𝑥& ∨ z! ≠ 0 ∧ (𝑥(= 𝑥'))

Strongest postcondition computation
without existential quantification!

𝐴 ≡ 𝑦# > 𝑛! ∧ 𝑥(≤ 𝑦#

𝑥$ ∶= 0
𝑦$ ∶= 0
if 𝑦$ <= 𝑛!

if (𝑧! == 0) then
𝑥" ∶= 𝑥$ + 1

else
𝑥# ∶= 𝑥$ + 𝑦$

𝑥% ≔ 𝜙 𝑥", 𝑥#
𝑦" ∶= 𝑦$ + 1
if 𝑦" <= 𝑛!

if (𝑧! == 0) then
𝑥& ≔ 𝑥% + 1

else
𝑥' ≔ 𝑥% + 𝑦"

𝑥(≔ 𝜙 𝑥&, 𝑥'
𝑦# ∶= 𝑦" + 1
assert 𝑦# > 𝑛!

assert 𝑥(≤ 𝑦#

𝑅 ≡
𝑥$ = 0 ∧
𝑦$ = 0 ∧
𝑥" = 𝑥$ + 1 ∧
𝑥# = 𝑥$ + 𝑦$ ∧
𝑦" = 𝑦$ + 1 ∧
𝑥& = 𝑥% + 1 ∧
𝑥' = 𝑥% + 𝑦" ∧
𝑦# = 𝑦" + 1 ∧
(y$≤ 𝑛! ∧ z! = 0 ∧ 𝑥%= 𝑥" ∨ z! ≠ 0 ∧ 𝑥% = 𝑥# ∧
(y"≤ 𝑛! ∧ z! = 0 ∧ (𝑥(= 𝑥& ∨ z! ≠ 0 ∧ (𝑥(= 𝑥'

𝐴 ≡ 𝑦# > 𝑛! ∧ 𝑥(≤ 𝑦#

If 𝑅 ∧ ¬𝐴 is unsat, program correct!
Else if 𝑅 ∧ ¬𝐴" is sat, program buggy!
Else 𝑅 ∧ ¬𝐴$ is sat, i.e., program correct upto bound k, but
there exists some execuAon of length > k; increase bound k
and repeat.

𝑥$ ∶= 0
𝑦$ ∶= 0
if 𝑦$ <= 𝑛!

if (𝑧! == 0) then
𝑥" ∶= 𝑥$ + 1

else
𝑥# ∶= 𝑥$ + 𝑦$

𝑥% ≔ 𝜙 𝑥", 𝑥#
𝑦" ∶= 𝑦$ + 1
if 𝑦" <= 𝑛!

if (𝑧! == 0) then
𝑥& ≔ 𝑥% + 1

else
𝑥' ≔ 𝑥% + 𝑦"

𝑥(≔ 𝜙 𝑥&, 𝑥'
𝑦# ∶= 𝑦" + 1
assert 𝑦# > 𝑛!

assert 𝑥(≤ 𝑦#

𝐴$ ≡ 𝑦# > 𝑛! 𝐴" ≡ 𝑥(≤ 𝑦#

Today
▸ Bounded model checking for programs
▸ Unwinds loops a fixed, bounded number of times
▸ SSA form makes forward propagation straightforward
▸ An effective refutation technique
▸ Unwinding assertions enable verification

Next
▸ Model Checking

Summary

