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Invariant Generation
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Previously
▸ Semi-automating Hoare logic using verification condition generation

Today
▸ Automated invariant generation 
▸ Forward propagation using strongest postconditions
▸ Abstract interpretation

Roadmap
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▸ A formula ! annotating location " of a program # is an invariant iff
it holds whenever control reaches location " :

for each computation $!, $", $#, … of # and each index ', 
()($$) = " implies $$ ⊨ !.

▸ The annotations of # are invariant iff each annotation is invariant

▸ The annotations of # are inductive (or, inductive invariants) iff
all corresponding verification conditions are valid. 

Invariant vs. Inductive Invariant

Hard to prove an 
annotation is an 

invariant as there can 
be an infinite no. of 

computations
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▸ A formula ! annotating location " of a program # is an invariant iff
it holds whenever control reaches location " :

for each computation $!, $", $#, … of # and each index ', 
()($$) = " implies $$ ⊨ !.

▸ The annotations of # are invariant iff each annotation is invariant

▸ The annotations of # are inductive (or, inductive invariants) iff
all corresponding verification conditions are valid. 

Invariant vs. Inductive Invariant

Hard to prove an 
annotation is an 

invariant as there can 
be an infinite no. of 

computations

Inductive invariants 
are the invariants we 

can prove
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▸ A loop invariant ! is an annotation for a loop that must hold at 
the beginning of every iteration.
▸ ! must hold before the loop begins
▸ ! must hold after every iteration

Loop Invariant
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Verification 
Condition 
Generator

Valid ✓

Not valid ✗

64

Automatic 
Theorem prover 

(SMT Solver)

Verification condition
(FOL formula)

Program

Loop invariants

Precondition +
Postcondition
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Verification 
Condition 
Generator

65

Automatic 
Theorem prover 

(SMT Solver)

Program

Precondition +
Postcondition

Invariant 
Generator

Valid ✓

Not valid ✗
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Inductive assertion method

pre ! ≔ 0; % ≔ 1 {(}
{(} assume % > + post
{(} skip (
{(} assume % ≤ +; assume z ≠ 0; ! ≔ ! + %; % ≔ % + 1 (
{(} assume % ≤ +; assume z = 0; ! ≔ ! + 1; % ≔ % + 1 (

▸ Represent program as control-flow graph 
with annotations/inductive assertions

▸ Identify basic paths
▸ For each basic path: 

check if corresponding Hoare triple is valid

VCs

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{"}

{"}

{post}
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Invariant Generation: 

Find a map ": ℒ ↦ FOL such that for each basic path, 
its corresponding Hoare triple is valid

The map " is called an inductive assertions map

A cutset ℒ is a set of locations (called cutpoints) such that every 
path between adjacent cutpoints is a basic path 
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

Set of locations in ℒ that need to 
be processed 
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

Set of locations in ℒ that need to 
be processed 

Initial map
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

All locations in which basic paths 
originating at %' terminate

Set of locations in ℒ that need to 
be processed 

Initial map

9



ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

All locations in which basic paths 
originating at %' terminate

Set of locations in ℒ that need to 
be processed 

Initial map

./ 0'; … ; 0(, &(%' contains 
states not contained in &(%(). 
Hence, update &(%() with these 
new states 
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

Undecidable for FOL
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

Undecidable for FOL

May not terminate
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

A state is reachable in a program if it 
appears in some computation of the 
program starting from a state 
satisfying the precondition

ForwardPropagate computes 
the exact set of reachable states 
using a (least) fixpoint computation: 
repeated symbolic execution of 
program starting from ⊥ until 
equilibrium
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ForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

Inductive assertions usually over-
approximate the set of reachable 
states: every reachable state 
satisfies the annotation, but other 
unreachable states can also satisfy 
the annotation 

A state is reachable in a program if it 
appears in some computation of the 
program starting from a state 
satisfying the precondition
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Abstract interpretation can help force termination!
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Abstract interpretation can help force termination!

Ensures implication checking is 
decidable by manipulating 
abstract states --- an artificially 
constrained form of state sets

Helps termination of main loop 
via widening --- guessing a limit 
overapproximation to a sequence 
of state sets.
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Deductive 
Verification

Model 
Checking

Abstract 
Interpretation

Type 
Systems

Interactive 
theorem provers

Automatic 
theorem provers

SAT/SMT solvers

Static analysis

85
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Patrick Cousot Radhia Cousot

86

Cousot & Cousot, Abstract interpretation: a unified lattice model for static analysis of 
programs by construction or approximation of fixpoints, 1977 

Abstraction Interpretation

A framework for designing sound-by-construction static analyses
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Error States

Reachable States

Safe States

Key Idea: Overapproximate program behaviour by computing a 
(least) fixpoint under an abstract domain 
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Init
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Init
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(least) fixpoint under an abstract domain 
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Error States

Init

Reachable States

Overapproximation

Safe States

Key Idea: Overapproximate program behaviour by computing a 
(least) fixpoint under an abstract domain 
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Error States

Init

Reachable States

Overapproximation

Safe States

Soundness: If  abstract program is safe, then concrete program is safe
No false negative (no false declaration of absence of errors)
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Init

Reachable States

Overapproximation

Safe States

If abstract program is unsafe, then concrete program may still be safe.
False positive (false alarm)

Error States
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Init

Reachable States

Overapproximation

Safe States

Error States

Ideally, we want the most precise (strongest) overapproximation of 
reachable states expressible in the abstract domain of choice.
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Choose abstract domain based on 
what you want to prove about the program! 

20



An abstract domain is just a set of abstract values we want to track

Define an abstract domain / as a syntactic class of Σ%-formulas of some theory 1
Each member Σ%-formula represents a set of concrete states/elements

In addition, every abstract domain contains:
▸ ⊤ (top): “don't know", represents any value
▸ ⊥ (bottom): represents empty-set

Step 1: Abstract domain
21



Define functions that map sets of concrete states/elements to an element of the abstract 
domain 

Define abstraction function 9: FOL ↦ < to map a FOL formula =
to element 9 = of < such that = ⇒ 9(=)

Step 2: Abstraction function
22





Define abstract semantics/transformers for each statement

Define an abstract strongest postcondition &', for assumption and 
assign statements such that 

&' (, * ⇒ &', (, * and &', (, * ∈ -

Step 3: Abstract transformer (SP)
23



Recall: &' assume ., * = . ∧ *
Define abstract conjunction ⊓, such that for 2-, 2. ∈ -

2- ∧ 2. ⇒ 2- ⊓, 2. and 2- ⊓, 2. ∈ -
Then for 2 ∈ -: &', assume ., 2 = 3 . ⊓, 2

Recall: &' 4 ∶= 6, * = ∃4/. 4 = 6 4//4 ∧ '[4//4]
The existential quantification can lead to a quantifier alternation during 
implication checking and is undesirable

Step 3: Abstract transformer (SP)
24





Define abstract disjunction ⊔, such that for 2-, 2. ∈ -
2- ∨ 2. ⇒ 2- ⊔, 2. and 2- ⊔, 2. ∈ -

Step 4: Abstract disjunction
25



When selecting - ensure that the implication in the validity check is decidable

Step 5: Abstract implication checking
26





Defining an abstraction does not suffice to guarantee termination. Some 
abstract domains need to be equipped with a widening operator.

Define a widening operator >,: - ×- ↦ - such that 
1. for all  2-, 2. ∈ -, 2- ∨ 2. ⇒ 2- >, 2. and
2. for all infinite sequences 2-, 2., … with 2- ⇒ 2. ⇒ ⋯ , 

the infinite sequence B- = 2-, … , B01- = B0 >, 201-, … converges. 

Thus, the sequence B0 converges even if the sequence 20 does not. 

Step 6: Widening
27





AbstractForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%( ⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &
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AbstractForwardPropagate(pre, ℒ)
$ := {%$%$& }
&(%$%$& ) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $ := $\{%'}
foreach %( ∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%( ⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$ := $ ∪ {%(}

return &

WIDEN() 
determines 
if widening 
should be 
applied

Least Fixpoint 
Computation 
under abstract 
domain

28



▸ Today: least fixed-point in an abstract domain 
▸ Farkas’ lemma (for linear invariants) [Colon_CAV_2003]
▸ Interpolation [McMillan_TACAS_2008]
▸ Abductive inference [Dillig_OOPSLA_2013]
▸ IC3 [Bradley_VMCAI_2011]
▸ Machine learning [Garg_CAV_2014]

Invariant generation
29



Patrick Cousot Radhia Cousot

125

Cousot & Cousot, Abstract interpretation: a unified lattice model for static analysis of 
programs by construction or approximation of fixpoints, 1977 

Abstraction Interpretation

A framework for designing sound-by-construction static analyses

30



Lattices and Abstract Domains

Abstraction function 9: FOL ↦ < maps 
a FOL formula = to element 9 = of <
such that = ⇒ 9(=)

Concretization function @: < ↦ FOL to 
map an element of < to a FOL formula =
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Lattices and Abstract Domains

Abstraction function 9: FOL ↦ < maps 
a FOL formula = to element 9 = of <
such that = ⇒ 9(=)

Concretization function @: < ↦ FOL to 
map an element of < to a FOL formula =

▸ Concretization function defines partial order ≼ on abstract values:
A* ≼ A+ iff γ A* ⇒ @(A+)

▸ In an abstract domain < , every pair of elements has a lub (⊔)) and glb ⊓)

⇒ Mathematical Lattice

31



Important property of the abstraction and concretization function 
is that they are almost inverses:

3 C D = D

. ⊆ C(3 . )

Galois insertion

C’            C

,

CA
-

,

-

A

,

Captures soundness of the abstraction
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{pre}
G ∶= 0
K ≔ 1
while {I} K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1
{post}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

Let’s do a static analysis of this 
program under the “sign” abstract 
domain {x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

Let’s do a static analysis of this 
program under the “sign” abstract 
domain {x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}Here pre and post are not given. 

Assume pre is true. This analysis 
will find an overapproximation of 
reachable states at all cut-points. 

One can then easily verify if some 
given post holds.
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = Z, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y = P}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = Z, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = ⊥ , y = ⊥}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = P, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

⊔

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = NN, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P} {x = P, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

⊔
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

Fixpoint!
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▸ Pre/postcondition pairs are also called functional specifications 
▸ Meant to be complete

▸ Writing complete specifications can be very hard
▸ Partial specifications are easier to write and, often, easier to check 
▸ Partial specifications may be explicit or implicit

Partial specifications
46



▸ Pre/postcondition pairs are also called functional specifications 
▸ Meant to be complete

▸ Writing complete specifications can be very hard
▸ Partial specifications are easier to write and, often, easier to check 
▸ Partial specifications may be explicit or implicit

Partial specifications

no division-by-zero
no null-pointer-dereference 

assertions 
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G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

An assertion is a FOL formula = at a program 
location %. It asserts that = is true whenever 
program control reaches %. Equivalently, it asserts 
that  the set of reachable states at % satisfies =.
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G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

An assertion is a FOL formula = at a program 
location %. It asserts that = is true whenever 
program control reaches %. Equivalently, it asserts 
that  the set of reachable states at % satisfies =.

Can use forward propagation to also compute the 
exact/overapproximate set of reachable states at 
location % (even if % is not a cutpoint).
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

48



! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y = P}{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = P, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P} {x = P, y = P}{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P} {x = P, y = P}

{x = P, y = P} {x = P, y = P}{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

Fixpoint!

{y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

Fixpoint!

{y = P}

Abstract program
is correct
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G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

✓
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G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

55



G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

A safety property = asserts that = is true at every 
program location in every program execution. 
Equivalently, it asserts that  the set of reachable 
states at any location satisfies =.
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G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

A safety property = asserts that = is true at every 
program location in every program execution. 
Equivalently, it asserts that  the set of reachable 
states at any location satisfies =.

Can use forward propagation to compute the 
exact/overapproximate set of reachable states at 
every location %.
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}
{x =⊤, y =⊤}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}
{x = NN, y = P} {x = NN, y = P}
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! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤ )! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}
{x =⊤, y =⊤}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}
{x = NN, y = P} {x = NN, y = P}

Always I = P
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G ∶= 0
K ∶= 0
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

✓
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Today
▸ Automated invariant generation 
▸ Forward propagation using strongest postconditions
▸ Abstract interpretation

Next
▸ Abstraction-refinement and predicate abstraction

Summary
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