
Roopsha Samanta

CS560: Reasoning About Programs

Invariant Generation

1

Previously
▸ Semi-automating Hoare logic using verification condition generation

Today
▸ Automated invariant generation
▸ Forward propagation using strongest postconditions
▸ Abstract interpretation

Roadmap
2

▸ A formula ! annotating location " of a program # is an invariant iff
it holds whenever control reaches location " :

for each computation $!, $", $#, … of # and each index ',
()($$) = " implies $$ ⊨ !.

▸ The annotations of # are invariant iff each annotation is invariant

▸ The annotations of # are inductive (or, inductive invariants) iff
all corresponding verification conditions are valid.

Invariant vs. Inductive Invariant

Hard to prove an
annotation is an

invariant as there can
be an infinite no. of

computations

3

▸ A formula ! annotating location " of a program # is an invariant iff
it holds whenever control reaches location " :

for each computation $!, $", $#, … of # and each index ',
()($$) = " implies $$ ⊨ !.

▸ The annotations of # are invariant iff each annotation is invariant

▸ The annotations of # are inductive (or, inductive invariants) iff
all corresponding verification conditions are valid.

Invariant vs. Inductive Invariant

Hard to prove an
annotation is an

invariant as there can
be an infinite no. of

computations

Inductive invariants
are the invariants we

can prove

3

▸ A loop invariant ! is an annotation for a loop that must hold at
the beginning of every iteration.
▸ ! must hold before the loop begins
▸ ! must hold after every iteration

Loop Invariant
4

Verification
Condition
Generator

Valid ✓

Not valid ✗

64

Automatic
Theorem prover

(SMT Solver)

Verification condition
(FOL formula)

Program

Loop invariants

Precondition +
Postcondition

5

Verification
Condition
Generator

65

Automatic
Theorem prover

(SMT Solver)

Program

Precondition +
Postcondition

Invariant
Generator

Valid ✓

Not valid ✗

6

Inductive assertion method

pre ! ≔ 0; % ≔ 1 {(}
{(} assume % > + post
{(} skip (
{(} assume % ≤ +; assume z ≠ 0; ! ≔ ! + %; % ≔ % + 1 (
{(} assume % ≤ +; assume z = 0; ! ≔ ! + 1; % ≔ % + 1 (

▸ Represent program as control-flow graph
with annotations/inductive assertions

▸ Identify basic paths
▸ For each basic path:

check if corresponding Hoare triple is valid

VCs

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{"}

{"}

{post}

7

Invariant Generation:

Find a map ": ℒ ↦ FOL such that for each basic path,
its corresponding Hoare triple is valid

The map " is called an inductive assertions map

A cutset ℒ is a set of locations (called cutpoints) such that every
path between adjacent cutpoints is a basic path

8

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

9

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

Set of locations in ℒ that need to
be processed

9

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

Set of locations in ℒ that need to
be processed

Initial map

9

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

All locations in which basic paths
originating at %' terminate

Set of locations in ℒ that need to
be processed

Initial map

9

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

All locations in which basic paths
originating at %' terminate

Set of locations in ℒ that need to
be processed

Initial map

./ 0'; … ; 0(, &(%' contains
states not contained in &(%().
Hence, update &(%() with these
new states

9

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

Undecidable for FOL

10

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

Undecidable for FOL

May not terminate

10

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

A state is reachable in a program if it
appears in some computation of the
program starting from a state
satisfying the precondition

ForwardPropagate computes
the exact set of reachable states
using a (least) fixpoint computation:
repeated symbolic execution of
program starting from ⊥ until
equilibrium

11

ForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := pre
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./ 0'; … ; 0(, &(%') ⇒ &(%()
then
&(%() := &(%() ∨ ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

Inductive assertions usually over-
approximate the set of reachable
states: every reachable state
satisfies the annotation, but other
unreachable states can also satisfy
the annotation

A state is reachable in a program if it
appears in some computation of the
program starting from a state
satisfying the precondition

12

Abstract interpretation can help force termination!

13

Abstract interpretation can help force termination!

Ensures implication checking is
decidable by manipulating
abstract states --- an artificially
constrained form of state sets

Helps termination of main loop
via widening --- guessing a limit
overapproximation to a sequence
of state sets.

13

Deductive
Verification

Model
Checking

Abstract
Interpretation

Type
Systems

Interactive
theorem provers

Automatic
theorem provers

SAT/SMT solvers

Static analysis

85

14

Patrick Cousot Radhia Cousot

86

Cousot & Cousot, Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints, 1977

Abstraction Interpretation

A framework for designing sound-by-construction static analyses

15

Error States

Reachable States

Safe States

Key Idea: Overapproximate program behaviour by computing a
(least) fixpoint under an abstract domain

16

Error States

Init

Reachable States

Safe States

Key Idea: Overapproximate program behaviour by computing a
(least) fixpoint under an abstract domain

16

Error States

Init

Reachable States

Safe States

Key Idea: Overapproximate program behaviour by computing a
(least) fixpoint under an abstract domain

16

Error States

Init

Reachable States

Safe States

Key Idea: Overapproximate program behaviour by computing a
(least) fixpoint under an abstract domain

16

Error States

Init

Reachable States

Overapproximation

Safe States

Key Idea: Overapproximate program behaviour by computing a
(least) fixpoint under an abstract domain

16

Error States

Init

Reachable States

Overapproximation

Safe States

Soundness: If abstract program is safe, then concrete program is safe
No false negative (no false declaration of absence of errors)

17

Init

Reachable States

Overapproximation

Safe States

If abstract program is unsafe, then concrete program may still be safe.
False positive (false alarm)

Error States

18

Init

Reachable States

Overapproximation

Safe States

Error States

Ideally, we want the most precise (strongest) overapproximation of
reachable states expressible in the abstract domain of choice.

19

Choose abstract domain based on
what you want to prove about the program!

20

An abstract domain is just a set of abstract values we want to track

Define an abstract domain / as a syntactic class of Σ%-formulas of some theory 1
Each member Σ%-formula represents a set of concrete states/elements

In addition, every abstract domain contains:
▸ ⊤ (top): “don't know", represents any value
▸ ⊥ (bottom): represents empty-set

Step 1: Abstract domain
21

Define functions that map sets of concrete states/elements to an element of the abstract
domain

Define abstraction function 9: FOL ↦ < to map a FOL formula =
to element 9 = of < such that = ⇒ 9(=)

Step 2: Abstraction function
22

Define abstract semantics/transformers for each statement

Define an abstract strongest postcondition &', for assumption and
assign statements such that

&' (, * ⇒ &', (, * and &', (, * ∈ -

Step 3: Abstract transformer (SP)
23

Recall: &' assume ., * = . ∧ *
Define abstract conjunction ⊓, such that for 2-, 2. ∈ -

2- ∧ 2. ⇒ 2- ⊓, 2. and 2- ⊓, 2. ∈ -
Then for 2 ∈ -: &', assume ., 2 = 3 . ⊓, 2

Recall: &' 4 ∶= 6, * = ∃4/. 4 = 6 4//4 ∧ '[4//4]
The existential quantification can lead to a quantifier alternation during
implication checking and is undesirable

Step 3: Abstract transformer (SP)
24

Define abstract disjunction ⊔, such that for 2-, 2. ∈ -
2- ∨ 2. ⇒ 2- ⊔, 2. and 2- ⊔, 2. ∈ -

Step 4: Abstract disjunction
25

When selecting - ensure that the implication in the validity check is decidable

Step 5: Abstract implication checking
26

Defining an abstraction does not suffice to guarantee termination. Some
abstract domains need to be equipped with a widening operator.

Define a widening operator >,: - ×- ↦ - such that
1. for all 2-, 2. ∈ -, 2- ∨ 2. ⇒ 2- >, 2. and
2. for all infinite sequences 2-, 2., … with 2- ⇒ 2. ⇒ ⋯ ,

the infinite sequence B- = 2-, … , B01- = B0 >, 201-, … converges.

Thus, the sequence B0 converges even if the sequence 20 does not.

Step 6: Widening
27

AbstractForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%(⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

28

AbstractForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%(⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

28

AbstractForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%(⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

WIDEN()
determines
if widening
should be
applied

28

AbstractForwardPropagate(pre, ℒ)
$:= {%$%$& }
&(%$%$&) := 9 (pre)
foreach % ∈ ℒ\{%$%$&} do &(%) := ⊥
while $ ≠ , do

pick %' ∈ $; $:= $\{%'}
foreach %(∈ succ(%') do

if ¬ ./) 0'; … ; 0(, &(%') ⇒ &(%()
then if WIDEN()

then &(%() := &(%() >) &(%(⊔) ./)(0'; … ; 0(, &(%')))
else &(%() := &(%() ⊔) ./(0'; … ; 0(, &(%'))
$:= $ ∪ {%(}

return &

WIDEN()
determines
if widening
should be
applied

Least Fixpoint
Computation
under abstract
domain

28

▸ Today: least fixed-point in an abstract domain
▸ Farkas’ lemma (for linear invariants) [Colon_CAV_2003]
▸ Interpolation [McMillan_TACAS_2008]
▸ Abductive inference [Dillig_OOPSLA_2013]
▸ IC3 [Bradley_VMCAI_2011]
▸ Machine learning [Garg_CAV_2014]

Invariant generation
29

Patrick Cousot Radhia Cousot

125

Cousot & Cousot, Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints, 1977

Abstraction Interpretation

A framework for designing sound-by-construction static analyses

30

Lattices and Abstract Domains

Abstraction function 9: FOL ↦ < maps
a FOL formula = to element 9 = of <
such that = ⇒ 9(=)

Concretization function @: < ↦ FOL to
map an element of < to a FOL formula =

31

Lattices and Abstract Domains

Abstraction function 9: FOL ↦ < maps
a FOL formula = to element 9 = of <
such that = ⇒ 9(=)

Concretization function @: < ↦ FOL to
map an element of < to a FOL formula =

▸ Concretization function defines partial order ≼ on abstract values:
A* ≼ A+ iff γ A* ⇒ @(A+)

▸ In an abstract domain < , every pair of elements has a lub (⊔)) and glb ⊓)

⇒ Mathematical Lattice

31

Important property of the abstraction and concretization function
is that they are almost inverses:

3 C D = D

. ⊆ C(3 .)

Galois insertion

C’ C

,

CA
-

,

-

A

,

Captures soundness of the abstraction

32

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{pre}
G ∶= 0
K ≔ 1
while {I} K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1
{post}

33

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

Let’s do a static analysis of this
program under the “sign” abstract
domain {x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

34

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

Let’s do a static analysis of this
program under the “sign” abstract
domain {x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}Here pre and post are not given.

Assume pre is true. This analysis
will find an overapproximation of
reachable states at all cut-points.

One can then easily verify if some
given post holds.

34

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = Z, y = P}

35

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y = P}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = Z, y = P}

36

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = ⊥ , y = ⊥}

37

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

38

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = P, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y = P}

39

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y = P}

40

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

⊔

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

41

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = P, y = P}

{x = NN, y = P}

42

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P} {x = P, y = P}

43

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

⊔

44

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

Fixpoint!

45

▸ Pre/postcondition pairs are also called functional specifications
▸ Meant to be complete

▸ Writing complete specifications can be very hard
▸ Partial specifications are easier to write and, often, easier to check
▸ Partial specifications may be explicit or implicit

Partial specifications
46

▸ Pre/postcondition pairs are also called functional specifications
▸ Meant to be complete

▸ Writing complete specifications can be very hard
▸ Partial specifications are easier to write and, often, easier to check
▸ Partial specifications may be explicit or implicit

Partial specifications

no division-by-zero
no null-pointer-dereference

assertions

46

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

An assertion is a FOL formula = at a program
location %. It asserts that = is true whenever
program control reaches %. Equivalently, it asserts
that the set of reachable states at % satisfies =.

47

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

An assertion is a FOL formula = at a program
location %. It asserts that = is true whenever
program control reaches %. Equivalently, it asserts
that the set of reachable states at % satisfies =.

Can use forward propagation to also compute the
exact/overapproximate set of reachable states at
location % (even if % is not a cutpoint).

47

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

48

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

48

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

{x = ⊥ , y = ⊥}

% ∶= % + 1
loop end

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

{x = ⊥ , y = ⊥}

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

{y = P}

48

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y = P}{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}

49

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = P, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P} {x = P, y = P}{y = P}

50

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = Z, y =P}

{x = Z, y = P}

{x = Z, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}

51

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P} {x = P, y = P}

{x = P, y = P} {x = P, y = P}{y = P}

52

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}{y = P}

53

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

Fixpoint!

{y = P}

53

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

Fixpoint!

{y = P}

Abstract program
is correct

53

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

assert K > 0
K ∶= K + 1

✓

54

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

55

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

A safety property = asserts that = is true at every
program location in every program execution.
Equivalently, it asserts that the set of reachable
states at any location satisfies =.

55

G ∶= 0
K ≔ 1
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

A safety property = asserts that = is true at every
program location in every program execution.
Equivalently, it asserts that the set of reachable
states at any location satisfies =.

Can use forward propagation to compute the
exact/overapproximate set of reachable states at
every location %.

55

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}
{x =⊤, y =⊤}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}
{x = NN, y = P} {x = NN, y = P}

56

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{x = NN, y = P}

{x = Z, y = P}

{x = NN, y = P}

{x = P, y = P}

{x = P, y = P}

{x = Z, y = P}
{x =⊤, y =⊤}

{x = P, y = P}

{x = NN, y = P}

{x = P, y = P}
{x = NN, y = P} {x = NN, y = P}

Always I = P

56

G ∶= 0
K ∶= 0
while K <= O do

if (P == 0) then
G ∶= G + 1

else
G ∶= G + K

K ∶= K + 1

Always I > 0

✓

57

Today
▸ Automated invariant generation
▸ Forward propagation using strongest postconditions
▸ Abstract interpretation

Next
▸ Abstraction-refinement and predicate abstraction

Summary
58

