Hoare Logic, Part Il

CS560: Reasoning About Programs

Roopsha Samanta
PURDUE

IIIIIIIIII

Partly based on slides by Isil Dillig

Roadmap

Previously
» Hoare logic: Hoare triples, inference rules for partial correctness

Today

» (Semi-)automating Hoare logic

» Verification condition (VC) generation
» Predicate transformers

Hoare logic proofs can be tedious!

» What is a good loop invariant?

» What rule to apply when?

Let’s assume an oracle provides loop invariants for now ST =
and automate the rest! AUt "Wf[efi

Program Yes/Proof

Deductive Verifier

Specification No/Bug

Program Verification condition Valid
Verification (FOL formula) Automatic
Condition Theorem prover
- Generator (SMT Solver) .
Specification Not valid X

Verification condition is a formula that is valid iff program is correct

10

Inductive assertion method

Verification condition Valid v/

Program
(FOL formula)

Precondition + Not valid X
Postcondition

Verification condition is a formula that is valid iff program is partially correct

Inductive assertion method (pred

{pre}
x:=0 nSSUME
y::l ms“meymsn
while {I}(y <= n)do

{I} loophead <

if (z == 0) then exit conditional
x:i=x+1

else {post} . qty\: 0
X:=x+Yy

y:=y+1 xX:i=x+y x:=x+1

{post} \/

yi=y+1
{I} loop end

Inductive assertion method

» Represent program as control-flow graph
with annotations/inductive assertions

An annotation can be a precondition,
postcondition, loop invariant or assertion.

IMP* 0&&61{\
assameé

- — -]

- /
| sk

{I'} loophead ¢
YM/NSn
exit conditional
{post} ziy\fo
Xi=x+y x:=x+1
\/
yi=y+1

{I} loop end

Inductive assertion method

x:=0
{pr‘E} y:=1
» Represent program as control-flow graph
with annotations/inductive assertions l
» Identify basic paths {I} loophead <
y>n . ysm
A
exit conditional
{post} i/ \\ z=0
» Basic path starts at a precondition/loop S
invariant, and ends at a postcondition/loop xi=x+y x:i=x+1
invariant/assertion. -
» Loop invariants only at the start/end of \ ///
basic paths y = ; +1

{I} loop end

Inductive assertion method

» Represent program as control-flow graph
with annotations/inductive assertions

» Identify basic paths

» For each basic path:
check if corresponding Hoare triple is valid

x:=0
{pr‘e} y = 1

|

{I} loophead <

y M/\xxxx\\y S n
~~A

exit conditional
{post} ¢/ . z=0
a4
x:i=x+Yy x:=x+1
\r"

yi=y+1
{I} loop end

Inductive assertion method

x:=0
{pr‘e} y = 1
» Represent program as control-flow graph l
with annotations/inductive assertions
» Identify basic paths {I} loophead <
» For each basic path: ~
. . . .) y>n SSYsSn
check if corresponding Hoare triple is valid / R
exit conditional
VCs {post} i% M z=0
4
{pre}x::O;yzzl{I} X:i=x+y x:i=x+1
{I} assume y > n {post} ’
{1} skip {1} \
{I} assumey < n;assumez #0;x =x+y;y =y +1 {I} .
{I} assumey < n;assumez=0;x:=x+1;,y=y+1 {I} I yi=y+1
{ } loop end

Generating VCs: Forwards vs. Backwards

Forwards Analysis Backwards Analysis

» Starts from precondition and » Starts from postcondition and
tries to prove postcondition tries to prove precondition

» Computes » Computes

Predicate transformers: FOL x stmts — FOL

Incorporate effects of program statements into FOL formulas

WP and SP ! e}{é

wp(S, Q) : the weakest predicate that guarantees Q
will hold after executing S from any state satisfying
the predicate

“largest” set of states

sp($, P) : the strongest predicate that holds after

“smallest” set of states
execufng S from any state satisfying P

{P} S {Q} is valid iff:

P = wp(S,Q),or, sp(S,P)=0Q

Computing sp(S, P) X = XA
QPCS(QP/P = P X o= X+y

» sp(assume C,P)=CAP o g
> Sp(S1; 52, P) = sp(Sz,sp(Sy, P)) ojpe// ’<"/— Kbﬂ
7 ™ Revious v o 3 Y“"\}b
» sp(x:= E,P) =3x%x = E[x°/x] A P[x°/x]
sp(x:=xH, 7<7) = 5 D
e x= X+ VAN O

x| (Guankfior ELamnaber)

Computing wp(S, Q) @
» wp(assume C,Q)=C - Q

> wp(S1;52,Q) = wp(S1,wp(S2, Q)

» wp(x:= E,Q) = Q[E/x] assume C p

«— —

— N sk £
T CTR -

Roadmap

Today
» (Semi-)automating Hoare logic
» Verification condition (VC) generation

» Predicate transformers

Next
» How to fully automate Hoare logic: automatic invariant generation

