
Roopsha Samanta

CS560: Reasoning About Programs

Hoare Logic, Part II

Partly based on slides by Isil Dillig

Previously
▸ Hoare logic: Hoare triples, inference rules for partial correctness

Today
▸ (Semi-)automating Hoare logic
▸ Verification condition (VC) generation
▸ Predicate transformers

Roadmap

▸ What is a good loop invariant?

▸ What rule to apply when?

Hoare logic proofs can be tedious!

Let’s assume an oracle provides loop invariants for now
and automate the rest!

Deductive Verifier

9

Program

Specification

Yes/Proof

No/Bug

Verification
Condition
Generator

Specification

Valid ✓

Not valid ✗

10

Automatic
Theorem prover

(SMT Solver)

Verification condition
(FOL formula)

Program

Verification condition is a formula that is valid iff program is correct

Verification
Condition
Generator

Valid ✓

Not valid ✗

11

Automatic
Theorem prover

(SMT Solver)

Verification condition
(FOL formula)

Verification condition is a formula that is valid iff program is partially correct

Program

Loop invariants

Precondition +
Postcondition

Inductive assertion method

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ∶= % + 1
loop end

Inductive assertion method

% ≤)! > #

* = 0* ≠ 0

{pre}
" ∶= 0
& ≔ 1
while {I} & <= * do

if (, == 0) then
" ∶= " + 1

else
" ∶= " + &

& ∶= & + 1
{post}

{pre}

{/}

{/}

{post}

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

Inductive assertion method

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{/}

{/}

{post}

▸ Represent program as control-flow graph
with annotations/inductive assertions

An annotation can be a precondition,
postcondition, loop invariant or assertion.

Inductive assertion method

▸ Basic path starts at a precondition/loop
invariant, and ends at a postcondition/loop
invariant/assertion.

▸ Loop invariants only at the start/end of
basic paths

▸ Represent program as control-flow graph
with annotations/inductive assertions

▸ Identify basic paths

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{/}

{/}

{post}

Inductive assertion method
▸ Represent program as control-flow graph

with annotations/inductive assertions
▸ Identify basic paths
▸ For each basic path:

check if corresponding Hoare triple is valid

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{/}

{/}

{post}

Inductive assertion method

pre ! ≔ 0; % ≔ 1 {(}
{(} assume % > + post
{(} skip (
{(} assume % ≤ +; assume z ≠ 0; ! ≔ ! + %; % ≔ % + 1 (
{(} assume % ≤ +; assume z = 0; ! ≔ ! + 1; % ≔ % + 1 (

▸ Represent program as control-flow graph
with annotations/inductive assertions

▸ Identify basic paths
▸ For each basic path:

check if corresponding Hoare triple is valid

VCs

! ∶= 0
% ∶= 1

loop head

exit conditional

! ∶= ! + 1! ∶= ! + %

% ≤)! > #

* = 0* ≠ 0

% ∶= % + 1
loop end

{pre}

{/}

{/}

{post}

Forwards Analysis

▸ Starts from precondition and
tries to prove postcondition

▸ Computes strongest
postconditions (sp)

Backwards Analysis

▸ Starts from postcondition and
tries to prove precondition

▸ Computes weakest liberal
preconditions (wp)

Generating VCs: Forwards vs. Backwards

Predicate transformers: FOL x stmts → FOL

Incorporate effects of program statements into FOL formulas

!"($, &) : the weakest predicate that guarantees &
will hold after executing $ from any state satisfying
the predicate

("($,)) : the strongest predicate that holds after
executing $ from any state satisfying)

WP and SP

“largest” set of states

“smallest” set of states

) $ {&} is valid iff:

) ⇒ !"($, &) , or, (" $,) ⇒ &

▸ (" assume -,) = - ∧)

▸ ("($,; $-,)) = ("($-, (" $,,))

▸ (" 1 ∶= 3,) = ∃1.. 1 = 3 1./1 ∧)[1./1]

Computing !"($, &)

▸ !" assume -, & = - → &

▸ !"($,; $-, &) = !"($,, !"($-, &))

▸ !" 1 ∶= 3, & = &[3/1]

Computing ("($,))

Today
▸ (Semi-)automating Hoare logic
▸ Verification condition (VC) generation
▸ Predicate transformers

Next
▸ How to fully automate Hoare logic: automatic invariant generation

Roadmap

