
Roopsha Samanta

CS560: Reasoning About Programs

Overview

Today
▸ Motivation
▸ Overview
▸ Logistics

Roadmap

Today
▸ Motivation
▸ Overview
▸ Logistics

Roadmap

Specification Logics to express expected program behavior

Verification Methods to automatically check if a program satisfies a specification

Repair Methods to automatically fix an incorrect program

Synthesis Methods to automatically generate a correct program

What is this course about?

Logical foundations & algorithmic techniques to ensure program correctness

Why should you care?

Programmers make mistakes

Why should you care?

Software bugs can be expensive, or fatal, or both!

Therac-25 radiotherapy machine overdose, mid-1980s

6 deaths. Overflow error, race conditions

Ariane 5 explosion

$7 billion loss. Overflow error

North American power blackout

11 deaths, $6 billion loss. Race condition

Pnueli Clarke Emerson Sifakis Lamport

Dijkstra Floyd Hoare Milner

Turing Awards

▸ Intel CPU arithmetic and logical operations
▸ Microsoft device drivers
▸ Rockwell Collins AAMP7G microprocessor’s partition management
▸ Rolls Royce Trent Series Health Monitoring Units
▸ Lockheed Martin C130J Mission Computers
▸ Boeing “Little Bird” helicopter (seL4 OS-based mission computer)
▸ Royal Navy Ship/Helicopter Operating Limits Unit
▸ Airbus 380 primary flight control software
▸ Paris Metro (RATP)
▸ NASA Mars Rover data management subsystem
▸ Bombardier ILLBV950L2 railway interlocking system
▸ Apple, ARM/SoftBank, Nvidia, IBM, Oracle RTL
▸ AMD K5 floating point square root microcode
▸ Micrium OS μC/OS-II real-time kernel

Astrée

Success stories

Today
▸ Motivation
▸ Overview
▸ Logistics

Roadmap

Dijkstra

Testing shows the presence,
not the absence of bugs.

Ergo, testing can fail to show the presence of some bugs!

Write
program

Pass

Fail

Test

Debug Fix

Correct?

Test-suite

Write
program

Pass

Fail

Test

Debug Fix

Correct?

int max (int x,int y
m = 0;
if (x > y) m = x;
return m;

x y m Pass?
3 0 3

100 99 100
5 5 5

Write
program

Pass

Fail

Test

Debug Fix

Correct?

int max (int x,int y
m = 0;
if (x > y) m = x;
return m;

x y m Pass?
3 0 3

100 99 100
5 5 5

✓
✓

Write
program

Pass

Fail

Test

Debug Fix

Correct??

int max (int x,int y
m = 0;
if (x > y) m = x;
return m;

x y m Pass?
3 0 3

100 99 100
5 5 5

✓
✓

int max (int x,int y
m = 0;
if (x >= y) m = x;
return m;

✓

Dijkstra

Testing shows the presence,
not the absence of bugs.

Formal verification can prove the absence of bugs!

Formal repair can ensure the absence of bugs for programs with bugs!

Formal specifications can precisely capture correctness requirements.

Write
program

Pass

Fail

Formally
verify

Formally
Debug

Formally
Fix

Correct.

Formal specification

Write
program

Pass

Fail

Formally
verify

Formally
Debug

Formally
Fix

Correct.

int max (int x,int y
m = 0;
if (x > y) m = x;
return m;

∀x, y. (m >= x) ∧ (m >= y) ∧
[(m = x) ∨ (m = y)]

Write
program

Pass

Fail

Formally
verify

Formally
Debug

Formally
Fix

int max (int x,int y
m = 0;
if (x > y) m = x;
return m;

∀x, y. (m >= x) ∧ (m >= y) ∧
[(m = x) ∨ (m = y)]

int max (int x,int y
m = y;
if (x >= y) m = x;
return m;

Correct.

Dijkstra

Testing shows the presence,
not the absence of bugs.

Program synthesis can generate programs that are correct-by-construction!

Write partial
program

Synthesize
completion

Correct.

Formal specification

Write partial
program

Synthesize
completion

int max (int x,int y
m = ??;
if (??) m = ??;
return m;

∀x, y. (m >= x) ∧ (m >= y) ∧
[(m = x) ∨ (m = y)]

int max (int x,int y
m = y;
if (x >= y) m = x;
return m;

Correct.

Verifier

Program/Model

Specification

Yes/Proof

No/Bug

Deductive
Verification

Model
Checking

Abstract
Interpretation

Type
Systems

Deductive
Verification

Model
Checking

Abstract
Interpretation

Type
Systems

Interactive
theorem provers

Automatic
theorem provers

SAT/SMT solvers

Static analysis

Expressiveness
Automation
Scalability
Precision
Applicability

Deductive
Verification

Model
Checking

Abstract
Interpretation

Type
Systems

Interactive
theorem provers

Automatic
theorem provers

SAT/SMT solvers

Static analysis

This class

CS 565

Unit 1

Unit 2

Unit 3

Introduction, Logics, and Proof Engines

Program Verification & Analysis

Program Synthesis & Repair

Unit 4 Advanced Topics, New Frontiers

Today
▸ Motivation
▸ Overview
▸ Logistics

Roadmap

Hi! I am Roopsha.

Mumbai
Austin

ViennaW. Lafayette

UT, Austin
Ph.D.

IST Austria
Postdoc

Purdue
Asst. Professor

Developing algorithms/tools to assist programmers in writing reliable programs

Formal Verification and Synthesis
for Distributed Systems

Semantics-guided
Inductive Program Synthesis

Your turn!

Name?

CS/Math/ECE?

Undergrad/Grad?

Research Interests?

Why this course?

Lectures Zoom SYNC-ONLINE
Syllabus Course Website
Resources Brightspace
Discussions Piazza

If you feel sick, contact Protect Purdue Health Center at 765-496-4636!

COVID-19 Impact

+
Research papers, survey papers, handbook chapters

Grading

Component Weight

Class Project 40%

Midterm 20%

Homeworks 35%

Participation 5%

▸ You will write a paper and present a talk at our end-of-semester
Workshop on Reasoning About Programs (WRAP) 2021!

▸ You will work in teams of 2-3 students for your project.
Use Piazza to find teammates.

▸ Each of you will also review your peers’ papers!

▸ Double-blind reviewing: Reviewer and team identities are concealed.

Class project

▸ We will do some Semantics-guided Inductive Program Synthesis (MANTIS)!

▸ You will identify a domain and adapt MANTIS to it.

▸ What is MANTIS? Next class.

Class project

Project deliverables

Proposal Identify team, domain Feb 11

Partial Paper Some sections of final paper Mar 25

WRAP paper Final paper Apr 20

WRAP talk Final presentation Apr 29

▸ WRAP Paper and Talk: 100% of Project Grade
Proposal and Partial Paper will not be graded.

▸ WRAP Paper will be graded by peer reviewers and me.

▸ WRAP Talk will be graded by me.

Project grading

▸ Each of you will serve on the Program Committee (PC) of WRAP 2021!

▸ Reviewing load: 2-3 papers.

▸ Each WRAP paper will be reviewed by a subset of your peers and
discussed in a PC meeting on Apr 27.

▸ Goal of PC meeting: Rank papers.

▸ Reviewing criteria: Contribution, Originality, Presentation

Peer Review

▸ 5 homeworks

▸ Theoretical problem sets, programming assignments, paper reviews

▸ All homeworks will be weighted equally

▸ Upload to Piazza by 6:00pm on due dates
Reviews (HW 5) will be due during PC meeting

Homeworks

▸ Be honest, reasonable and respectful.

▸ Presentations, write-ups and homeworks must be your own work.

▸ Teams are not allowed to discuss their project specifics with other teams.

▸ Do not copy text and figures from papers, websites, etc.
Use your own words. Draw your own figures.

▸ See course website for all policies.

Policies

Today
▸ Motivation
▸ Overview
▸ Logistics

Next
▸ Introduction to program synthesis
▸ Project description

Summary

