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ABSTRACT
We present LLSC, a prototype compiler for nondeterministic par-
allel symbolic execution of the LLVM intermediate representation
(IR). Given an LLVM IR program, LLSC generates code preserving
the symbolic execution semantics and orchestrating solver invo-
cations. The generated code runs efficiently, since the code has
eliminated the interpretation overhead and explores multiple paths
in parallel. To the best of our knowledge, LLSC is the first com-
piler for fork-based symbolic execution semantics that can generate
parallel execution code.

In this demonstration paper, we present the current develop-
ment and preliminary evaluation of LLSC. The principle behind
LLSC is to automatically specialize a symbolic interpreter via the
1st Futamura projection, a fundamental connection between in-
terpreters and compilers. The symbolic interpreter is written in
an expressive high-level language equipped with a multi-stage
programming facility. We demonstrate the run time performance
through a set of benchmark programs, showing that LLSC outper-
forms interpretation-based symbolic execution engines in signifi-
cant ways.
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1 INTRODUCTION
Symbolic execution is a popular software testing technique with
origins going back to the 1970s [4, 11]. The underlying idea is to
execute a program in a fashion that explores multiple execution
paths, where some inputs are left symbolic (rather than concrete),
and to collect constraints (path conditions) at branches describing
how to trigger a specific execution path. At a branch, the symbolic
execution engine nondeterministically explores multiple paths, syn-
thesizing different path conditions as logical formulae. This process
permits the automatic generation of concrete inputs that trigger a
certain execution path. Modern engines employ SMT (Satisfiability
Modulo Theories) solvers [3] for this purpose.

While useful for software testing and analysis, symbolic execu-
tion suffers from the path explosion problem, arguably its major
drawback: There is an exponential or even infinite number of paths
in large programs, and exploring all of them is intractable.

Taming the path explosion problem in symbolic execution is
therefore critical to make it practical, which has resulted in different
specialized flavors of symbolic execution [2]. For example, instead
of exploring all paths, the execution engine may prune or merge
paths according to some heuristics, or use concrete inputs to guide
the exploration.

We present the LLSC symbolic compiler, which accelerates path
exploration for symbolic execution in two ways: (1) lowering the
cost per path execution, and (2) exploring multiple paths in paral-
lel. These two improvements greatly amplify the path exploration
throughput, i.e., the number of paths explored per unit of time. LLSC
implements multipath nondeterministic symbolic execution, but
its approach is not tied to any particular exploration strategy and
accommodates more specialized variants.

In contrast to the typical way of implementing symbolic execu-
tion by interpretation, LLSC is a compiler that transforms input
LLVM IR programs to C++ code, following the multipath sym-
bolic execution semantics. The generated C++ code together with
the runtime code are further compiled by an off-the-shelf opti-
mizing C++ compiler, yielding the final executable. Running the
executable performs the actual symbolic execution, invokes SMT
solvers, and generates test cases. The generated code does not ex-
hibit any interpretation overhead, such as traversing the AST/IR
or dynamic dispatching based on AST/IR, which commonly oc-
curs in interpretation-based engines. Eliminating the interpretation
overhead drastically lowers the cost per-path execution. LLSC also
generates code that explores paths in parallel on multicore CPUs.

https://doi.org/10.1145/3468264.3473108
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The design and implementation of LLSC follows the 1st Futa-
mura projection [7, 8], which allows us to readily obtain a symbolic
execution compiler by specializing (staging) a symbolic interpreter
in a high-level programming language. The symbolic interpreter is
written in Scala [13] using the Lightweight Modular Staging (LMS)
[18] framework. The LMS framework provides basic staging facil-
ities to automatically convert an annotated symbolic interpreter
into a symbolic compiler. The staged interpreter is written with
functional programming design patterns [10, 23] (e.g., using mon-
ads to express effects). The generated code makes use of modern
persistent data structures [17], leading to efficient and safe code that
permits concurrent and parallel execution without race conditions.
This combination leads to a clean, concise, and yet performant
implementation of symbolic execution.

The development of LLSC is based on the approach of build-
ing symbolic execution engines presented in our prior work [24].
Compared with this prior work, LLSC supports compiling more
instructions (46 at the moment) and a number of external functions,
integrates an improved runtime with a parallel path exploration
strategy, and provides an improved user interface. We evaluate the
performance of LLSC on a synthetic benchmark and a set of realis-
tic programs. We also compare the performance with KLEE [6], a
state-of-the-art symbolic execution tool on LLVM. The evaluation
shows that LLSC performs on average 10x faster than KLEE.

To the best of our knowledge, LLSC is the first prototype compiler
for nondeterministic and parallel multipath symbolic execution. The
source code and a demonstration video of LLSC are available at
https://continuation.passing.style/llsc.

Organization. Section 2 reviews necessary background on Futa-
mura projections and multi-stage programming. Section 3 presents
the design and implementation of LLSC. Section 4 describes the
end-user workflow for LLSC. Section 5 presents the empirical eval-
uation and compares the result with KLEE. Section 6 concludes
with related work, limitations, and future work.

2 BACKGROUND
In this section, we briefly review the 1st Futamura projection [7, 8]
and multi-stage programming [21], two of LLSC’s key ingredients.
Due to space limitations, we refer the reader to the survey paper
by Baldoni et al. [2] for basic concepts of symbolic execution.

Futamura Projections. Interpreters and compilers are intimately
connected. The 1st Futamura projection permits deriving a com-
piler from an interpreter in an entirely mechanical way. Consider
an interpreter interp(𝑝, arg) taking a program 𝑝 and an argument
arg to that program, producing the output by interpretation. The
1st Futamura projection states that if we a have program special-
izer mix, then applying it to interp with program 𝑝 yields a tar-
get program: mix (interp, 𝑝) = target. Running the target program
produces the same result as interpretation and as the original pro-
gram: JtargetK(arg) = interp(𝑝, arg) = J𝑝K(arg), where the seman-
tic bracket J_K maps programs to their meanings.

Multi-Stage Programming. One way to realize the 1st Futamura
projection is to write the interpreter with annotations that can
guide the automatic specialization. This programming paradigm is

called multi-stage programming (MSP) or generative programming.
The classic example of MSP is the power function to compute 𝑥𝑛 :

def power(x: Int, n: Int): Int =

if (n == 0) 1 else x * power(x, n-1)

If n is a statically-known constant 𝑐 , one would expect a faster im-
plementation that directly multiples x for 𝑐 times with itself without
paying the overhead of recursively calling power. To achieve that,
we can rewrite power with the next-stage annotation Rep (using
the notation from LMS [18]) denoting that x and the result of the
function will be known in a later stage:
def power(x: Rep[Int], n: Int): Rep[Int] =

if (n == 0) 1 else x * power(x, n-1)

Given a constant number for n (e.g., n = 3), the underlying MSP
system generates a specialized power function that runs faster:
def power3(x: Int): Int = x * x * x

Compilation by Specialization. The power function has the struc-
ture of an interpreter: it is inductively defined over the natural
number n. Likewise, an interpreter is inductively defined over the
program AST/IR. One can consider the argument n of power as the
known program to the interpreter, and the argument x as the un-
known input of the target program to the interpreter. The process
of specializing an interpreter with stage annotations is essentially
compilation, following the slogan “a staged interpreter is a compiler”.

3 DESIGN AND IMPLEMENTATION
The design of the staged symbolic interpreter in LLSC follows the
semantics-first approach [24] we previously developed. We start
from a big-step, operational, concrete semantics of LLVM IR and
then refactor it into a symbolic execution semantics, i.e., by adding
symbolic values, collecting path conditions, and exploring multiple
paths nondeterministically. Then, we slightly adapt the symbolic
interpreter to a staged symbolic interpreter (SSI), which is the core
construction of LLSC.

The SSI is written in an expressive high-level language (Scala)
using the LMS framework [18]. We use a parser generated by
ANTLR [14] to parse programs in LLVM’s assembly format into
Scala objects that can be inspected by the SSI.

Running the SSI will generate code in C++.We use C++ functions
to represent blocks and functions in the source IR program. The
generated code is structurally isomorphic to the source IR, in the
sense that for each branching/jump/call in the source IR, there is a
function call of the corresponding target function in the target code.
The C++ functions representing source blocks take a “state” and
returns a list of “state” and potential returned “values”, where the list
represents possibly multiple results. The state contains information
about the execution of a path at some program location, including
the heap, the stack, and the path conditions. The generated C++
functions for source LLVM functions take a list of arguments in
addition to the state.

Besides the generated code, there are a number of the runtime
components written in C/C++: 1) definitions of the symbolic states
and values, 2) a scheduler for parallel exploration, 3) summaries of
external functions such as library functions and system calls, and
2) the third-party SMT solver library. These runtime components
will be compiled and linked with the application-specific generated

https://continuation.passing.style/llsc
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1 case CallInst(ty, f, args) ⇒
2 for {

3 fv ← eval(f) // evaluate function

4 vs ← mapM(extValues(args))(eval) // evaluate arguments

5 _ ← pushFrame

6 s ← getState

7 v ← reflect(fv(s, vs)) // apply

8 _ ← popFrame(s.stackSize)

9 } yield v

Figure 1: Code snippet for CallInst in the SSI.

code. Currently LLSC uses the Simple Theorem Solver [9] in the
backend to discharge constraints.

3.1 Staged Symbolic Interpreter
The core of LLSC is a staged symbolic interpreter that handles
LLVM instructions and data types (integers, floating numbers,
structs, arrays, etc.). For operations on unknown values, SSI con-
structs symbolic expressions and then continues execution. When
encountering a branch instruction (e.g. br and switch), SSI adds
the path conditions and explores both branches, respectively. The
code generated by interpreter specialization precisely reflects what
the interpreter does but without the interpretation overhead.

The implementation of the SSI is concise and close to an in-
formal LLVM semantics. For example, Figure 1 shows the code
that handles the call instruction. The for-comprehension syntax
for {...} yield v contains a series of bindings in between the
brackets. The for-comprehension evaluates the right-hand side
expression of each binding sequentially, binds the result of the ex-
pression to the identifier at left, so that the subsequent evaluation
can use previously evaluated expressions. To be concrete, to handle
a call instruction, we need to (1) evaluate the function sub-term f

first (line 4), (2) evaluate all arguments from left to right (line 5), (3)
push a new stack frame for the call (line 6), (4) “jump” to and apply
the new function with state s and arguments vs, yielding returned
value v, and (5) clean up the frame by popping. The value of the
whole for-comprehension is a computation producing v.

At line 4, the eval function maps an LLVM function value to
a Scala function value that we can directly apply in Scala, i.e.,
fv(s, vs). The application of function fv is fed with the whole
state s before making the call. Applying this Scala function effec-
tively generates a function call in C++, the target of which call is the
C++ function representing the LLVM callee. The reflect function
is the mechanism to convert the representation of generated code
back to a result that can be used in the meta-program in Scala.

Remarkably, the staged symbolic interpreter in Figure 1 resem-
bles an ordinary interpreter. It thus serves as an executable semantic
specification and a compiler at the same time. The stage annota-
tions are attached at the type level (i.e., Rep shown in the example
of Section 2), minimizing the syntactic noise.

3.2 Generated Code and Runtime
The generated code and runtime components are written in C++
and make use of Immer’s [17] persistent data structures to rep-
resent execution states, such as heaps and stacks. The choice of
using immutable and persistent data structures greatly simplifies
the generated code and the implementation of the runtime. Our

Figure 2: The workflow of LLSC.

experience shows that immutable data structures perform well, in
contrast to common preconceptions about them.

To give a taste of the generated code, the following snippet
shows a fragment of a block-function that corresponds to loading
and assigning local variables in LLVM:

flex_vector<pair<SS, PtrVal>> fun_Block1(SS x1) {

PtrVal x2 = x1.at(x1.env_lookup("a"));

SS x3 = x1.assign("b", x2);

PtrVal x4 = x3.at(x3.env_lookup("c")); ... }

The current way that LLSC implements parallel symbolic exe-
cution is to use the std::async and std::future functions (from
the C++ standard library) in the generated code. We leave a more
fine-tuned parallel execution scheduler for future work. The run-
time also starts an additional thread to monitor the block coverage
and path coverage. The maximum number of concurrent threads is
configurable by the user.

3.3 Intrinsics and External Functions
The LLVM IR language models a number of features as intrinsics,
such as variable arguments, memcpy, memset, and etc. Those intrin-
sics are opaque, since they have no definition. However, they usually
have well understood or intuitive semantics. To symbolically ex-
ecute programs with intrinsics, it is possible to manually provide
executable summaries manipulating the states for intrinsics. In
LLSC, an executable summary can be modularly implemented in
two equivalent ways: 1) they can be written as meta-functions in
Scala, which will be generated to C++ code at staging-time, or 2)
directly written with the C++ runtime and linked together at the
(C++) compile-time. In either way, the summary function manipu-
lates or transforms LLSC’s symbolic state representation.

The SSI models the LLVM IR language, but not the external
environment. Another opaque part to applications is the C stan-
dard library and system calls. For library functions, we reuse the
KLEE modification of 𝜇Clibc [1], a minimal C library providing the
same functionality as glibc. The involved library functions will be
compiled by LLSC too, and be linked with the compiled application.

4 TOOL USAGE
Figure 2 shows the workflow of LLSC, which has a command line
interface. By invoking with a file path of an LLVM module and an
entrance function name:
llsc <.ll-filepath> <task-name> <entrance-fun> [n-sym]

LLSC generates a set of .cpp files and a Makefile for <task-name>.
It is optional to specify the number of symbolic arguments to the
entrance function. Themakefile specifies the instructions to compile
the .cpp files and to link them with the runtime and SMT solver
library. After make-ing the executable file, the user can then run it
with the number of threads:

./<task-name> [n-threads]

When the executable file starts running, the user will continuously
observe the current timestamp and coverage, e.g.:
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Table 1: Running times of 1 million path explorations.

KLEE LLSC-1 LLSC-4 LLSC-8 LLSC-16
Running time 329.2 s 48.99 s 38.20 s 32.87 s 26.97 s

[5 s] #blocks: 41/41; #paths: 198487; #threads: 4

While the task is running, test cases generated by the SMT solver
for complete paths are written into files tests/𝑛.test, where 𝑛 is
the id number of the path.

5 EVALUATION
In this section, we demonstrate the performance of LLSC and com-
pare it with KLEE, a state-of-the-art symbolic execution tool. We
conduct the experiments in two categories. The first one uses a
synthetic benchmark that aims to measure the performance of ex-
haustive path exploration. The other one uses realistic programs of
small sizes, and evaluates end-to-end executions. We conduct the
experiments on a machine running Ubuntu 20.10 with AMD 3700X
and 32 GB main memory. Other tools and their versions involved
are KLEE 2.1, g++ 10.2.0, and STP 2.3.3.

Benchmarking Synthetic Programs. We use the contrived bench-
mark program mp1m from [24] that is small in terms of LOC but
contains an exponential number of paths to measure the perfor-
mance of exhaustive exploration. We run LLSC with different num-
bers of threads and compare with the symbolic interpreter KLEE.
All timings reported in this experiment do not include the time
spent by the SMT solver1.

The benchmark mp1m has 285 LLVM instructions and 1048576
paths in total. LLSC compiles mp1m to a C++ program of 706 LOC
within 452.08ms. Table 1 shows the running times of LLSC and
KLEE, where 𝑛 of LLSC-𝑛 indicates the number of parallel threads.
As we can see, even without parallelism, LLSC is ~7x times faster
than KLEE on this benchmark. Running with multiple threads fur-
ther shortens the time, although the improvement is not propor-
tional to 𝑛 due to the overhead of context switching. When 𝑛 = 16,
we observe a ~12x speedup of path exploration.

Benchmarking Realistic Programs. We also conduct experiments
on small programs that performs realistic tasks and compare with
KLEE. Table 2 shows a summary of those programs and the bench-
mark results, including the numbers of instructions and numbers of
valid paths of the program, as well as the staging times of LLSC and
the actual symbolic execution times (including SMT solving) for
LLSC and KLEE. Those programs have relatively small numbers of
paths, and running them with multiple threads would not bring sig-
nificant performance improvements, therefore the reported running
times in the table stem from a single-threaded execution.

It is worth noting that KLEE by default uses a counterexample
cache to query the solver less frequently than LLSC, and tomake fair
experiments we disable this single optimization and report times in
𝑇KLEE. Table 2 shows that LLSC successfully explores all paths and
generates all test cases, with running times significantly shorter
than KLEE. We also report the running times of KLEE with all
default optimizations in 𝑇Opt

KLEE. In this case, LLSC still outperforms
KLEE on most of the benchmarks where the outlier is kmp-match,
which uses the solver intensively.
1For KLEE, we calculate the time by excluding the solver time reported by klee-stats.

Table 2: Evaluation result of benchmark programs.

Benchmark #inst #paths 𝑇staging 𝑇LLSC 𝑇KLEE 𝑇
Opt
KLEE

maze 156 309 351.32ms 106ms 5.30s 270ms
k-of-st-arrays 198 252 312.11ms 556ms 9.12s 2.75s
kmp-match 254 1287 399.33ms 991ms 28.98s 202ms
binary-search 253 92 379.73ms 531ms 2.25s 1.36s
bubble-sort 121 24 204.17ms 184ms 1.26s 493ms
quick-sort 120 120 215.73ms 629ms 3.98s 1.59s
merge-sort 314 720 422.29ms 3.48s 22.82s 9.42s
knapsack 148 1666 265.95ms 45.35s 163.47s 76.73s

6 DISCUSSION
Related Work. KLEE [6] is one of the mature symbolic execution

engines targeting LLVM IR. Symbolic execution engines are com-
monly implemented as interpreters (e.g. [6, 16, 22]). Compilation-
based approaches only gained attention very recently [15, 24]. The
development of LLSC follows the semantics-first approach using
staging introduced in [24]. Futamura projections [7, 8] are the con-
ceptual idea we use to build symbolic execution compilers. LLSC
uses the LMS framework [18] in Scala to realize program specializa-
tion. A number of widely-used languages also have built-in support
for staging [12, 19, 20]. Instrumentation is another popular ap-
proach and can be done by using specialized instrumentation tools
[25] or general compilation frameworks [15]. Our approach can
be viewed as generating instrumented code by specializing a sym-
bolic interpreter. LLSC explores multiple paths in parallel by using
threads in a single process. For a similar goal, Cloud9 [5] performs
parallel and distributed symbolic execution, where each node in
the cluster runs a separate instance of KLEE.

Limitation and Future Work. The symbolic execution data types
supported by LLSC is currently limited to bitvectors. With an ap-
propriate SMT solver backend, it can be extended to reason about
richer types, such as floating-point numbers and symbolic arrays.
Other optimizations appeared in mature tools, for example, query
caching, can be integrated too. We are currently making effort to
build better symbolic support for library functions and external
environments, which will allow LLSC to execute more real-world
programs. LLSC’s code generation scheme is relatively simple by us-
ing persistent data structure and high-level concurrency primitives.
It is possible to gain further performance improvement by using
destructive data structures and finer-grained parallelism primitives.
Although these would require a more complicated and delicate code
generator to generate safe code.

Conclusion. We present LLSC, a symbolic execution compiler
that generates parallel and nondeterministic symbolic execution
code for LLVM IR. Our methodology combines an old idea, the
Futamura projections, with modern programming abstractions and
compiler technology, leading to a sweet spot between performance,
safety, and developer effort. We believe that both the demonstrated
tool and our disciplined approach are a significant step forward to
building performant program analysis tools.
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