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ABSTRACT
To leverage modern hardware platforms to their fullest, more and
more database systems embrace compilation of query plans to
native code. In the research community, there is an ongoing debate
about the best way to architect such query compilers. This is
perceived to be a difficult task, requiring techniques fundamentally
different from traditional interpreted query execution.

We aim to contribute to this discussion by drawing attention to
an old but underappreciated idea known as Futamura projections,
which fundamentally link interpreters and compilers. Guided by
this idea, we demonstrate that efficient query compilation can
actually be very simple, using techniques that are no more difficult
than writing a query interpreter in a high-level language. Moreover,
we demonstrate how intricate compilation patterns that were
previously used to justify multiple compiler passes can be realized
in one single, straightforward, generation pass. Key examples
are injection of specialized index structures, data representation
changes such as string dictionaries, and various kinds of code
motion to reduce the amount of work on the critical path.

We present LB2: a high-level query compiler developed in this
style that performs on par with, and sometimes beats, the best
compiled query engines on the standard TPC-H benchmark.
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• Software and its engineering→ Domain specific languages;
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1 INTRODUCTION
A typical database management system (DBMS) processes incoming
queries in multiple stages (Figure 1.1): In the front-end, a parser
translates a given SQL query into a logical plan. The query optimizer
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Figure 1: Illustration of (1) query interpreter (2) query com-
pilers (a) single-pass compiler (b) many-pass compiler

rewrites this plan into a more efficient form based on a cost model,
and emits a physical plan ready for evaluation. The back-end is
usually an interpreter that executes the optimized plan over the
stored data, operator by operator, producing record after record of
the computed query result.

Taking a slightly broader view, a database system fits – almost
literally – the textbook description of a compiler: parser, front-
end, optimizer, and back-end. The one crucial difference is that
the last step, generation of machine code, is typically missing in a
traditional DBMS.

For the longest time, this was a sensible choice: disk I/O was
the main performance bottleneck. Interpretation of query plans
provided important portability benefits, and thus, engineering low-
level code generation was not perceived to be worth the effort [7].
But the circumstances have changed in recent years: with large
main memories and storage architectures like NVM on the one
hand, and the demand for computationally more intensive analytics
on the other hand, query processing is becoming increasingly CPU-
bound. As a consequence, query engines need to embrace full
compilation to remain competitive, and therefore, compiling query
execution plans (QEPs) to native code, although in principle an old
idea, is seeing a renaissance in commercial systems (e.g., Impala
[27], Hekaton [14], Spark SQL [6], etc.), as well as in academic
research [13, 26, 33]. Given this growing attention, the database
community has engaged in an ongoing discourse about how to
architect such query compilers [26, 33, 44]. This task is generally
perceived as hard, and often thought to require fundamentally
different techniques than traditional interpreted query execution.
The most recent contribution to this discourse from SIGMOD’16
[44] states that “it is fair to say that creating a query compiler that
produces highly optimized code is a formidable challenge,” and
that the “state of the art in query compiler construction is lagging
behind that in the compilers field.”

At least in part, the compilers community is to blame for this sit-
uation, as they do not explain their key ideas, principles, and results
clearly enough. Compilers and interpreters are among the most
powerful tools computer science has to offer, but even graduate
compiler classes and textbooks dwell on minuscule differences be-
tween variants of parsing and register allocation algorithms instead
of making the pragmatics of building effective compilers accessible
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to a wide audience, and without conveying that in essence, many
effective compilers can be very simple.

First of all, it is clear that a query compiler should reuse parts of
an existing compiler back-end. There is no point for database devel-
opers to implement low-level functionality like register allocation
and instruction selection for a range of different architectures (say,
x86-64, POWER, and SPARC). Thus, the most sensible choice is to
generate either C source or use a framework like LLVM [29] that
provides an even lower-level entry point into an existing compiler
toolchain. But how to get from physical query plans to this level of
executable code? This is in fact the key architectural question. Hy-
Per [33] uses the programmatic LLVM API and achieves excellent
performance, at the expense of a rather low-level implementation
that permeates large parts of the engine code.1 LegoBase [26] and
DBLAB [44] are engines implemented in a high-level language
(Scala [34]) that generate efficient C code. The latter two systems
add significant complexity in the form of multiple internal lan-
guages and explicit transformation passes, which the authors of
DBLAB [44] claim are necessary for optimal performance.

In this paper, we demonstrate that neither low-level coding nor
the added complexity of multiple compiler passes are necessary.
We present a principled approach to derive query compilers from
query interpreters, and show that these compilers can generate
excellent code in a single pass. We present LB2, a new query engine
developed in this style that is competitive with HyPer and DBLAB.
The paper is structured around our specific contributions:
• In the spirit of explaining key compilers results more clearly, we
draw attention to an important but not widely appreciated con-
cept known as Futamura projections, which fundamentally links
interpreters and compilers through specialization. We propose to
use the first Futamura projection as the guiding principle in the
design of query compilers (Section 2).
• We show that viewing common query evaluator architectures
(pull-based, aka Volcano; and push-based, aka data-centric)
through the lens of the first Futamura projection provides key
insights into whether an architecture will lead to an efficient
compiler. We use these insights to propose a novel data-centric
evaluator model based on callbacks, which serves as the basis for
our LB2 engine (Section 3).
• We discuss the practical application of the Futamura projection
idea, and show how to derive high-level and efficient query com-
pilers from a query interpreter.We implement a range of optimiza-
tions in LB2. Among those are row-oriented vs. column-oriented
processing, data structure specialization, code motion, paralleliza-
tion, and generation of auxiliary index structures including string
dictionaries. The set of optimizations in LB2 includes all those
implemented in DBLAB [44], and some en plus (e.g. paralleliza-
tion). But in contrast to DBLAB, which uses up to 5 intermediate
languages and a multitude of intricate compiler passes, LB2 imple-
ments all optimizations in a single generation pass, using nothing
but high-level programming (Section 4).

1Of course, the internals of HyPer have changed a lot since the 2011 paper, and as we
have learned from private communication with the HyPer team, internal abstractions
have been added that are steps in the direction we propose. However, these have not
been documented in published work.
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Figure 2: (a) Query interpreter (b) applying the first Futa-
mura projection on a query interpreter (c) the LB2 realiza-
tion of the first Futamura projection

• We compare the performance of LB2 with HyPer and DBLAB.
We show that LB2 is the first system implemented in a high-
level language that approaches HyPer performance in a fully
TPC-H compliant setting, both sequential and on up to 16 cores.
By contrast, LegoBase [26] and DBLAB [44] do not support
parallelism and they need to resort to non-TPC-H-compliant
indexing and precomputation to surpass HyPer on TPC-H queries.
With all such optimizations turned on, LB2 is competitive with
DBLAB as well (Section 5).

In summary, we show that query compilation can be simple and
elegant, without significantly more implementation effort than an
efficient query interpreter. We review related work in Section 6 and
offer further discussion and concluding remarks in Sections 7 and 8.

2 FUTAMURA PROJECTIONS
In 1970, at a time when the hierarchical and network models of data
[8] were du jour, Codd’s seminal work on relational data processing
appeared in CACM [12]. One year later, in 1971, Yoshihiko Futamura
published his paper “Partial Evaluation of Computation Process–
An approach to a Compiler-Compiler” in the Transactions of the
Institute of Electronics and Communication Engineers of Japan [16].
The fundamental insight of Codd was that data could be profitably
represented as high-level relations without explicit reference to
a given storage model or traversal strategy. The fundamental
insight of Futamura was that compilers are not fundamentally
different from interpreters, and that compilation can be profitably
understood as specialization of an interpreter, without explicit
reference to a given hardware platform or code generation strategy.

To understand this idea, we first need to understand special-
ization of programs. In the most basic sense, this means to take a
generic function, instantiate it with a given argument, and simplify.
For example, consider the generic two-argument power function
that computes xn :
def power(x:Int, n:Int): Int =
if (n == 0) 1 else x * power(x, n - 1)

If we know the exponent value, e.g., n = 4, we can derive a special-
ized, residual, power function:
def power4(x:Int): Int = x * x * x * x

This form of specialization is also known as partial evaluation [22].
Specializing Interpreters. The key idea of Futamura was to apply
specialization to interpreters. Like power above, an interpreter is a
two-argument function: its arguments are the code of the function
to interpret, and the input data this function should be called
with. Figure 2a illustrates the case of databases: The query engine
evaluates a SQL query (static input) and data (dynamic input)
to produce the result. The effect of specializing an interpreter is
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shown in Figure 2b: if we have a program specializer, or partial
evaluator, which for historical reasons is often called mix, then we
can specialize the (query) interpreter with respect to a given source
program (query). The result is a single-argument program that
computes the query result directly on the data, and runs much
faster than running the query through the original interpreter. This
is because the specialization process strips away all the “interpretive
overhead”, i.e., dispatch the interpreter performs on the structure of
the query. In other words, through specialization of the interpreter,
we are able to obtain a compiled version of the given program!

This key result–partially evaluating an interpreter with respect
to a source program produces a compiled version of that program–
is known as the first Futamura projection. Less relevant for us, the
second and third Futamura projections explain how self-application
of mix can, in theory, derive a compiler generator: a program that
takes any interpreter and produces a compiler from it.

Codd’s idea has been wildly successful, spawning multi-billion-
dollar industries, to a large extent thanks to the development of
powerful automatic query optimization techniques, which work
very well in practice due to the narrow semantic model of relational
algebra. Futamura’s idea of deriving compilers from interpreters
automatically via self-applicable partial evaluation received sub-
stantial attention from the research community in the 1980s and
1990s [21], but has not seen the same practical success. Despite
partial successes in research, fully automatic partial evaluation has
turned out to be largely intractable in practice due to the difficulty
of binding-time separation [22]: deciding which expressions in a
program to evaluate directly, at specialization time, and which ones
to residualize into generated code.
Programmatic Specialization. Even though the magic mix com-
ponent in Figure 2b has turned out to be elusive in practice, all
is not lost. We just have to find another way to implement pro-
gram specialization, perhaps with some help from the programmer.
Going back to our example, we can implement a self-specializing
power function like this:
def power(x:MyInt, n:Int): MyInt =
if (n == 0) 1 else x * power(x, n - 1)

What is different? We changed the type of x from Int to MyInt,
and assuming that we are working in a high-level language with
operator overloading capabilities, we can implement MyInt as a
symbolic data type like this:
// symbolic integer type
class MyInt(ref: String) {
def *(y: MyInt) = {
val id = freshName();
println(s"int $id = $ref * ${y.ref};");
new MyInt(id)

} }

// implicit conversion Int -> MyInt
implicit def constInt(x: Int) =

new MyInt(x.toString)

When we now call powerwith a symbolic input value:
power(new MyInt("in"),4)

it will emit the desired specialized computation as as a side effect:
int x0 = in * 1; int x1 = in * x0;
int x2 = in * x1; int x3 = in * x2; // = in * in * in * in

Intermediate steps can be visualized in Appendix B.1. Binding
each intermediate result to a fresh variable guarantees a proper
sequencing of operations. Based on this core idea of introducing
special data types for symbolic or staged computation, we suddenly
have a handle on making the first Futamura projection immediately
practical. As with power and MyInt above, we just need to implement
a query interpreter in such a way that it evaluates a concrete query
on symbolic input data. The result, illustrated in Figure 2c, is a

// Data schema: Dep(dname: String, rank: Int), Emp(eid: Int, edname: String)

select * from Dep, (select edname, count(*) from Emp group by edname) as T

where rank < 10 and dname = T.edname

Print(
HashJoin(
Select(Scan("Dep"))

(x => x("rank") < 10),
Agg(Scan("Emp"))

(x => x("edname"))(0)
((agg,x) => agg + 1)))

⋈

σ Γ
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... next

⋈
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(a) Query in SQL and query plan (b) Volcano (c) Data-centric

abstract class Op {
def open(): Unit
def next(): Record
def close(): Unit

}

class Select(op: Op)(pred: Record =>
Boolean) extends Op {

def open() = op.open
def next(): Record = {
var rec = null
do {
rec = op.next

} while (!isNull(rec)
&& !pred(rec))

rec
}
def close() = {...}

}

abstract class Op {
def open(): Unit
def produce(): Unit
def consume(rec:Record): Unit
def close(): Unit

}
class Select(op: Op)(pred: Record =>

Boolean) extends Op {
var parent = null
def open() = {
op.parent = this
op.open

}
def produce(): Unit = op.produce
def consume(rec: Record) = {
if (pred(rec))
parent.consume(rec)

}
}

(d) Volcano interface and select (e) Data-centric interface and select
Figure 3: Query Evaluation models

practical and directly implemented realization of the first Futamura
projection without mix. The remainder of this paper will explain
the details of this approach and present our query compiler LB2.

3 STRUCTURING QUERY EVALUATORS
It is important to note that the first Futamura projection itself
does not capture any kind of program analysis or optimization.
This poses the question how to generate optimized code. A key
observation is that the shape of specialized code follows the shape
of the interpreter that is specialized. Hence, we can derive the
following design principle: By engineering the source interpreter in
a certain way, we can control the shape of the compiled code.

In the following, we review popular query evaluation models
with an eye towards specialization, and present our improved data-
centric execution model.
The Iterator (Volcano) Model is based on a uniform open(),
next() and close() interface for each operator. Figure 3a-b shows a
QEP, and the operator interface in Volcano [18]. Evaluation starts
when the root operator (e.g., hash join) invokes next() to probe
offspring operators for the next tuple. Subsequent operators (e.g.,
select) repeatedly invoke next() until a scan (or materialized state)
is reached. At this point, a tuple is pipelined back to its caller and
the operator’s code is executed. Thus, the mode of operation can be
understood as pull-based. Although the iterator model is intuitive
and allows pipelining a stream of tuples between operators, it incurs
significant overhead in function calls, which one might hope to
eliminate using compilation.

We follow Futamura’s idea and specialize the Volcano Select

operator in Figure 3d to a given query, as illustrated in Figure 4b.
However, the specialized code is inefficient. Each operator checks
that the pulled record is not a null value, even though this check is
really necessary only inside the Scan operator. These !isNull(rec)
conditions cannot be specialized away since they impose a control-
flow dependency on dynamic data.
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The Data-Centric (Produce/Consume) Model as introduced in
HyPer [33], leads to better compilation results, and is therefore used
by most query compiler developments, including LegoBase [26],
DBLAB [44], and Spark SQL [6]. In this model, the control flow is
inverted. Data are pushed towards operators, improving data and
code locality. Operators that materialize tuples (e.g., aggregates and
hash joins) are marked as pipeline breakers. As shown in Figure
3e, the operator interface consists of methods produce and consume.
The producer’s task is to obtain tuples, e.g., from a scan or other
interfacing operator in the query pipeline. The consumer carries
out the operation, e.g., evaluating the predicate in Select.

Viewing the data-centric model through the lens of Futamura
projections delivers the key explanation why it leads to better com-
pilation results than the Volcano model: the inter-operator control
flow does not depend on dynamic data, and hence specialization
can fully remove the dispatch on the operator structure, leading
to the tight residual code shown in Figure 4c. In contrast to the
Volcano model, there are no null records since each operator in the
pipeline invokes consume only on valid data.

3.1 Data-Centric Evaluation with Callbacks
For developers, the data-centric evaluation model is somewhat
unintuitive since it spreads out query evaluation across produce
and consumemethods. But given that we have identified the desired
specialization result, we can think about whether we can achieve
the same specialization from a different API.

Figure 5a walks through the hash join evaluation in the data-
centric model. First, the executor invokes HashJoin.open to initialize
the hash join branches (i.e., left and right operators) followed by
HashJoin.produce. Second, the producemethod invokes produce on
each branch (i.e., left.produce and right.produce). Thus, control
moves to left.produce and perhaps invokes produce on that branch
a few times until a scan or a pipeline breaker is reached. At this point,
consumeperforms its actions and invokes parent.consume to dispatch
a record to its consumer. When the control eventually returns back
to HashJoin.consume, the record is added to the hash table. In the
following step, right.produce is invoked to process the records from
the right branch. As the example illustrates, it is not always clear
how the produce and consumemethods are behaving: consume will
be called by actions triggered by produce. This becomes even more
complex when the operator possesses multiple children. In this
case consume behaves differently depending on which intermediate
operator is pushing the data.

As our first contribution, we show that we can achieve the same
functionality and specialization behavior by refactoring the produce
and consume interface into a single method exec that takes a callback.
This new model is directly extracted from the desired specialization
shown in Figure 4c. Figure 5b shows how the hash join operator can
be implemented using this new interface. The execmethod does
not require additional state. Each join branch is invoked using a
different callback function; first the left, and then the right. This
avoids the key difficulty in the produce/consumemodel, namely the
conflation of phases inconsume, and also the need to maintain parent
in addition to child links. A variant of this model was presented as
part of a functional pearl at ICFP ’15 [38]. Intuitively, the statement
op.exec(cb) can be read as follows: operator op, generate your result
and apply the function cb on each tuple.

// Schema: Dep(dname: String, rank: Int)

// Query plan
Print(
Select(
Scan("Dep")))(x => x.rank < 10)

(a)

// Specialized data-centric evaluation
for (rec <- data) {
if (rec.rank < 10)
println(rec.dname+","+rec.rank)

}

// Specialized Volvano evaluation
var nextRec = 0 // scan state
val size = data.length
while (true) { // print loop
val rec = {
var recSel = null
do { // select loop
recSel = if (nextRec < size)
data(nextRec++) else null

} while (!(selRec == null) &&
!(recSel.rank < 10))
recSel

}
if (rec == null) break
println(rec.dname + "," + rec.rank)

}
(c) (b)

Figure 4: Specializing select query (a) in Volcano (b) and
Data-centric (c)
class HashJoin(left: Op, right: Op)
(lkey: KeyFun)(rkey: KeyFun) extends Op {
val hm = new HashMultiMap()
var isLeft = true
var parent = null
def open() = { // Step 1
left.parent = this; right.parent = this
left.open; right.open

}
def produce() = {
isLeft = true; left.produce() // Step 2
isLeft = false; right.produce()// Step 4

}
def consume(rec: Record) = {
if (isLeft) // Step 3
hm += (lkey(rec), rec)

else // Step 5
for (lr <- hm(rkey(rec))
parent.consume(merge(lr,rec))

}
}

class HashJoin(left: Op, right: Op)
(lkey: KeyFun)(rkey: KeyFun) extends Op {

// refactored open, produce, consume
// into single method exec
def exec(cb: Record => Unit) = {
val hm = new HashMultiMap()
left.exec { rec => // Step 1
hm += (lkey(rec), rec)

}
right.exec { rec => // Step 2
for (lr <- hm(rkey(rec))
cb(merge(lr,rec))

}
}

}

(a) (b)

Figure 5: Hash join implementation in (a) Data-centric (b)
Data-centric with callbacks model (LB2)

4 BUILDING OPTIMIZING QUERY COMPILERS
Having identified the general approach of deriving a query compiler
from an interpreter (the first Futamura projection) using program-
matic specialization as described in Section 2, and having identified
the desired structure of our query interpreter in Section 3, we are
now faced with the task of actually making it happen. Recall, ob-
taining a compiled query target from an interpreted query engine
requires identifying three components: the staged interpreter, the
static input and the dynamic input. Figure 6 shows LB2’s query eval-
uator, essentially an interpreter, that implements the data-centric
evaluation with callbacks. We can now start specializing this query
engine to emit source code in the same way we specialized the
power function using the symbolic data type MyInt in Section 2. But
where in a query engine should code generation be placed to minimize
changes to the operator code?
Pure Template Expansion. As a first idea we could perform
coarse-grained code generation at the operator level. Each operator
is specialized as a string with placeholders for parameters. We show
the aggregate operator as example:
class Agg(op: Op)(grp: GrpFun)(init: String)(agg: AggFun) extends Op { // operator template
def exec(cb: String => String) = s"""
val hm = new HashMap()
${op.exec { tuple =>
s"""val key = ${grp(tuple)}
hm.update(key, $init) { curr => ${agg("curr", "tuple")} }

}"""}
for (tuple <- hm) { ${cb("tuple")} }"""

}

At runtime, this query evaluator performs a direct mapping from
an operator to its code, i.e., substitutes op.execwith the operational
code of the child operator op. Template expansion is easy to im-
plement and removes some of the interpreter overhead. Still, the
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approach is criticized as inflexible [44]. First, a query is generated
exactly as written, with generic and inefficient data structure im-
plementations. Second, cross-operator optimizations, data layout
changes, etc., are all off-limits. Third, string templates are inher-
ently brittle, and rewriting the core engine code as templates may
introduce variable name clashes, type mismatches, etc., that may
cause both subtle errors and hard crashes in generated code.
Programmatic Specialization. In order to avoid the problems of
coarse templates, we can push specialization further down into the
structures that make up the query engine in Figure 6, in particular
the Record and various HashMap classes. The key benefit of this
approach is that the main engine code in Figure 6 can remain
unchanged!

The generated code is the same as for operator templates, but
all the code generation logic is now confined to Record and HashMap,
with a much smaller surface exposure to bugs related to string
manipulation. The implementation is as follows:
class Record(fields: Seq[(String, String)]) {
val name = freshName()
println(s"""val $name = new Record(${fields map ... })""")
def apply(field: String) = s"""$name.$field"""
def update(field: String, v: String) = println(s"""$name.$field = $v;""")

}
class HashMap() {
val name = freshName()
println(s"""val $name = new HashMap()""")
def apply(key: String) = s"""$name($key)"""
def update(key: String, v: String)(up: String) =
println(s"""$name($key) = $up($name.getOrElse($key,$v))""")

}

Still, the generated code uses unsophisticated Record and HashMap
implementations, which will not exhibit optimal performance.
When targeting C code, we will likely use an equivalent library
such as GLib, which has high performance overhead.

Optimized Programmatic Specialization. For optimum perfor-
mance, we want to implement specialized internal data structures
instead of relying on generic libraries. To achieve this, we take
the specialization idea one step further and push code generation
even further down to the level of primitive types and operations.
This means that not even our Record and HashMap implementations
need to mention code generation directly, and as we will show in
Sections 4.1-4.2, this will enable a range of important optimizations
while retaining a high-level programming style throughout. This
leads us to use exactly the MyInt class shown in Section 2, and, while
it would be possible to build an entire query engine in this way, it
pays off to use an existing code generation framework that already
implements this low-level plumbing.

Lightweight Modular Staging (LMS). LB2 internally uses a
library-based generative programming and compiler framework
LMS [41] to encapsulate the code generation logic. LMS maintains
a graph-like intermediate representation (IR) to encode high-level
constructs and operations. Moreover, LMS provides a high-level in-
terface to manipulate the IR graph. LMS distinguishes two types of
expressions; present-stage expressions that are executed normally
and future-stage expressions that are compiled into code. LMS
defines a special type constructor Rep[T] to denote future-stage
expressions, e.g., our MyInt corresponds to Rep[Int] in LMS, and
given two Rep[Int] values a and b, evaluating the expression a+b

will generate code to perform the addition. LMS provides imple-
mentations for all primitive Rep[T] types, i.e., strings, arrays, etc.

In addition, LMS also provides overloaded control-flow primitives,
e.g., if (c) a else b where c is a Rep[Boolean].

LMS is a full compiler framework, which supports a variety
of intermediate layers, but we only use it as a code generation
substrate for our purposes. To draw a comparison with HyPer,
LB2 is implemented in Scala instead of C++ and uses LMS instead
of LLVM. While LLVM [29] operates on a lower level than LMS,
the difference is not fundamental, and it is important to note that
abstractions similar to those we propose can also be built on top
of LLVM in C++, using standard operator overloading and lambda
expressions, which have been available since C++11.
Preliminary Example. In order to better understand how a query
is compiled using the optimized programmatic specialization, con-
sider the following aggregate query and the query execution plan
(QEP) (refer to Figure 6 for operators implementation).

select edname, count(*)

from Emp

group by edname
Γ

Emp

Π Print(
Agg(Scan("Emp"))

(x => x("edname"))(0)
((agg,x) => agg + 1))

In LB2, like in any other database, the query is represented by a tree
of operators. Evaluation starts with the root operator in the QEP
(i.e., Print). Calling Print.exec with an empty callback will call
its child operator’s Agg.exec method with a callback that encodes
evaluation actions to be carried out on the records that Agg pro-
duces: in this case, just printing out the result. After that, Agg.exec
calls Scan.exec with a callback tailored to the aggregate operation
and the callback it recived from Print. Based on Futamura projec-
tions discussed in Section 2, the result of executing a staged query
interpreter is a residual program that implements the query evalua-
tion on record fields where all abstractions are optimized away and
indirect control flow removed. Appendix B.2 gives detailed code
generation steps along with the generated C code in Figure 14.

For the remainder of this section, we discuss how interesting
performance optimizations for data structures, storage layout,
memory management, etc., are implemented in LB2 while retaining
the single code generation pass architecture.

4.1 Row or Column Layout
Typically, query engines either support row-oriented or column-
oriented storage. Each data layout works better in one situation
than the other, so it is attractive to be able to support both within
the same query engine.

In LB2, the Record class is the entry point to query engine
specialization. Record is an abstract class that contains a schema
(a sequence of named Field attributes) and supports lookup of
Values by name. It is important to note that the schema is entirely
static, i.e., only exists at code generation time, while subclasses of
Value carry actual Rep[T] values, i.e., dynamic data that exists at
query evaluation time. Subclasses of Record can support either flat,
row-oriented, storage through a base pointer (class NativeRec), or
abstract over the storage model entirely by referencing individual
Values directly from a record in a scalarized form, mapped to local
variables in generated code (class ColumnRec).
abstract class Field { def name: String } // models an attribute's name and type
case class IntField(name: String) extends Field // Int type attribute
case class StringField(name: String) extends Field // String type attribute

abstract class Value // models an attribute's value
case class IntValue(value: Rep[Int]) extends Value { ... } // operations elided
case class StringValue(value: Rep[String], length: Rep[Int]) extends Value { ... }

5
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type Pred = Record => Rep[Boolean]
type KeyFun = Record => Record
type OrdFun = (Record,Record) => Rep[Int]
type AggFun = (Record,Record) => Record
type GrpFun = Record => Record

class Scan(table: Buffer) extends Op {
def exec(cb: Record => Unit) = {
for (tuple <- table)
cb(tuple)

} }
class HashJoin(left: Op, right: Op)(lkey: KeyFun)
(rkey: KeyFun) extends Op { /* code in Figure 5 */ }

class Select(op: Op)(pred: Pred) extends Op {
def exec(cb: Record => Unit) = {
op.exec { tuple =>
if (pred(tuple)) cb(tuple)

} } }
class Sort(op: Op)(ordFun: OrdFun) extends Op {
def exec(cb: Record => Unit) = {
val res = new FlatBuffer()
op.exec { tuple => res += tuple }
res.sort(ordFun)
for (tuple <- res)
cb(tuple)

} }

class Agg(op: Op)(grp: GrpFun)
(init: Record)(agg: AggFun) extends Op {

def exec(cb: Record => Unit) = {
val hm = new HashMap()
op.exec { tuple =>
val key = grp(tuple)
hm.update(key, init) {
curr => agg(curr, tuple)

} }
for (tuple <- hm)
cb(tuple)

} }

Figure 6: LB2 Query Evaluator (data-centric with callbacks)

abstract class Record { def schema: Seq[Field]; def apply(name: String): Value }

case class NativeRec(pt: Rep[Pointer], schema: Seq[Field]) extends Record {
def apply(name: String) = getField(schema,name).readValue(pt, getFieldOffset(schema,name))

}
case class ColumnRec(fields: Seq[Value], schema: Seq[Field]) extends Record {
def apply(name: String) = fields(getFieldIndex(schema,name))

}

Likewise, LB2 abstracts over Record storage through an abstract
classBuffer, with implementation classes for row-oriented (FlatBuffer)
and column-oriented storage (ColumnarBuffer):
abstract class Buffer(schema: Seq[Field]) {

def apply(x: Rep[Int]): Record

def update(x: Rep[Int], rec: Record): Unit

}

case class FlatBuffer(schema: Seq[Field], size: Long) extends Buffer(schema) ...

case class ColumnarBuffer(schema: Seq[Field], size: Long) extends Buffer(schema) {

val cols = schema map { fld => Column(fld,size) }

def apply(x: Rep[Int]) = ColumnRec(cols map { c => c(x) }, schema)

def update(x: Rep[Int], y: Record): Unit =

cols foreach { c => c.update(x, y(c.field.name)) }

}

case class Column(field: Field, size: Long) {

val buf: Rep[Pointer] = malloc(size * field.size)

def apply(x: Rep[Int]) = field.readValue(buf, x)

def update(x: Rep[Int], y: Value): Unit = field.writeValue(buf, x, y)

}

The internal implementations are unsurprising, and exactly what
one might write in a high-level query interpreter without much
concern for low-level performance. But it is important to note
that there is never any code like new Record(...) or new Value(...)

being generated. Hence, Value, Record, Buffer, etc., objects are
generation-time-only abstractions that are completely dissolved as
part of the symbolic evaluation. The generated code consists only
of the operations on the Rep[T] values hidden inside the Value and
Buffer subclasses, i.e., only raw mallocs and pointer reads/writes
(refer to Appendix B.2 for details).

A pipeline of operators accesses records uniformly in either row
or column format. A pipeline breaker materializes the intermediate
Records inside a buffer or higher-level data structure, at which
point a format conversion may occur.
4.2 Data Structure Abstractions
Query engines use map data structures to implement aggregate and
join operations. For aggregations, a HashMap accumulates the aggre-
gate result for a grouping key and for hash joins, a HashMultiMap
collects all records for a given key. As discussed earlier, implementa-
tions from a generic library (e.g., Glib) tend to be inefficient due to
expensive function calls, resizing, etc. Moreover, we want to make
different low-level implementation choices for different parts of
the engine (e.g., open addressing vs. linked hash buckets). Based on
the Buffer abstractions (Section 4.1), we can build a considerable
variety of fast hash table implementations with little effort.

The code example below illustrates the one we use for aggre-
gates (see Figure 6). Class HashMap defines the interface, and subclass

LB2HashMap provides an implementation based on open addressing
on top of ColumnarBuffer. Method update locates the key and up-
dates the aggregate value. Method foreach, which is invoked for
Scala expressions of the form for (rec <- hm), traverses all stored
values. The hash map is fully specialized for key and value types.
abstract class HashMap(kSche: Seq[Field], vSche: Seq[Field]) {
def update(key: Record, init: Record)(up: Record => Record): Unit
def foreach(f: Record => Unit): Unit

}
class LB2HashMap(kSche: Seq[Field], vSche: Seq[Field]) extends HashMap {
val size = defaultSize
val agg = new ColumnarBuffer(vSche, size)
val keys = new ColumnarBuffer(kSche, size)
val used = new Array[Int](size)
var next = 0
def update(k: Record, init: Record)(up: Record => Record) = {
val idx = defaultHash(k) % size
if (isEmpty(keys(idx))) {
used(next) = idx; next += 1
keys(idx) = k; agg(idx) = up(init)

} else agg(idx) = up(agg(idx))
}
def foreach(f: Record => Unit) = {
for (idx <- 0 until next) {
val j = used(idx)
f(merge(keys(j), agg(j)))

} } }

It is important to note that this code is the same as one would write
in a library implementation. However, as with Buffers and Records,
the HashMap abstraction is completely dissolved at code generation
time, leaving only low-level array and index manipulations.

The hash join operator uses a HashMultiMap, which differs from
this code in its interface, and also in its internal implementation (we
use linked buckets instead of open addressing). We elide the code
for space reasons—it follows the same high-level of abstraction,
and if we wish, we can pull out some aspects of the two hash map
classes into a common base class, again without any runtime cost.

4.3 Data Partitioning and Indexing.
Query engines use statistics and metadata to determine when
an index can be used to speed up query execution. We assume
that these decisions are made during the query planning and
optimization phase. To add index capabilities to LB2, we provide
a corresponding set of indexed query operators in the same style
as those defined in Figure 6. The code below shows an index join.
The operator interface is extended with a getIndexmethod, which
enables IndexJoin.exec to find tuples that match the join key:
// Index join operator that uses index created on the left table
class IndexJoin(left: Op, right: Op)(lkey: String)(rkey: KeyFun) extends Op {
def exec(cb: Record => Unit) = {
val index: Index = left.getIndex(lkey) // obtain index for left table
right.exec { rTuple => // use index to find matching tuples
for (lTuple <- index(rkey(rTuple))) cb(merge(lTuple, rTuple))

} } }

LB2 realizes sparse and dense index data structures for primary and
foreign keys on top of the abstractions presented in Sections 4.1
and 4.2, behind a uniform Index interface. The IndexEntryView class
enables iterating over index lookups via foreach. Method exists is
used by IndexSemiJoin and IndexAntiJoin operators.

6



How to Architect aQuery Compiler, Revisited SIGMOD’18, June 10–15, 2018, Houston, TX, USA

abstract class IndexEntryView {
def foreach(f: Record => Unit): Unit
def exists(f: Pred): Rep[Boolean]

}

abstract class Index(schema: Seq[Field]) {
def apply(k: Record): IndexEntryView

}

In addition to query evaluation, LB2 generates data loading code for
different storage modes, which we extend to create index structures.
These can serve as additional access paths on top of underlying
data, or as primary partioned and/or replicated data format, e.g.,
when there are multiple foreign keys.
Date Indexes. LB2 represents dates as numeric values to speed
up filter and range operations. If metadata about date ranges is
available, it will enable further shortcuts. LB2 breaks down dates
into year and month and uses existing abstractions to index dates
based on year or month. Adding a date index is similar to creating
an index on a primitive type. Hence, we elide further details.
String Dictionaries. Another form of indexing is compressed
columns and dictionary encodings. LB2 implements string dictio-
naries to optimize string operations, e.g., startsWith. Individual
columns can be marked as dictionary compressed in the database
schema. Building on StringValue and ColumnarBuffer discussed ear-
lier in Section 4.1, LB2 defines an alternative string representation
class DicValue and a class StringDict that stores and provides access
to compressed string values.
class DicField(name: String) extends Field {
def dict: StringDictionary = ...

}
class DicValue(idx: Rep[Long]) extends Value {
def startsWith(p: DicValue) = p.idx <= idx
...

}

class StringDict(attr: String, size: Long) {
val store = Column(StringField(attr),size)
def convert(string: StringValue): DicValue
def get(idx: DicValue): StringValue

}

Consider the simple case of compressing a single string column.
At loading time, the StringDict is loaded from memory. When
the loader reads a string, it creates a StringValue and uses the
StringDict to convert it into its DicValue compressed form: the
index where the StringValue is stored inside the StringDict.

While string dictionaries may speed up most string operations,
their use requires some care. The comparison of two strings in
compressed form is only valid if they share the same dictionary.
One solution is to use a single global dictionary for all string
attributes, however it is not easy to maintain. Another solution
is to group the columns that are the most likely going to be
used together within one dictionary. In the event of a comparison
between string belonging to two different dictionaries, the fallback
is to extract the StringValue and perform the operation on the
string representation. Moreover, some operations generate strings
at runtime (e.g., substring). In that case, uncompressed strings
need to be used as well. Conceptually, LB2 can support both
implementations. The DicField class keeps track of the dictionary
associated with a given attribute, which allows LB2 to generate
compressed string operations where possible and uncompressed
operations otherwise. Finally, string dictionaries do not add new
query operators, i.e., they operate transparently as part of the data
representation layer.

4.4 Code Layout and Code Motion
Hoisting memory allocation and other expensive operations from
frequently executed paths to less frequent paths can speed up
evaluation dramatically, especially in hash join and aggregate
queries where memory may be pre-allocated in advance.

def exec(cb: Record => Unit) = {
val hm = new HashMap()

op.exec { tuple =>
hm.update(grp(tuple), ...)(...)

}
for (tuple <- hm) cb(tuple)

}

def exec = {
val hm = new HashMap(); val dataLoop = op.exec
(cb: Record => Unit) => {
dataLoop { tuple =>
hm.update(grp(tuple), ...)(...)

}
for (tuple <- hm) cb(tuple)

} }
(a1) Aggregate skeleton (a2) Optimized aggregate skeleton

// execute aggregate

time { Print.exec(t => ()) }

// execute aggregate
val query = Print.exec
time { query(t => ()) }

(b1) Aggregate client program (b2) Optimized aggregate client program

struct timeval start, end;
gettimeofday(&start, NULL);
// data struct allocation
int* agg = malloc(...); ...
// processing
for (int i = 0; i < N; i++) {
// ... compute aggregate ...

}
for (int i = 0; i < next; i++) {
// ... print records ...

}
gettimeofday(&end, NULL);

// data struct allocation
int* agg = malloc(...); ...
struct timeval start, end;
gettimeofday(&start, NULL);
// processing
for (int i = 0; i < N; i++) {
// ... compute aggregate ...

}
for (int i = 0; i < next; i++) {
// ... print records ...

}
gettimeofday(&end, NULL);

(c1) Generated code (c2) Generated code

Figure 7: From a query plan to optimized C code including
data structures specialization and code motion

Let us recall the design principle from Section 3, that the shape
of the generated code follows how the interpreter is written. Based
on this insight, we may reorder evaluation actions in a certain way
that moves expensive operations off the hot path of query execution.
In particular, we can extend LB2’s callback interface to enable
hoisting data structure allocation. In Figure 7, we demonstrate
how a small change to the exec method signature enables data
structures hoisting. Method exec in Figure 7-a1 takes a single
argument, allocates data structures and invokes parent.exec. In
Figure 7-a2, exec is re-implemented as zero-parameter method that
separates the data structure allocation and query execution by
performing the allocation first and only then returning a function
that executes the operator’s main data path. The rest of the example
in Figure 7-b1 and b2 shows how client programs can inject code,
e.g., timing, inbetween memory allocation and the main evaluation
loop. Figure 7-c1 and c2 show the respective generated code.

4.5 Parallelism
Query engines realize parallelism either explicitly by implementing
special split and merge operators [31], or internally by modifying
the operator’s internal logic to orchestrate parallel execution. LB2
uses the latter, and generates code for OpenMP [1].

Interestingly, the same pattern we used in Section 4.4 to achieve
code motion can be used to structure query engine code for par-
allel execution. The callback signature for execwe defined earlier
works well in a single-threaded environment, but multi-threaded
environments require synchronization and thread-local variables.
Thus, LB2 defines a new class ParOPwith a modified execmethod
that adds another callback level.

For state-less operators such as Select, the parallel implementa-
tion is very similar to the single threaded one; it is possible to use
a wrapper to transform a single threaded pipeline into a parallel
one. Assuming we have a parallel scan operator ParScan, we can
perform a parallel selection like this:
val parSelect = parallelPipeline(op => Select(op)(t => t("rank") < 10))
parSelect(ParScan("Dep"))

The definition of ParOp and parallelPipeline is as follows:
7
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class ParOp {
type ValueCallback = Record => Unit
type DataLoop = ValueCallback => Unit
type ThreadCallback = Rep[Int] => DataLoop => Unit
def exec: ThreadCallback => Unit

}
def parallelPipeline(seq: Op => Op) =
(parent: ParOp) => new ParOp {
def exec = {
val opExec = parent.exec
(tCb: ThreadCallback) => opExec { tId => dataloop =>
tCb(tId)((cb: ValueCallback) =>
seq(new Op { def exec = dataloop }).exec(cb) })

} } }

ParScan

ParSelect

callback

callbacktId

tId

tuples

tuplesexec

exec

The communication between operators is illustrated in the drawing
above. The downstream client of parSelect initiates the process
by calling exec, which parSelect forwards upstream to ParScan.
ParScan starts a number of threads, and on each thread, calls theexec
callback with the thread id tId and another callback dataloop. This
will allow the downstream operator to initialize the appropriate
thread-local data structures. Then the downstream operator triggers
the flow of data by invoking dataloop, and passing another callback
upstream, on which the ParScanwill send each tuple for the data
partition corresponding to the active thread.

While the parallelPipeline transformation covers the simpler
state-less operators, some extra work is required for pipeline break-
ers. The callback interface makes sophisticated threading schemes
possible, in an elegant manner. For operators such as Agg, LB2’s
parallel implementations split their work internally across multi-
ple threads, accumulating final results, etc. By using callbacks in
a clever way, we can delegate some of the synchronization effort
to specialized parallel data structures. In the case of Agg, LB2 uses
a ParHashMap abstraction, which internally has to enforce thread
safety. Multiple implementations are possible, using synchroniza-
tion primitives, partitioning, or an internal lock-free design.
abstract class ParHashMap(nT: Long, kSche: Seq[Field], vSche: Seq[Field]) {

def apply(tId: Rep[Int]): HashMap

def merge(init: Record, agg: AggFun): Unit

def partition(tId: Rep[Int]): DataLoop

}

This design is powerful enough to encapsulate all subtle issues
related to multi-threading. Similar to the code motion idea, we use
the callbacks to re-organize the operator code into different parts:
class Agg(grp: GrpFun)(init: Record)(agg: AggFun) extends ParOp {
def exec = {
val opExec = op.exec
val hm = new ParHashMap(nbThread, grp.schema, agg.schema)
(tCb: ThreadCallback) => {
opExec { (tId: Rep[Int]) => (dataLoop: DataLoop) => // parallel section starts
val lHm = hm(tId): HashMap
dataloop { tuple => // computes partial result for this thread
val k = grp(tuple)
lHm.update(k, init) { c => agg(c, tuple) }

} } // parallel section ends
hm.merge(init, agg) // merge the results accross threads
parallelRegion { tId => tCb(tId)(hm.partition(tId)) } // restart a pipeline in parallel

} } }

The distinct parts are the global initialization of the data-structure,
the local initialization for each thread, the computation, and finally
the merging between threads, followed by the beginning of a new
parallel pipeline.

4.6 Comparison with a Multi-Pass Compiler
We contrast LB2’s implementation with a recent multi-pass query
compiler, DBLAB [44]. Both systems aim to implement a query
interpreter in a high-level language once and control query compi-
lation by modifying parts of the query engine. In LB2, we modifed
the core abstractions underneath the main engine code to add code
generation. In DBLAB, the query engine code itself is transformed

to lower-level code, through multiple intermediate stages. For each
optimization, an analysis pass identifies pieces of code to be re-
written followed by one or more re-writing passes. DBLAB offers
a flag per optimization that can be configured for each query. We
compare how key optimizations are implemented in both systems.
Data Layout. The default data layout in DBLAB is row-oriented.
DBLAB supports column-oriented layout on a best effort basis using
a compiler pass that converts arrays of records to a record of arrays
where possible. In LB2, operators decide which storage layout to
use by instantiating one of several implementation classes, e.g.,
FlatBuffer or ColumnarBuffer as discussed in Section 4.1. These
decision can be made based on input from the query optimizer.
Data Structure Specialization. DBLAB introduces a number
of intermediate abstraction levels (referred to as stack-of-DSLs)
and defines optimizations that can be performed at each level.
Specializing high level data structure, e.g., hash maps, into native
arrays takes one analysis pass and up to three re-writing passes. In
LB2, the same transformation is achieved by implementing hash
maps as generation-time abstractions, which ensures that only
native array operations are generated. Adding a new hash map
variant requires a high-level implementation in LB2, using normal
object-oriented techniques (see Section 4.2). For example, LB2 uses
open addressing for aggregates and linked hash buckets for joins.
In DBLAB, all analysis and transformation passes are specific to a
linked-bucket hash table implementation. Adding a variant based
on open addressing would require an entire new set of analysis and
transformation passes.
Index Structures. DBLAB’s makes indexing decisions not based
on query plans, but on a lowered version of the query engine
code after inlining the operators. A first analysis extracts hash
join patterns and evaluates whether an index can be instantiated.
In some sense, this appears to be putting the cart before the
horse, because high-level query plan structure needs to be reverse-
engineered from comparatively low-level code. A second analysis
rule determines the type of index, and a third rule determines
whether the hash map is collision-free on the hash function and
hence can use one dimensional arrays. Finally, a rewrite rule updates
the generated code to use the index, and inserts index creation code
into the loading phase. This automatic index inference in DBLAB
is a global approach that always creates indexes without reasoning
about the index cost or whether a non-index plan could be more
efficient. LB2 does not attempt to infer indexes automatically and
instead delegates such decisions to the query optimizer.

For string dictionaries, DBLAB performs a compiler pass to create
string dictionaries on all string attributes and hoist the allocation
statements to loading time. The rewrite rule identifies the type of
string operation and updates the code accordingly. Again, LB2 does
not attempt to infer string dictionary usage from low-level code,
but assumes that this information is already available. Instead of
transforming code, LB2 uses corresponding implementation classes
as discussed in Section 4.3.
Code motion. DBLAB performs detailed analysis to collect data
structures allocation statements along with dependent statement.
After that, a rewrite rule moves allocation to loading time. Hence,
hoisting is sensitive to order. As illustrated in Section 4.4 LB2’s
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SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Postgres 241581 6665 33835 7980 30158 23485 32577 29953 64429 33237 7113 38040 31425 22154 23183 13450 155541 91241 29548 65681 299691 11766

DBLAB 809 219 6575 7977 3049 232 3598 5494 32313 4175 104 3847 (1079) 526 933 2961 3795 4771 6353 763 13851 1328

LB2 (DBLAB plan) 476 140 491 573 576 223 914 1941 4540 1230 52 691 4012 377 373 595 2001 1294 2623 569 1887 235

HyPer 613 61 1193 872 991 233 982 637 2029 1021 138 504 3718 342 261 1274 580 3764 2003 439 1658 190

LB2 (HyPer plan) 476 141 494 573 649 222 706 862 2806 1378 51 691 4012 246 189 593 1994 1289 2965 833 1793 234
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Figure 8: The absolute runtime in milliseconds (ms) for DBLAB, LB2 (with DBLAB’s plans), HyPer, LB2 (with HyPer’s join
ordering plans) in TPC-H SF10. Only TPC-H compliant optimizations are used.

callback interface seamlessly hoist data structures allocation outside
the operator code, with small changes to the operator interface.
Parallelism. LB2 implements parallelism as shown in Section 4.5.
DBLAB does not implement parallelism, although the paper [44]
discusses some ideas in this direction.

In summary, we believe that there are certain drawbacks to multi-
pass query compilers. Most importantly, optimizations require a
number of analysis and rewrite passes, i.e., database engineers have
to become real compiler experts. The hard part about writing com-
pilers is not to get a transformation working on a few examples,
but to ensure correctness for all possible corner cases, and for in-
teractions with other parts of the system, which may be changed
independently. In comparison, LB2’s single-pass approach facili-
tates query compilation using techniques that are no more difficult
than writing a query interpreter in a high-level language.

5 EVALUATION
In this section, we evaluate the performance of LB2 on the standard
TPC-H benchmark with scale factor SF10. We compare LB2 with
Postgres [2] and two recent state-of-the-art compiled query engines:
Hyper [33], and DBLAB [44]. HyPer implements compilation using
LLVM and DBLAB is a multi-pass query compiler that generates C.
Configurations. We present three sets of experiments. The first
set evaluates the performance of LB2 with only those optimizations
that are compliant with the official TPC-H rules. The second set
focuses on comparing optimizations that replicate data and create
auxiliary indexes (Section 4) with their counterparts in DBLAB.
Finally, the last set evaluates parallelism in LB2 and HyPer when
scaling up the number of cores (DBLAB only runs on a single core).
We run each query five times and record the median reading. For
DBLAB and LB2, we use numactl to bind the execution to one CPU.
HyPer provides a flag for the same purpose PARALLEL=off.

Query plans in LB2 and DBLAB are supplied explicitly while Hy-
Per and Postgres implement a cost-based query optimizer. Since it
is difficult to unify query plan across all systems, we report two sets
of results for LB2. The line LB2 (dblab plan) uses DBLAB’s plans
and LB2 (hyper plan) uses HyPer’s plans to the extent possible but
at least with the same join ordering. We choose not to turn indexing
off in HyPer to allow the query optimizer to pick the best plan. Also,
DBLAB replaces the outer join in Q13 with a hard-coded imperative
array computation using side effects that is neither expressible in
SQL, nor in their internal query plan language.

DBLAB offers close to 30 configuration flags to enable/disable
optimizations. In the first experiment, we use the -compliant option

(a subset of compliant configurations per query). In the second ex-
periment, we use the compliant configuration with the hm-part flag,
DBLAB/LB 4 and DBLAB/LB 5 configurations respectively to enable in-
dexing, date indexing with partitioning and string dictionaries as
described in [42, 44]. We compare each of these configuration to
the corresponding one in LB2.
Performance Evaluation Parameters. The first experiment (i.e.,
TPC-H compliant runtime) and the third experiment (i.e., paral-
lelism) use the absolute runtime as key evaluation parameter. The
second experiment evaluates the impact of individual optimizations
that are pre-computations. In this case, we also report the overhead
introduced by all these pre-computations relative to the loading
time of LB2 without any index generation (fastest loading).
Experimental Setup. All experiments are conducted on a single
machine with 4 Xeon E7-88904 CPUs, 18 cores and 256GB RAM
per socket (1 TB total). The operating system is Ubuntu 14.04.1
LTS. We use Scala 2.11, Postgres 9.4, HyPer v0.5-222-g04766a1 2,
GCC 4.8 with optimization flag -O3 and GLib library 2.0. We tried
different versions of GCC and Clang with very similar results. We
use the version of DBLAB released by the authors as part of the
SIGMOD ’16 artifact evaluation process [42]3.

5.1 TPC-H Compliant Runtime
In the first experiment, we compare LB2 with Postgres, DBLAB and
HyPer on a single core under the TPC-H compliant settings. Figure
8 reports the absolute runtime for all TPC-H queries. We follow
[44] in evaluating DBLAB without any indexing and use the same
configuration for LB2. We did not disable primary key indexing
in HyPer, as doing so appears to lead to very suboptimal query
plans. In the plans reported here, HyPer employed one or more
index joins in Q2, Q8-Q10, Q12, and Q21. Postgres is a Volcano-
style interpreted query engine that is representative of wide-spread
traditional systems.

At first glance, LB2 outperforms Postgres and DBLAB in all
queries where query plans are matched. Furthermore, LB2 and
HyPer’s performance is comparable. On a query by query analysis,
LB2 outperforms DBLAB in aggregate queries Q1 and Q6 by 70%
and 4% respectively. On join queries Q3, Q5, Q10, etc. LB2 is 3×-
13× faster than DBLAB. Similarly, LB2 is 5×-13× faster in semi

2At the time of writing, HyPer binaries are no longer publicly available. We use a
version obtained in late 2015.
3The generated C files for TPC-H queries submitted in [42] do not include an equivalent
configuration for (compliant+index) and also use nonstandard string constants, e.g.,
in Q3, Q7, etc. For a uniform comparison, we re-generated the C files using [43].
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SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

DBLAB-idx 827 144 2341 631 380 236 123 332 900 765 100 1167 (1379) 272 919 4648 266 4680 247 312 1408 208

LB2-idx 521 87 685 316 207 223 127 81 1021 663 15 489 3895 272 440 1157 144 183 69 84 347 104

DBLAB-idx-date 928 101 422 217 207 117 78 292 846 703 85 1242 (1337) 289 40 5355 218 200 311 414 626 173

LB2-idx-date 485 85 152 162 212 80 108 81 1024 455 17 294 3895 26 54 1153 138 204 69 83 406 104

DBLAB-idx-date-str 497 97 138 222 225 82 79 23 510 603 130 362 (4507) 16 41 555 13 198 15 401 494 176

LB2-idx-date-str 487 74 166 185 170 79 85 35 641 408 16 184 3904 10 56 774 7 184 11 85 384 104
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Figure 9: The absolute runtime in milliseconds (ms) after enabling non-TPC-H-compliant indexing, date indexing and string
dictionary in SF10 using DBLAB plans

join and anti join queries Q4, Q16, Q21 and Q22. In Q13, DBLAB
replaces the outer join operator with a hard-coded imperative array
computation that has no counterpart in the query plan language.
Hence, a direct comparison for this query is misleading, and we do
not attempt to recreate an equivalent “plan” in LB2.

The performance gap between LB2 and DBLAB can be attributed,
in part, to a number of implementation details. First, LB2 imple-
ments a generation-time string abstraction (explained in Section
4.2) that optimizes commonly used string operations while DBLAB
primarily relies on C-strings and only optimizes one instance (the
startsWithoperation). Second, the systems make different decisions
related to hash join implementations, e.g., the hash function and
number of keys used while creating a hash table. LB2’s hash table is
always custom-generated while DBLAB sometimes relies on GLib
C data structures and also uses function calls for some string opera-
tions as opposed to inlining and specialization in LB2. Furthermore,
there are different trade-offs related to handling composite keys, i.e.,
either creating a very selective hash table that combines more than
one key or using only a single key and relying on the join condition
to filter unqualified tuples (essentially a short linear search). We
observe that DBLAB opts for smaller hash tables at the expense of
more extensive search, while LB2 chooses more precise hashing.
Finally, there are differences in optimizing data layout, e.g., per-
taining to row-oriented vs column-oriented layout for internal data
structures (Section 4).

Comparing the performance of LB2 and HyPer, we observe that
LB2 is faster by at least 2×-3× in Q3, Q11, Q16 and Q18. Also, LB2
is 25%-50% faster than HyPer in Q1, Q4, Q5, Q7, Q14 and Q15. On
the other hand, HyPer is faster than LB2 by 2×-3× in Q2 and Q17.
This performance gap is, in part, attributed to (1) HyPer’s use of
specialized operators like GroupJoin and (2) employing indexes
on primary keys as seen in Q2, Q8-Q10, etc. Finally, while both
LB2 and HyPer generates native code (LB2 generates C and HyPer
generates LLVM) differences in implementation may result in faster
generated code. One example is floating point numbers. HyPer uses
proper decimal precision numbers, whereas LB2 and DBLAB use
double precision floating point values.

5.2 Index Optimizations
The second experiment focuses on evaluating three advanced
optimizations that were used by DBLAB to justify a multi-pass
compiler pipeline [44]; primary and foreign key indexes, date

indexes, and string dictionaries. In their full generality, these
optimizations are not compliant with the TPC-H rules [11] since
they incur pre-computation and potentially a duplication of data.
While a subset of these optimizations that indexes data uniformly
across all queries would be allowed by the TPC-H spec, we do
not evaluate this setting for consistency with previously published
DBLAB configurations [42, 44]. The results of this experiment are
shown in Figures 9 and 10. The first table and graph give the
absolute runtime of the TPC-H queries with different levels of
indexing enabled: primary/foreign key, date columns, and string
dictionaries. The second graph shows the overhead on loading time
associated with creating these indexes.
Primary and Foreign Key Indexes. The results for this configu-
ration are shown in line DBLAB/LB2-idx. Recall that DBLAB analyzes
intermediate code to decide on which indexes it will create. LB2
makes those decisions based on the query plan. For the purpose of
this experiment, we have tuned LB2’s decision rules to lead to the
same decisions as DBLAB. We observe that DBLAB’s index cost is
greater than LB2’s in all queries with Q5, Q12 and Q3 as the top
three. In these queries, a hash map index is created on a sparse
key. While both systems follow a similar compromise in allocating
larger space to optimize access time, LB2’s column-oriented layout
contributes to lowering index creation and access cost. This obser-
vation is the main reason of the better performance for LB2 over
DBLAB. On a query by query analysis for the absolute runtime,
LB2 outperforms DBLAB in join query Q3 by 3× and by 15%, 80%
in Q10 and Q5 respectively. Similarly, LB2 is 2×-4× faster in semi
join and anti join queries Q4, Q22, Q16, Q21. On the other hand,
DBLAB is faster than LB2 in Q7 and Q9 by 3% and 13% respectively.
As discussed in Section 5.1 the performance gap is attributed to
a variety of implementation details that are different between the
two systems.

Finally, we can notice that using index inference may result in
access paths that are slower than hash joins, e.g., Q16. Indexes
are built on leaf nodes whereas hash tables are built on interior
nodeswith smaller intermediate result. Therefore, a query optimizer
with a cost model would avoid slower access paths and using an
index everytime it is availble may not be the optimal solution for
the query. For Q13 DBLAB is much faster than LB2 due to their
use of imperative computation outside of query plans (as noted
above). Curiously, enabling index optimizations causes a slowdown
in DBLAB for Q13.
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Figure 11: The absolute runtime in milliseconds (ms) for parallel scaling up LB2 and HyPer in SF10 on 2, 4, 8 and 16 cores

Date Indexes. The date indexing optimization is used when a table
is filtered on a date attribute. The table is partitioned by year and
month on the given attribute and the index is scanned only on
the dates that satisfy the predicate. This optimization is always
beneficial in both systems.
String Dictionaries. DBLAB creates string dictionaries to speed
up commonly used string operations:equality,startsWith,endsWith
and like. In LB2, a string dictionary is used only for the first
three operations. We decided that tokenizing strings in order to
optimize the like operation (as in DBLAB) is difficult in the general
situation. A simple example is like %green%. This should match
the word greenway but tokenizing over spaces, punctuation, etc.
would not be correct. The line DBLAB/LB2-idx-date-str in the Figure
9 shows runtime when using the string dictionary optimization in
DBLAB and LB2. Queries 3, 8, 12, 17, 19 are only using equality
operations. LB2 is 35%-95% faster in Q12, Q17, Q19 whereas DBLAB
is 20%, 50% faster in Q3 and Q8 respectively. Moreover, Q2 and
Q14 uses startsWith and endsWith. LB2 is 30% and 60% faster in
these queries. Finally, Q9, Q13 and Q16 use like that LB2 does not
optimize. However, DBLAB does not optimize it for Q13 either.
When generating the C code for Q13 in this experiment, the
executable raised a segfault that we manually fixed.

5.3 Parallelism
In this experiment, we compare the scalability of LB2 with HyPer.
DBLAB does not support parallelism. We pick five queries that
represent aggregates and join variants. Figure 11 gives the absolute
runtime for scaling up LB2 and HyPer for Q4, Q6, Q13, Q14 and Q22
in SF10. At first glance, the speedup of LB2 and HyPer increases
with number of cores, by an average 4×-5× in Q22 and by 5×-11×
in Q4, Q6, Q13 and Q14.

At a closer look, LB2 outperforms HyPer in semi join Q4 by 50%
with 2 to 8 cores. In outer join Q13, LB2 is 10%-20% faster than
HyPer up to 16 cores. On the other hand, the performance of LB2
and HyPer is comparable in aggregate query Q6. Finally, HyPer
outperforms LB2 in anti join Q22 by 10%-50% with 2 to 16 cores. In
summary, the parallel scaling in LB2 and HyPer lie within a close
range. However, difference in implementation and parallel data

structures can result in faster code. In terms of implementation,
LB2 generates C code and realizes parallelism in a high-level style
using OpenMP. HyPer generates LLVM and uses Pthreads for fine-
grained (Morsel-driven [30]) parallelism.
Conclusion The results of our experiments show that LB2 can com-
pete against the state-of-the-art query compilers. However LB2’s
design is simpler than both DBLAB and HyPer; it is derived from
a straightforward query interpreter design and does not require
multiple compiler passes or additional intermediate languages.

6 RELATEDWORK
The Origin of Compiling Query Engines dates back to IBM’s
System R [7]; the initial design realized a form of template-based
code generation. However, compilation was abandoned for interpre-
tation, mainly for improved portability andmaintenance. More than
two decades later, AT&T developed Daytona [19] that translates its
high-level query language Cymbal into C. IBM compiled queries
to Java bytecode [37] by removing virtual functions from iterator
evaluation. The performance gain was limited since the iterator
model does not lend itself to efficient low-level optimizations.
Compiled Query Engines. The recent changes in architecture
and the push towards main memory databases have revived inter-
est in developing efficient query compilation methods. The timeline
in Figure 12 shows a selection of query engines that employ a
form of query compilation since System R. The illustration broadly
classifies the compilation method used. An arrow from A to B
denotes that system B is built on or extends system A. HIQUE
[28] performs operator re-ordering, data staging, and generates
query code through template expansion. HyPer [33], RAW [25],
H2O [5], Radish [32], ViDa [24], Voodoo [36] and others [10, 23, 35]
follow a low-level approach to query compilation where LLVM
assembly is intermixed with pre-compiled C++. The pre-compiled
code implements complex data structures and the LLVM assembly
manages the tuple level work. DBToaster [4] uses compilation and
recursive delta queries to realize high-order incremental view main-
tenance (IVM). Inside Postgres [23] compiles query subexpressions
into machine code and [45] uses program specialization inspired
by Futamura projections and LLVM to generate query code. The
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DBLAB system [44] compiles queries by applying multi-pass DSL
transformations. Commercial examples of query compilation are
Hekaton [14], DryadLINQ [20], Impala [27] and Spade[17]. Cluster
computing examples are SparkSQL [6] and Tupleware [13]. Another
line of works generate query code in high-level languages using
multi-stage generative programming with LMS [40]. Closest to LB2
are Legobase [26], the “SQL to C in 500 lines” compiler [38], Flare
[15], a native compiler back-end for SparkSQL, LB2-Spatial [48], Jet
[3], OptiML [47] and other Delite’s DSLs [9, 46] e.g., OptiQL and
OptiMesh.
Code generation.Domain-specific Languages (DSLs) are high-level
abstractions that allow expressing programs using domain terms,
e.g., SQL. Generative programming [39] enables specialization as
a programming pattern where developers implement a program
generator and use high-level programming abstractions to achieve
the desired forms of specialization. Lightweight Modular Staging
(LMS) [40] is a library-based approach that implements generative
programming abstractions using operator overloading and other
features in regular general-purpose languages.

7 DISCUSSION
In this section, we draw some general insights and aim to clarify
some specific points of discussion, notably regarding single-pass
vs. multi-pass compilers.
Templates Expansion vs. Many Passes: A False Dichotomy.
The authors of DBLAB [44] motivate their multi-pass architecture
by claiming that “all existing query compilers are template ex-
panders at heart” and that “template expanders make cross-operator
code optimization impossible”. But this argument confuses first-
order, context-free, template expansion with the richer class of po-
tentially more sophisticated single-pass compilers, which can very
well perform context-dependent optimizations. Especially in the
context of Futamura projections, we have shown that the structure
of the query interpreter that is specialized into a query compiler
has a large effect on the style of generated code, and can achieve
all the optimizations implemented in DBLAB.
AreMany Passes Necessary? Staying with the specialization idea
of Futamura projections, we can specialize away further abstrac-
tion levels without auxiliary transformation passes. Hence, we
demonstrate that for standard relational workloads, no additional
intermediate languages besides the query plan language and the
generated C level are necessary.
Do Many Passes Help or Hurt? Multiple passes help if one step
of expansion/specialization can expose information to an analysis
that is not present in the source language. For database queries, the
source language of query plans is already designed to contain all

relevant information. If some information is missing, it can likely be
added to the execution plan language. Hence, we find that additional
abstraction levels in between relational operators and C code do not
provide tangible benefits. To the contrary, some information may
get lost and has to be arduously recovered. Multiple transformation
passes depend on analysis of imperative code that manipulates
low-level data structures, which is notoriously difficult.

In contrast, the database community has already solved the
query optimization problem for interpreted engines, and cost-based
optimizers that produce good plans are available. In particular,
deciding when an index can be used to speed up a join query is
readily solved by looking at the query plan. Trying to make such
a decision by analyzing low-level code generated from a physical
plan (as DBLAB does) seems overall backwards, and unlikely to
scale to realistic use cases.
When to use Multiple Intermediate Languages? We have ar-
gued that we do not need stacks of multiple intermediate languages
for compiling relational query plans. So when do we need them? A
key use case is in combining multiple front-end query languages
(DSLs), e.g,. SQL and a DSL for machine learning or linear alge-
bra (as in Delite’s OptiQL and OptiML [47]). First, domain-specific
optimizations need to be applied on each DSL independently e.g.,
arithmetic simplification, join ordering, etc. After that, a series of
compiler transformationsmay be needed to translate both DSLs into
a common intermediate core, where loop fusion and other compiler
level optimizations can be performed before code generation.

In a relational system, the query plan DSL is essential. We have
to perform cost-based optimization of join ordering before we can
think about generating code. The situation is similar in a linear
algebra DSL, where we have to perform arithmetic optimizations
before switching representations frommatrices and vectors to loops
and arrays.

8 CONCLUSIONS
In this paper, we advocate that query compilation need not be hard
and that a low-level coding style on the one hand and the added
complexity of multiple compiler passes and intermediate languages
on the other hand are unnecessary. Drawing on the old but under-
appreciated idea of Futamura projections, we have presented LB2;
a fully compiled query engine, and we have shown that LB2
performs on par with, and sometimes beats, the best compiled
query engines on the standard TPC-H benchmark. Specifically,
LB2 is the first query engine built in a high-level language that
is competitive with HyPer [33], both in sequential and parallel
execution. LB2 is also the first single-pass query engine that is
competitive with DBLAB [44] using the full set of non-TPC-H-
compliant optimizations. In conclusion, we demonstrate that highly
efficient query compilation can be simple and elegant, with not
significantly more implementation effort than an efficient query
interpreter.
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A ADDITIONAL EXPERIMENTS
The experiments in Section 5 compared the performance of LB2
with HyPer and DBLAB using execution time as a metric. In
this section, we evaluate the overhead of code generation and
compilation times for LB2 and DBLAB. Furthermore, we conduct a
productivity evaluation study that estimates the effort of developing
each system.

A.1 Code generation and Compilation
In this experiment, we analyze the overhead of code generation
and compilation using GCC in LB2 and DBLAB with the compliant
and optimal configurations. The results are illustrated in Figure 13.
The y-axis value shows both code generation and GCC compilation
for each configuration.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

LB2-compliant 243 650 381 221 444 59 519 663 447 427 302 356 197 147 322 286 171 366 228 387 398 211

LB2-compliant GCC 175 558 421 336 664 180 436 507 498 439 320 283 203 195 228 292 214 368 349 367 449 229

LB2-opt 367 736 420 274 566 139 537 693 468 358 379 261 226 248 420 309 435 502 526 512 686 276

LB2-opt GCC 245 578 289 248 385 180 421 462 408 338 302 259 214 222 340 274 237 332 402 365 467 231

DBLAB-compliant 178 670 514 187 701 90 620 1199 745 458 266 258 164 154 124 485 182 251 198 467 410 271

DBLAB-compliant GCC 260 401 488 363 699 228 605 785 772 434 300 391 254 311 292 497 376 545 598 606 486 273

DBLAB-opt 605 2040 856 658 1783 363 1409 2671 868 700 460 632 432 417 333 772 313 425 473 492 497 403

DBLAB-opt GCC 237 324 382 333 508 207 513 551 532 392 261 321 267 294 266 348 303 342 390 424 390 316
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Figure 13: Code generation and compilation for LB2 and DBLAB

Code generation time increases with the number of operators
and subqueries, e.g., in Q2, Q5, Q8 and Q21. Compilation times are
constant for any dataset size, and can often be amortized if queries
are precompiled and used multiple times.

At a closer look, LB2 is faster than DBLAB in TPC-H compliant
mode for code generation by an average of 3%-80%. On the other
hand, LB2 is slower for Q1, Q4, Q11-Q13, Q15, and Q18-Q19 by
an average of 15%-2.6×. For GCC compilation, LB2 is between
40% slower and 75% faster than DBLAB. In the optimal mode, LB2
is slower for Q15 and Q17-Q21 by up to 40% and faster for the
remaining queries by up to 3.8×. For GCC compilation, LB2 is
between 30% slower and 35% faster than DBLAB.

A.2 Productivity Evaluation
Table 1 summarizes the line of code (LOC) that have been added
to the compliant LB2 compiler for each optimization. The original
core engine of HyPer is reported to consist of around 11k lines
of code [33] that uses low-level LLVM APIs to produce code in
LLVM’s intermediate language.

DBLAB is based on a specifically developed compiler framework
called SC [44], with about 30k lines of code. Most or all of the
facilities provides by this framework appear necessary. While the
DBLAB developers claim that SC can serve as a generic compiler
framework, there is no evidence that it is used anywhere else. By
contrast, LB2 uses the LMS compiler framework [40], which has
been used by a variety of groups in academia and industry for
applications ranging from generating JavaScript to C, CUDA, and
VHDL. LMS is only 7k lines in total, and of that, LB2 uses only a
small fraction. While LMS does provide sophisticated support for
multiple intermediate languages and transformation passes, LB2
does not use any of these facilities. Removing this functionality
from LMS leads to a core framework of only 2k lines that is enough
to support LB2.

LB2 DBLAB
Base 1800 3700
Index data structures 200 505
Compliant Indexing compilation 80 318
Non-compliant String Dictionary 150 456
Non-compliant Date Indexing 50 400
Memory Allocation Hoisting 30 186
Other 600 1000
Total modified 1100 2800

Table 1: Lines of code needed to add each optimization

B VISUALIZING QUERY CODE GENERATION
As demonstrated in Sections 2-4, LB2 compiles queries to native
code by executing a staged query interpreter that emits code as a

side effect. In this section, we walk through two concrete examples
that illustrate key steps in this process, the power function from
Section 2 and the aggregate query from Section 4. We introduce
a double bracket notation J.K to show intermediate states of the
execution; we can think about these brackets as visualizing the exe-
cution stack as program expressions that still need to be executed. It
is important to note that the intermediate steps are observable only
indirectly—LB2 generates the full code in a single pass, but achieves
similar transformations as multi-pass compilers (e.g., DBLAB) with-
out representing intermediate steps explicitly in an intermediate
language.

B.1 Example: Power
In this section, we visualize the intermediate states of generating
code for the power function discussed in Section 2. The following
code shows the power function and MyInt class implementation:
def power(x:Int, n:Int): Int =

if (n == 0) 1 else x * power(x, n - 1)

// symbolic integer type

class MyInt(ref: String) {

def *(y: MyInt) = {

val id = freshName();

println(s"int $id = $ref * ${y.ref};");

new MyInt(id)

} }

// implicit conversion Int -> MyInt

implicit def constInt(x: Int) = new MyInt(x.toString)

The power function is recursive, with the bottom case reached when
n becomes zero. Following the standard call-by-value evaluation
rules, steps 1-8 show how power is expanded for n = 4, 3,..., 1.
1 J power(new MyInt("in"), 4) K
2 J if (4 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 3)) K
3 J new MyInt("in") * power(new MyInt("in"), 3) K
4 J new MyInt("in") * (

if (3 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 2)) K
5 J new MyInt("in") * (new MyInt("in") * power(new MyInt("in"), 2)) K
6 J new MyInt("in") * (new MyInt("in") * (

if (2 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 1)) K
7 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * power(new MyInt("in"), 1))) K
8 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (

if (1 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 0)))) K

When power is invoked with n = 0, we reach the bottom of the
recursion, i.e., no further function calls will be pushed on the call
stack. It is the time to go up and perform the remaining evaluation
actions, which will generate code.
9 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") *

power(new MyInt("in"), 0)))) K
10 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") *

if (0 == 0) 1 else power(new MyInt("in"), -1)))) K

14



How to Architect aQuery Compiler, Revisited SIGMOD’18, June 10–15, 2018, Houston, TX, USA

The base case of power returns the value 1. Next, the multiplication
operator in MyInt("in") * 1 emits the first line int x0 = in * 1, as
side effect, and returns MyInt("x0").
11 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") * 1))) K
12 int x0 = in * 1

J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * new MyInt("x0"))) K

Similarly, the remaining multiplication expressions in steps 13-15
generate the rest of the code.
13 int x0 = in * 1

int x1 = in * x0

J new MyInt("in") * (new MyInt("in") * new MyInt("x1")) K
14 int x0 = in * 1

int x1 = in * x0

int x2 = in * x1

J new MyInt("in") * new MyInt("x2") K
15 int x0 = in * 1

int x1 = in * x0

int x2 = in * x1

int x3 = in * x2

J new MyInt("x3") K

Once the full code is generated, the result is stored in the variable
x3, and the final return value will be MyInt("x3").

B.2 Example: Aggregate Query
Following the programmatic specialization ideas discussed in Sec-
tion 4, we expand the preliminary example presented there and
show how query code is generated for the following aggregate
query end to end:
select edname count(*)

from Emp

group by edname
Γ

Emp

Π Print(

Agg(Scan("Emp"))

(x => x("edname"))(0)

((agg,x) => agg + 1))

We first consider the basic programmatic specialization approach
that generates Scala. After that, we walk through the optimized
programmatic specialization approach that generates native C code,
complete with specialized data structure implementations.
Programmatic Specialization (Scala). The first instance uses the
simplified Record and HashMap implementations discussed in the
beginning of Section 4 to generate code in Scala. The first expansion
step specializes the engine with static input (e.g., attribute names,
aggregate parameters, etc.) and evaluates Print.execwith an empty
callback (since Print is the root operator, there is no remaining
processing at this point).
// Schema edname: String, eid: Int

// generating Emp table as Buffer

val Emp = Buffer() // preloaded

1 J Print(Agg(Scan("Emp"))(x => x("edname"))(0)((agg,x) => agg + 1)).exec(t => ()) K

In the second step, the Print operator evaluates the execmethod of
the Agg operator with print as a callback.
2 J Agg(Scan("Emp"))(x => x("edname"))(0)(

(agg,x) => agg + 1).exec(t => printRec(t)) K

Performing Agg.exec generates code to create a hash map and
evaluates the Scan.execmethod with a callback that performs the
aggregate operation i.e., extracting the grouping key, updating the
Hashmap, accumulating the aggregate computation, etc.
// generating a hash map data structure

3 val hm = new HashMap(Seq(StringField("edname")), Seq(IntField("count")))

J Scan("Emp").exec{t =>

val key = t("edname")

hm.update(key, 0) { c => c + 1 }

}

for (t <- hm) printRec(t) K

The Scan.execmethod is then evaluated and generates the scan of
all the tuples in the table. The second part of the Agg method is

also evaluated, the for (t <- hm) comprehension calls the foreach
method of the HashMap and generates a for loop:
// generating code for the scan method, hash map update and printing tuples

4 val hm = new HashMap(Seq(StringField("edname")), Seq(IntField("count")))

for (tuple <- Emp) {

val key = tuple("edname")

hm.update(key, 0) { c => c + 1 }

}

for (tuple <- hm)

printf("%s|%d\n", tuple("edname"), tuple("count"))

We observe that the generated Scala code is not yet fully optimized.
The hash map and the update operation are generated in a high-
level form. As a consequence, generating the equivalent C code
would rely on a library such as Glib to provide the underlying
data structure code. In the following optimized programmatic
specialization approach, we walk through specializing the Emp table,
Record and HashMap classes to generate optimized C code.
Optimized Programmatic Specialization (Native C). We use
the same example query but now we use the specialized Record

and HashMap implementations to generate optimized code in C, as in
Sections 4.1 and 4.2. The starting point is the same.
// Schema edname: String, eid: Int

0 J val Emp = Buffer() // preloaded

Print(Agg(Scan("Emp"))(x => x("edname"))(0)((agg,x) => agg + 1)).exec(t => ()) K

The first expansion step generates code for the Buffer that contains
the table Emp. Given a column-oriented storage, each attribute
(edname and eid) is generated as one-dimensional array.
1 // generating Emp table as two flat arrays: ednames and eids

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

J Print(Agg(Scan("Emp"))(x => x("edname"))(0)((agg,x) => agg + 1)).exec(t => ()) K
2 // table

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

// expanding the aggregate operator with Scan as a child and printRec as a callback

J Agg(Scan("Emp"))(x => x("edname"))(0)(

(agg,x) => agg + 1).exec(t => printRec(t)) K

The following step, i.e., evaluating Agg.exec, instantiates a new
generation-time HashMap instance. As discussed in Section 4.2, a
high-level hash map specializes to flat arrays (i.e., key_ednames and
used) as illustrated in the following steps.
3 // table

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

J val hm = new HashMap(Seq(StringField("edname")), Seq(IntField("count")))

Scan("Emp").exec{t =>

val key = t("edname")

hm.update(key, 0) { c => c + 1 }

}

for (t <- hm) printRec(t) K
4 // table

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

// generating HashMap - hm as flat arrays: key_edname and used

int* agg_count = malloc(size * sizeof(int));

char* key_edname = calloc(size * sizeof(char*));

int* used = malloc(size * sizeof(int));

int next = 0;

J Scan("Emp").exec { t =>

val key = t("edname")

hm.update(key, 0) { c => c + 1 }

}

for (t <- hm) printRec(t) K

This leaves execution of Scan.exec, its callback, and the embedded
call to hm.update. Next, the Scan’s for loop is generated, the tuple
is instantiated as a specialized Record and the hm.update with its
aggregate function is expanded.
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// struct definitions
struct Anon1017206272 { // string
char* str;
int length;

};
struct Anon711418583 {
struct Anon1017206272 edname_166;

};
struct Anon2377293 {
long _0;

};
struct Anon327205970 { // Emp record
int eid_165;
struct Anon1017206272 edname_166;

};
struct Anon1877930583 { // Agg entry
bool exists;
struct Anon711418583 key;
struct Anon2377293 aggs;

};
// main function
int main(int x0, char** x1) {
long x2 = DEFAULT_INPUT_SIZE;
long x3 = x2;
long x4 = 0L;
char** x7 = (char**)malloc(x2 *

sizeof(char*));
char** x8 = x7;
int* x9 = (int*)malloc(x2 *

sizeof(int));
int* x10 = x9;
long x14 = 0L;
bool x15 = false;
int x11 = open("Emp.tbl",0);
long x12 = fsize(x11);
char* x13 = mmap(0, x12, PROT_READ,

MAP_FILE | MAP_SHARED, x11, 0);
bool x101 = !true;
for (;;) {
// ... parse and load data elided ...
char** x96 = x8;
char* x53 = x13+x42;
x96[x76] = x53;
int* x98 = x10;
long x51 = x50 - x42;
int x54 = (int)x51;
x98[x76] = x54;
x4 = x4 + 1;
x15 = x101;

}
long x118 = DEFAULT_AGG_HASH_SIZE ;
long x133 = x118 - 1L;
long x158 = 0L << 6;

struct Anon2377293 x222;
x222._0 = 1L;
bool x252 = true == false;
int x106;
for(x106=0; x106 < 1; x106++) {
bool x107 = false;
long x108 = 0L;
char** x111 = x8;
char** x112 = x111;
int* x113 = x10;
int* x114 = x113;
struct Anon1877930583* x119 = (struct

Anon1877930583*)malloc(x118 *
sizeof(struct Anon1877930583));

struct Anon1877930583* x120 = x119;
long x121 = 0L;
long* x122 = (long*)malloc(x118 *

sizeof(long));
long x124;
for(x124=0L; x124 < x118; x124++) {
// ... initialize hash map elided ...

}
long x136 = 0L;
// scan loop over Emp table
for (;;) {
bool x139 = x107;
bool x140 = !x139;
bool x145 = x140;
if (x140) {
long x141 = x108;
long x142 = x4;
bool x143 = x141 < x142;
x145 = x143;

}
bool x146 = x145;
if (!x146) break;
long x148 = x108;
x108 = x108 + 1;
char* x150 = x112[x148];
int x151 = x114[x148];
long x157 = 5381;
int x156 = 0;
for(; x156 < x151; x156++) {
x157 = ((x157 << 5) + x157)

+ x150[x156]; } // hash
long x159 = x158 + x157;
long x160 = x159 & x133;
long x161 = x160;
struct Anon1877930583* x162 = x120;
struct Anon1877930583 x163 = x162[x160];
struct Anon1877930583 x164 = x163;
bool x165 = x163.exists;
bool x178 = x165;

if (x165) { // hash lookup: fast path
struct Anon1877930583 x166 = x164;
struct Anon711418583 x167 = x166.key;
struct Anon1017206272 x168 = x167.edname_166;
int x171 = x168.length;
bool x172 = x171 == x151;
bool x175 = x172;
if (x172) {
char* x170 = x168.str;
bool x174 = strncmp(x170,x150,x171) == 0;
x175 = x174;

}
bool x176 = x175;
x178 = x176;

}
bool x179 = x178;
if (x179) {
struct Anon2377293 x180 = x163.aggs;
struct Anon711418583 x184 = x163.key;
long x181 = x180._0;
long x182 = x181 + 1L;
struct Anon2377293 x183;
x183._0 = x182;
struct Anon1877930583 x185;
x185.exists = true;
x185.key = x184;
x185.aggs = x183;
x162[x160] = x185;

} else { // open addressing loop (slow path)
struct Anon1017206272 x152;
x152.str = x150;
x152.length = x151;
struct Anon711418583 x155;
x155.edname_166 = x152;
struct Anon1877930583 x223;
x223.exists = true;
x223.key = x155;
x223.aggs = x222;
for (;;) {
struct Anon1877930583 x188 = x164;
bool x189 = x188.exists;
bool x232;
if (x189) {
struct Anon711418583 x190 = x188.key;
struct Anon1017206272 x191 =

x190.edname_166;
int x194 = x191.length;
bool x195 = x194 == x151;
bool x198 = x195;
if (x195) {
char* x193 = x191.str;
bool x197 = strncmp(x193,x150,x194) == 0;
x198 = x197;

}

bool x199 = x198;
bool x219;
if (x199) {
struct Anon2377293 x200 = x188.aggs;
long x204 = x161;
struct Anon1877930583* x206 = x120;
long x201 = x200._0;
long x202 = x201 + 1L;
struct Anon2377293 x203;
x203._0 = x202;
struct Anon1877930583 x205;
x205.exists = true;
x205.key = x190;
x205.aggs = x203;
x206[x204] = x205;
x219 = false;

} else {
long x209 = x161;
long x210 = x209 + 1L;
long x211 = x210 & x133;
x161 = x211;
struct Anon1877930583* x213 = x120;
struct Anon1877930583 x214 = x213[x211];
x164 = x214;
x219 = true;

}
x232 = x219;

} else {
long x221 = x161;
struct Anon1877930583* x224 = x120;
x224[x221] = x223;
long x226 = x121;
x122[x226] = x221;
x121 = x121 + 1L;
x232 = false;

}
if (!x232) break;

}
}

}
long x241 = x121;
long x243;
for(x243=0L; x243 < x241; x243++) {
// ... print output elided ...

}
free(x119);
free(x122);

}
return 0;

}

Figure 14: The final C code LB2 generates for the aggregate query shown at the beginning of Appendix B.2

5 // table

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

// HashMap - hm

int* agg_count = malloc(size * sizeof(int));

char* key_edname = calloc(size * sizeof(char*));

int* used = malloc(size * sizeof(int));

int next = 0;

// generating the Scan loop

for (int i = 0 ; i < table_length ; i++) {

J val tuple = Record(Seq(ednames(i),eids(i)), Seq(StringField("edname"),IntField("eid")))

val idx = defaultHash(tuple("edname")) % size

if (isEmpty(key_ednames(idx))) { // disregard possibility of hash collisions

used(next) = idx; next += 1

key_ednames(idx) = tuple("edname"); agg_count(idx) = 0 + 1

} else agg_count(idx) = agg_count(idx) + 1 K
}

J for (tuple <- hm)

printf("%s|%d\n", tuple("edname"), tuple("count")) K

Finishing execution of the last remaining Scala bracket dissolves
the Record access and hash map to individual values i.e., ednames[i]
and arrays i.e., used and key_ednames. Lastly, the for (tuple <- hm)

comprehension completes the generated C code:
6 // table

int table_length = ... // preloaded

char** ednames = ...

int* eids = ...

// HashMap - hm

int* agg_count = malloc(size * sizeof(int));

char* key_edname = calloc(size * sizeof(char*));

int* used = malloc(size * sizeof(int));

int next = 0;

// Scan loop, update the hash map with aggregate computation

for (int i = 0 ; i < table_length ; i++) {

int idx = stringHash(ednames[i]) % size;

if (key_dnames[idx] == 0) { // disregard possibility of hash collisions

used[next] = idx; next += 1

key_ednames[idx] = ednames[i]; agg_count[idx] = 0 + 1

} else agg_count[idx] = agg_count[idx] + 1

}

J for (tuple <- hm)

printf("%s|%d\n", tuple("edname"), tuple("count")) K

7 // table

int table_length = ...

char** ednames = ...

int* eids = ...

// HashMap

int* agg_count = malloc(size * sizeof(int));

char* key_edname = calloc(size * sizeof(char*));

int* used = malloc(size * sizeof(int));

int next = 0;

// Scan loop, update the hash map with aggregate computation

for (int i = 0 ; i < table_length ; i++) {

int idx = stringHash(ednames[i]) % size;

if (key_dnames[idx] == 0) { // disregard possibility of hash collisions

used[next] = idx; next += 1

key_ednames[idx] = ednames[i]; agg_count[idx] = 0 + 1

} else agg_count[idx] = agg_count[idx] + 1

}

for (int idx = 0; idx < used ; idx++) {

int pos = used[idx];

printf("%s|%d|\n", key_edname[pos], agg_count[pos]);

}

In Summary, slightly changing the implementation of Record and
HashMap results in generating optimized code.
Final Generated Code from LB2. Figure 14 shows the final C
code LB2 generates for the same query, without any simplifications
for readability. In contrast to the code shown inline above, the
code in Figure 14 implements a proper hash lookup loop to support
collisions using open addressing. The first iteration of this loop is
peeled to implement a fast path for the common case where the
entry is found without collision. In addition, we found that LB2
often achieves better performance when using structs for aggre-
gate entries, as shown in Figure 14, instead of a fully columnarized
hash table implementation. These differences are all realized using
high-level programming choices, not by low-level compiler trans-
formations. Using proper abstractions, the change is often just a
single line. This highlights again the utility of generative program-
ming in rapidly exploring a multitude of design choices, and in
building systems that can rapidly adapt to changing requirements.
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