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Abstract

We propose a novel approach for compiling MATLAB and
similar languages that are characterized by tensors with
dynamic shapes and types. We stage an evaluator for a subset
of MATLAB using the Lightweight Modular Staging (LMS)
framework to produce a compiler that generates C code. But
the first Futamura projection alone does not lead to efficient
code: we need to refine the rigid stage distinction based on
type and shape inference to remove costly runtime checks.

To this end, we introduce a stage-polymorphic data struc-
ture, that we refer to as metacontainer, to represent MATLAB
tensors and their type and shape information. We use meta-
containers to efficiently “inject” constructs into a high-level
intermediate representation (IR) to infer shape and type in-
formation. Once inferred, metacontainers are also used as
the primary abstraction for lowering the computation, per-
forming type, shape, and ISA specialization. Our prototype
MATLAB compiler MGen produces static C code that sup-
ports all primitive types, heavily overloaded operators, many
other dynamic aspects of the language, and explicit vector-
ization for SIMD architectures.

CCS Concepts -« Software and its engineering — Poly-
morphism; Source code generation.

Keywords staging, polymorphism, generic programming,
MATLAB, tensor computations, SIMD
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1 Introduction

MATLARB is a flexible, dynamic, high-level language that is
widely used in science and engineering for prototyping. Once
a prototype is built, it is typically reimplemented using a low-
level language for efficiency and deployment. To automate
this process, there has been extensive research on automat-
ically optimizing, interpreting, translating and compiling
MATLAB [1, 2, 5, 6, 10, 14, 15, 18, 20, 22, 23, 25, 31, 35, 37—
39, 44, 46, 47]. The rich set of 3520 functions [27] (as of
version 2019a), of which 473 are considered as language-
fundamental and 536 as mathematical, is the reason why all
prior work focused on suitable subsets of MATLAB.

A convenient strategy for building a compiler is to stage
an interpreter; a pragmatic realization of the first Futamura
projection [17]. Frameworks such as LMS [43] have been suc-
cessfully used in this way for compiling not only embedded
DSLs [50] but also external DSLs like SQL [41, 52]. Applying
the same idea to a dynamic language like MATLAB is possi-
ble, but the compiled code will not be efficient. In contrast
to statically typed languages like SQL, which specialize well
into low-level code, a naive staged interpreter for a dynamic
language like MATLAB has to residualize essentially all of
the dynamic type and shape dispatch, since type and shape
information is not statically apparent from the program text.
The solution, then, is to infer the necessary information and
attach it to the source program where available. Thus, the
staged evaluator needs to deal with varying degrees of static
information present or absent, a setting naturally captured
by the concept of stage polymorphism [33, 34].

In this paper, we propose an implementation technique
that is effective and elegantly blends in with the core Fu-
tamura projection idea. We tweak the MATLAB evaluator
so that it performs type inference first and then stages the
remaining computations, passing reified types as values. As
variables can have multiple types in a dynamic language,
type values can be either static or dynamic. This suggests
an encapsulation into a single internally stage-polymorphic
object of a staged expression with its type value and other
possible metadata, such as shape and order, each of which
can be either static or dynamic. We refer to such object in-
stances as metacontainers.

To compile MATLAB code, we start with an initial map-
ping of MATLAB source to a representation as metacontain-
ers without any metadata. Then, we gradually insert type
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and dimension information. Using metacontainers, this infor-
mation is overlaid on the IR representing the computation.

Once type and dimension information is inferred, the in-
formation is then applied back to the metacontainer, creating
a specialized metacontainer. Instead of performing compli-
cated rewrites, the specialization is done through substitu-
tion of the metacontainer components, which results in a
process of combining analyses and transformations [24].

Having a specialized metacontainer for a specific type
or specific dimensions, we obtain a specialized MATLAB
interpreter for a particular program. As a consequence of the
first Futamura projection, our interpreter becomes a compiler
that produces a standalone executable.

In summary, this paper makes the following contributions:

1. We propose the metacontainer abstraction and demon-
strate its use for building compilers. We show that
metacontainers can reduce the complexity and special-
ize IRs, simplifying analysis and transformations.

2. We present a prototypical MATLAB to C compiler
based on this idea. Unlike prior work, our prototype
provides systematic type inference involving all nu-
meric primitives in the supported subset, handles many
dynamic aspects of MATLAB, and generates correct
code with explicit vectorization.

This paper does not focus on generating high-performance
code for MATLAB, as this would require a variety of orthogo-
nal optimizations, which are outside the scope of this project.

2 Background

In this section we provide brief background on MATLAB,
LMS, and stage polymorphism.

2.1 MATLAB

Types and variables Variables in MATLAB are mutable
and untyped, and can be either global or local. We classify
them into three groups: multidimensional matrices, cells and
functions.

Multidimensional matrices, which we refer to as tensors,
consist of single or double precision floats, 8-, 16-, 32- or 64-
bit signed or unsigned integers, representing real or complex
values. Tensors can haven unbounded number of dimensions,
which we refer to as tensor order, and each dimension can
have unbounded value. We use the term shape to refer to
the dimension of a given tensor. As long as the imaginary
component is not present, tensors can represent character
and boolean values. In total there are 12 primitive types,
with double precision floating point as default type. Cells
represent structures and objects. Each cell can consist of
tensors, cells, or functions, which correspond to the fields
and methods in an object oriented model. Functions can be
nested or anonymous. Each function takes multiple tensors,
cells or functions as input and produces one or multiple
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outputs. Functions can be passed as function handles, and
both input and output of functions can have variable length.

Apart from the three base groups above, recent versions
of MATLAB also provide additional datatypes, including:
sparse matrices, strings, tables, categorical arrays, persistent
variables, datetime arrays and duration arrays.

Indexing MATLAB employs a versatile mechanism for in-
dexing tensors. The indexing is done using one or several
subscripts. These can be scalar literals, scalar variables, vec-
tor expressions, vector variables and colon notation (:). The
behaviour depends on the shape of the variable at a given
point in the program. The indexing can be used to obtain
values or set values in a tensor. We refer to the former as
indexed read and to the latter as indexed assignment.

Built-in operators in MATLAB provide arithmetic, order-
ing, and boolean logic that can be applied to tensors of any
order. There are exceptions to the rule, such as tensor con-
tractions and transposition operators, that are designed to
work with two-dimensional matrices (i.e. second-order ten-
sors) only. Unlike arithmetic operators in C/C++, MATLAB
uses saturated arithmetic, avoiding overflows and underflows.
We refer to the different type combination in operators as
type interaction.

Loops The language supports for and while loops. The
for-loops are specified with a start and an end value, as well
as an iterator, each represented by a scalar of the 12 primitive
types. If a non-scalar value is used, MATLAB will extract the
non-imaginary part of the first element. Alternatively, the
for loops can iterate over all values of a tensor, similarly as
a foreach construct. MATLAB loops support early exit and
continuation of loops using break and continue.

Conditionals Conditionals are implemented through if-
then-else and switch constructs. The if and while con-
ditionals are formed with a boolean expression that results
in a tensor, which is consider true iff all elements in the
non-imaginary component of the tensor are non-null val-
ues. switch is comprised of switch-expressions and constant
case-expressions which can be of any type.

Exceptions Exception handling is supported in MATLAB
through throw-try-catch constructs. The exception termi-
nates the running function and returns control either to the
keyboard or to an enclosing catch-block.

2.2 LMS

Multi-stage programming [51] was introduced to simplify
program generator development by expressing the program
generator and parts of the generated code in a single program,
using the same syntax. LMS uses only types to distinguish
the computational stages. Expressions of type Rep[T] in the
first stage yield a computation of type T in the second stage.
For example, the operation
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1 val (a, b): (Int, Int) = (2, 3)
2 val c: Int = a + b

will simply execute the arithmetic operation, while

1 val (a, b): (Rep[Int], Rep[Int]) = (2, 3)

2 val c: Rep[Int] = a + b
uses the higher-kinded type Rep[_] as a marker type to
redirect the compiler to use an alternative plus implementa-
tion. LMS does not directly generate code in source form, as
earlier approaches, but provides an extensible intermediate
representation (IR) instead. The overall structure is that of a
“sea of nodes” dependency graph [12].

Building compilers with LMS LMS and its extensible IR
can be used as a framework to implement compilers, by spe-
cializing a high-level interpreter with respect to a given pro-
gram (the first Futamura projection [17]). Prior work [41, 42]
demonstrates compilation of SQL queries to an efficient C-
code, by a sequence of small transformations used to special-
ize a query evaluator with respect to a query plan.

Transformations in LMS Transformations in LMS work
as IR interpreters, using iterated staging, that are built as
chain of LMS-based compilers one after another. Each trans-
former schedules the sea-of-node IR representation, follow-
ing node dependencies, and then traverses the IR to apply
the transformations. In this process, instead of modifying
existing nodes, for each transformation LMS creates new
nodes, with new dependencies to the existing nodes.

Parametric stage polymorphism maintains in a single
code base a staged version and one for regular execution. To
illustrate, consider the two versions of a plus operator:

1 type Idt[T] =T
2 def add(a: Idt[Int], b: Idt[Int])
3 def add(a: Rep[Int], b: Rep[Int])

// regular

b
b // staged

mnn
0 o

The two functions can be merged into a single polymor-
phic function that takes a compile-time higher-kinded type
parameter R[_] that can be either Idt or Rep:

1 def add[R[_J] (a: R[Int], b: R[Int])

2 (implicit n: NumericOps[R[Int]]) = n.plus(a, b)

and an implicit type class NumericOps that provides the
staged or the regular implementation of the plus operator:

1 class NumericOps[RLTI] {

2 def plus (a: R[T], b: RLT]) : RLT]
3 def minus (a: RLT], b: RLTI) : RIT]
4
5

oo
-
[

def times (a: RLT], b: RLTI) : RLT]
3

When applied to Scala for comprehensions, we can encode
loop unrolling optimization in a single type parameter:

1 for[R[_J] (range: R[Rangel) { body }

GPCE ’19, October 21-22, 2019, Athens, Greece

Similarly parametric stage polymorphism can be applied
to arrays, effectively encoding scalar replacement as a type
parameter, controlled by two parameters R1 and R2:

1 val a: R1[Array[R2[T]]

This allows us to have either a staged array, or an array of
staged elements. The abstraction can also be used to encode
SIMD vectorization also as a type parameter [48]. Finally, we
can combine all these axes of polymorphism into a single
array abstraction with multiple type parameters. Each type
parameter will control whether the array is scalar or not,
whether we generate loops or unrolled code, having scalar
or vector instructions.

3 Metacontainers

In this section we define the metacontainer abstraction and
describe its use in staging functions. We consider staging a
dynamically typed language with numerical computations
in LMS, where an expression is represented with a staged
symbol, as well as its type value:

1 val value: Rep[Any] // Staged expression, type unknown
2 val typ : Rep[Typ]l // Corresponding type value

In this situation, a staged function must reason about values,
as well as their corresponding types. Consequently, a simple
implementation of a plus would result in:

1 def plus (a: Rep[Any], a_typ: Rep[Typl,
2 b: Rep[Any], b_typ: Rep[Typl) = { ... }

To simplify usage, staged expressions can be “boxed” in wrap-
per classes, along with their type values:

1 class Number ( // class wrapper - metacontainer
2 val value: Rep[Any] // metacontainer reference

3 val typ : Rep[Typ] // reference metadata
4

) {3

We call this wrapper class a metacontainer. As the meta-
container is defined for the staged variable value, we refer
to it as a metacontainer reference. The staged variable typ
represents a property of the metacontainer reference or, in
other words, it carries its metadata.

With this approach, operator signatures can be simplified:

1 def plus (a: Number, b: Number) = { ... }

or can become routines in the metacontainer itself:

1 class Number(val typ: Typ[Anyl, val value: Rep[Anyl) {
2 def plus (rhs: Number): Number =

3 (typ, rhs.typ) match {

4 case (DoubleTyp, DoubleTyp) =>

5 new Number (DoubleTyp,

6 numeric_plus[Double](value, rhs.value))

7 case (DoubleTyp, FloatTyp) =>

8 plus(rhs.cast(DoubleTyp))

9 case (DoubleTyp, IntTyp) => {/* all others =*/}
[
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The metacontainers are abstractions that will be removed
during code generation, emitting code in which the meta-
container reference and its metadata are “unboxed.” In the
example above, the generated code will perform type in-
spection for the two primitive operands to invoke the type-
specific computation, such that it corresponds to the pattern
matching expression. However, during the staging phase,
metacontainers are regular Scala object instances. Therefore,
we can define them more formally:

Definition 3.1. A metacontainer is a runtime object wrap-
per for a given metacontainer reference that includes its
metadata and a set of routines associated with it. In every
metacontainer, the metacontainer reference is a set of at
least one staged variable and the metadata is a set of runtime
objects, staged variables or other metacontainers.

Metacontainers can leverage all properties from the object-
oriented paradigm. They can be nested, can be polymorphic
or their routines can be overridden. To illustrate this, con-
sider a variable that does not change its type in a given
program. If we can infer this information, we can specialize
its representation in the Number metacontainer:

1 class FloatNumber(value: Rep[Float])

2 extends Number (FloatType, value) {

3 override def plus (rhs: Number) = rhs.typ match {
4 case DoubleTyp => cast(DoubleTyp).plus(rhs)

5 case FloatTyp => new FloatNumber(

6 numeric_plus[Float](a.value, b.value))

7 case IntTyp => { .. }

8 // Implement other type combinations

9 3

0

10 3

In this particular case, the type inspection will be specialized
to pattern match only one operand instead of two, which
provides a more efficient program.

The polymorphic structures can be built on top of each
other, using nested metacontainers. To illustrate, consider
a stage polymorphic implementation of a complex number
that is built on top of the Number metacontainer:

abstract class Element
case class Real (re:Number) extends Element {
def plus(rhs:Element) = rhs match {
case Real (r) => Real (re+r)
case Complex(r,i) => Complex(re+r, i)

}

NN U R W N =

class Complex(re:Number, im:Number) extends Element {
def plus(rhs:Element) = rhs match {
case Real (r) => Complex(re+r, i)
case Complex(r,i) => Complex(re+r, im+i)

3

e
[T SRS )

}

Apart from stage polymorphic specialization, an impor-
tant property of metacontainers is that they can be used to
define relationships between staged expression stored in the
metacontainer. The high-level dependencies are only visible
in the metacontainer, but are not explicitly present in the
underlying representation of the staged program in LMS. In
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Function Description

-/ kT Pointwise arithmetics

< <= >>= == ~= Relational operators

&& || xor not Logical operators

mtimes Matrix-matrix multiplication

A’ / transpose
a/sin a/cos a/tan
abs sqgrt

exp log loglo
ceil floor round fix
mod rem

conj

length size numel
min max sum mean
zeros ones rand

: colon

horzcat vertcat

Matrix transpose

Trigonometry functions

Absolute value or square root of a tensor
Power and logarithmic functions
Rounding

Modulo and reminder

Complex conjugate

Tensor dimension inspection.

Min, max, sum, mean of a tensor

Tensor initializations with 0, 1 or random
Unit-spaced vector indexing

Horizontal and vertical tensor concatenation

Table 1. Subset of MATLAB supported in MGen

the examples above, this is the relationship between a vari-
able and its type. The implications and use of this property
are discussed in the subsequent sections.

4 MGen

In this section we describe MGen. First we define the sup-
ported subset of MATLAB and provide a high-level overview
of the design and generator phases. Then, we describe in de-
tail the methodology used to infer types and shapes, and how
we lower the computations to low-level C representation.

4.1 Supported Subset

MGen supports user-defined global functions, provided as .m
files, but no nested functions, anonymous functions or func-
tion handles. Excluded are also variable length arguments,
global variables, structures, cell arrays, MATLAB classes,
and recently included MATLAB types such as strings, sparse
matrices, tables, timetables, categorical arrays, date and du-
ration arrays, and persistent variables. MGen supports all 12
primitive types including numeric classes, boolean types and
characters, and multi-dimensional arrays with variable-size
complex or real data.

MGen supports double-precision, single-precision, and
integer saturated arithmetic. The supported built-in func-
tions are listed in Table 1. if, switch, for, while are fully
supported, while continue and break are not. Indexing is
supported for tensors of any order and shape, including linear
and logical indexing and indexing with multiple subscripts.

4.2 High-level Overview

Fig. 1 shows a high-level overview of MGen. The input is a
MATLAB or a Scala program, and the output is a standalone
C program. The interface allows several MATLAB functions
as input, one of them being the entry point. For this paper,
we omit the description of the Scala front-end.
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| Set of provided ISAs

| Use MATLAB type interaction

| Use Dimensions Constraints

| Sanitize Input |

| Type / Shape annotations

foo.scala foo.m
'
’ leDSL Tame-IR ‘\
v
M-IR
SSA, D(IZE, CSE

emmees Shape Inference ~ ----- N
|

Type / Complex Inference
|
Order Lowering

Dimension Lowering

C-IR
|
Memory Allocations
|
Type / Complex Specialization
|

Operator Lowering

Vectorization

C Code

Figure 1. MGen Design Overview

Besides the input functions, MGen also takes type and
shape information for the function input and switches to
toggle runtime checks in the generated code.

First, MGen builds the initial Math IR (M-IR) represen-
tation of the program in LMS. For parsing we use McLab
Core [8] that outputs the Tame-IR [15] representation, which
is translated to LMS. Next, LMS converts the program into
SSA form, and performs dead-code elimination and com-
mon subexpression elimination. Once complete, we initiate
a set of analysis and transformation phases to infer program
properties:

1. The first phase is type and complex type inference.

2. For each operator we propagate and infer the resulting
tensor order.

3. Once the tensor order is known to be a constant or
variable, we perform analysis and transformations to
infer each dimension value.

Once these phases are complete, we obtain an M-IR that
provides constant or symbolic values describing the type
and the shape of each variable. With these informations, we
can lower the M-IR representation into a C-like intermediate
representation in several steps:

1. For each program variable, we create memory refer-
ences that will be allocated in subsequent phases.

2. For each computation, we take the inferred types from
the M-IR, and generate code that performs type special-
ization on all the type combinations of the variables
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involved in the computation. We use the inferred type
and dimensions to complete memory allocations.

3. Once types are specialized for each tensor, we perform
operator lowering to a low-level C-IR.

4. If a vector ISA is specified, each operator is vectorized
and ISA-specialized code is generated.

The result of the generator is a self-contained C-code bundle
that can include one or several functions. Next we provide
details on each step.

4.3 Building the M-IR

M-IR overview The M-IR provides LMS definitions for all
supported MATLAB operations in Table 1. Each definition
extends the ShapeDef interface:

1 abstract class ShapeDef extends Def[Shape] {

2 val typedFunction : TypedFunction // tensor type
3 val complexFunction: ComplexFunction // complex type
4 val dimLenFunction : LengthFunction // tensor order
5

3
Since MATLAB is typeless, Exp[Shape] is used as the default
type. For each function, we provide three functions that
propagate the resulting type, complex type, and tensor order
for each operator:

abstract class F[T1{ def apply(t: Seq[T]): Option[T] }
abstract class TypedFunction extends F[Typel]
abstract class ComplexFunction extends F[Boolean]
abstract class LengthFunction extends F[Exp[Int]]

N

TypedFunction holds type rules for each built-in function.
For example, for addition, they are:

double X double —> double
float x double — float
double X intl6 — intl6

. X R

When a given type combination is not valid, the function
returns None. ComplexFunction is similar, describing rules
that determine real or complex data type. LengthFunction
describes the change of the tensor order in each supported
functions. To illustrate, consider a point-wise operations,
e.g., addition or multiplication, applied either to one scalar
and a tensor, or to two tensors. The resulting tensor then
has the maximum order of the two tensors:

1 object PointwiselLength extends LengthFunction {

2 def apply(operands:Seq[Exp[Int]]):Option[Exp[Int]] =
3 Some (math_max (operands (@), operands(1)))

4}

M-IR also includes definitions for overloaded built-in opera-
tors. For example, for addition:

1 case class ShapePlus (...) extends ShapeDef {...}
2 case class ShapePlus1l (...) extends ShapeDef {...}
3 case class ShapePlusN (...) extends ShapeDef {...}
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ShapePlus represents a standard addition, while ShapePlus1

represents addition of tensor and scalar and ShapeP1usN rep-

resents addition of two tensors with identical dimensions.
Each tensor is represented with the metacontainer Shape:

1 class Shape (

2 val exp: Exp[Shapel] // metacontainer reference

3 ) {

4 var pType = Set[Typel() // possible types

5 var pComplex = Set[Booll() // possible complex types
6 var plLen = Option.empty[Exp[Int]] // tensor order

7 var dims = Option.empty[DArray] // tensor dimensions
8 // define metacontainer dependencies

9 def deps () =

10 pLen.toList ::: (dims.tolList.flatMap.(_.deps()))
11 // apply substitutions

12 def transform (f: Transformer) = {

13 if (pLen.nonEmpty) pLen = Some(f(pLen.get))
14 if (dims.nonEmpty) dims = dims.transform(f)
15 3

16 3}

The MATLAB frontend builds the M-IR for each MATLAB
function and generates a metacontainer for each variable.
With the Shape metacontainer we avoid explicit representa-
tion of tensors in LMS, effectively simplifying the M-IR. This
allows us to partially define its components, starting with
an empty metacontainer that will get gradually populated
in the subsequent phases.

4.4 Type Inference

Profiling type rules The MATLAB language is continu-
ously extended with new features and new functions [29]. To
avoid manual inspection of type interaction for operators, we
developed a profiler in MATLAB, that probes our supported
built-in functions with different types and dimensions.

The profiler “brute-forces” for a each function all possible
combination of types, including real and complex types. Not
supported combinations raise an exception. With the oth-
ers, we generate a Scala object that extends TypedFunction
and includes all valid type combinations. For example, for
addition currently 56 out of 144 type combinations are valid.
For example, double + int32 is valid and yields int32. With
the profiler the basic type rules can easily be regenerated for
new versions of MATLAB.

Type inference MATLAB variables obtain their types when
defined and can only change upon assignment. All elements
of a tensor have identical types and an indexed assignment
does not change the type of the variable being assigned.
MATLAB does not support variable declarations and each
variable is the result of a MATLAB expression that is either
a built-in or a user-defined function. Consequently, we can
use data-flow analysis to propagate and infer types.

The type profiles described above allow us to specify types
rules used as type definition for each variable. This allows
us to infer types using analysis based on reaching defini-
tions [32]. The inferred types are then stored in the pType
parameter of the Shape metacontainer.
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Inferring real or complex data To infer real or complex
type of a tensor, we use the same approach for type inference,
using the complex type definitions in complexFunction. The
results of the analysis are then stored in the pComplex com-
ponent of the metacontainer.

4.5 Shape Inference

MATLAB variables obtain their shape as the result of a MAT-
LAB function, and can only change upon assignment or
indexed assignment. In each case, tensor dimensions or ten-
sor order can change or both. Therefore, we perform shape
inference in two steps. First, we infer the tensor order of
each variable. Then, we infer the tensor dimensions.

Infering tensor order To infer the order of tensors, we use
the pLen component of the metacontainer. Initially, only the
input arguments of the program have values set for pLen,
while others are set to None. The first step is lowering the ten-
sor order, by inserting code into the M-IR that reasons about
a possible change of order. LMS uses a sea-of-nodes repre-
sentations; thus, inserting code into the M-IR means creating
new nodes. We perform the transformations by traversing
forward through the M-IR, using the LengthFunction to
propagate the order of tensors.

To illustrate, consider a program computing the n-th Fi-
bonacci number:

1 function [ result ] = fib (n)
2 prev = 1; next = 1;

3 for i = 1:n

4 tmp2 = next;

5 next = next + prev;

6 prev = tmp2;

7 end

8 result = next;

9 end

The lowering is illustrated in Figure 2. For every node in the
initial M-IR (left), we create a metacontainer that contains
the parameters for the tensor orders (right). Effectively, this
process creates new definitions that are overlaid on top of
the initial M-IR.

Unfortunately, adding new nodes into an LMS sea-of-node
IR does not automatically make them part of the IR itself, as
long as there are no dependencies between the old nodes and
the new nodes. LMS allows us to define an anti-dependency
relationship, that establishes a “must not after” scheduling of
nodes. To achieve that, we use the deps method of the Shape
metacontainer, and ensure that the metacontainer interfaces
with LMS:

// override LMS methods for anti-dependencies
def softSyms(e: Any): List[Sym[Any]]l = e match {
case d: ShapeDef => findDefinition(d) match {

case Some(TP(s, _)) =>
Shape(s).deps() ::: super.softSyms(e)
3

case _ => super.softSyms(e)

3

0N NG W =
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metacontainer

M-IR

- assign [«-""

dependency

immutable
variable

mutable
variable

metacontainer
dependency

——» Forloop(1:n) |

ForLoop(1:n)

Figure 2. Transformation of the initial M-IR Fibonacci program using metacontainers. In this transformation we add definitions

for the number of dimensions in the metacontainer.

Figure 3. Inferring tensor orders is done by disposing the
metacontainers, which effectively means analyzing integer
operations which are overlaid on top of the M-IR

Consequently, the relationship between a given tensor, and
its order is no longer stored in the IR, but in the metacon-
tainer. This property plays a crucial role in the next step of
inferring the orders. Namely, by ignoring the metacontain-
ers, we implicitly remove the dependencies with the tensor
computations, and thus obtain only the overlaid IR as shown
in Figure 3. This IR contains integer operations only, which
are natively supported by LMS and due to its low-level repre-
sentation, allows us to perform analysis and transformations
using the optimizations already available in LMS. In this
respect, we extend LMS with support for data-flow analysis
based on constant propagation [53].

The result of the analysis is a mapping of mutable variables
to immutable variables or constants, which can be substituted
in the overlaid IR for specialization. Using the transform
method we do the same for each metacontainer.

After transform is executed on all metacontainers, pLen
is substituted with another symbol or a constant. Conse-
quently, dependencies in deps are automatically restored.
Finally, we obtain an M-IR that holds all possible types and
complex types of a variable, as well as the tensor orders at
each point in the program. We can now proceed do the next
step: inferring dimension values.

Infering dimension values First we need an abstraction
to reason about dimensions. Since they can grow in length
and can change their respective values, we use an array-like
structure. In MGen, we use metacontainers:

abstract class DArray {
def length (): Exp[Int]
def apply (i: Exp[Intl)
def update (i: Exp[Int], v: Exp[Int]): Unit
def deps (): List[Sym[Any]]

1

2

3 Exp[Int]
4

5

6 def transform (f: Transformer): DArray
7

8

9

0

def isScalar (): Exp[Boolean]
def isVector (): Exp[Boolean]
def isMatrix (): Exp[Boolean]

Similarly to the Shape metacontainer used to represent ten-
sor variables, we provide a method to return all dependencies
of a DArray metacontainer. We also provide a transforma-
tion method, but unlike the Shape metacontainers, trans-
formations in DArray return new instances of DArray. As
metacontainers can be nested, deps and transform of the
Shape metacontainer also take into consideration the DArray
dependencies, and specialize the data-structure.

DArray metacontainer specialization is done through poly-
morphic structures that are built with arrays of staged el-
ements for tensors with fixed order or staged arrays for
tensors with variable order:

1 type RInt = Exp[Int]

2 type Scalar = Array[Exp[Int]]

3 type Staged = Exp[Array[Int]]

4

5 case class DArrayScalar(dims: Scalar) extends DArray {
6 def length (): RInt = Const(dims.length)

7 def apply (idx: RInt) : RInt = idx match {

8 case Const(c) => dims.applyOrElse(c, Const(1))
9 ¥

10 def update (idx: RInt, v: RInt) = idx match {

11 case Const(c) => dims(c) = v

12 3

13}

14 class DArrayStaged(n:RInt,arr:Staged) extends DArray {
15 def length (): RInt =n

16 def apply (i: RInt): RInt arr (i)

17 def update (i: RInt, v: RInt) { arr(i) = v }

18 }

The two polymorphic structures are created in a forward
pass of the M-IR and are stored in the dim component of
each Shape metacontainer. This abstraction allows us to
treat dimensions in a single codebase upton lowering an
operation, but more importantly, once we use DArrayScalar,
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dimension values are treated as scalar variables, which are
simpler to analyze through data-flow analysis.

In addition, the DArray metacontainer allows us to per-
form dimension inspection and retrieve the order of the
tensor. Depending on the type of the instance of the DArray,
these checks will either be resolved during staging, or to
ropagate in the runtime of the generated code. This allows
us to separate the overloaded operators in MATLAB. For
example, consider the pointwise addition operator that is
overloaded for two tensors of order n as well as one tensor
of order n and a scalar:

1 override def transformStm(stm: Stm) = stm match {

2 case TP(lhs_sym, rhs_def@ShapePlus(a, b)) => {

3 val (sa, sb) = (Shape(a), Shape(b))

4 val (da, db) = (sa.dims.get, sb.dims.get)

5 // separate the overloaded implementations

6 var (r, d) = (da.isScalar(), db.isScalar()) match {
7 case (Const(true), _) => (shape_plus_1(b,a), db)
8 case (_, Const(true)) => (shape_plus_1(a,b), da)
9 case _ =>

10 assert(check_for_equal_dimensions(da, db))
11 (shape_plus_n(fa, fb), da)

12 3

13 // reconstruct the resulting metacontainer
14 val shape = Shape(r)

15 shape.dims = Some(d)

16 shape.pType = Shape(lhs_sym).pType

17 shape.pComplex = Shape(lhs_sym).pComplex
18 shape.exp

19 }

20 %}

When the lowering phase completes, we obtain yet another
overlaid IR that reasons about dimension values. Then we
perform another round of analysis based on constant propa-
gation. Similarly as before, the analysis is then applied to all
metacontainers involved, which performs substitutions in
the Shape metacontainer and in the DArray metacontainer as
well. When substitutions in DArray instances occur, a staged
DArray can also be specialized to a scalar DArray. In that
particular case, the old DArray metacontainer is disposed,
and a new one is generated.

At the end of the shape inference phase, we have inferred
the shape and the type of each tensor. With that information,
the next phase is lowering the computation into a C-like
representation.

4.6 Conversion to C-IR

To start the conversion, we traverse the M-IR forward and
map each Shape metacontainer into a CShape metacontainer.
CShape resembles Shape, but differs in important ways. In-
stead of maintaining a set of possible types for a tensor, it
includes a type descriptor td and a complex type descriptor
cd that keep track of the current type and complex type of
the tensor at a particular location in the C-IR. It also includes
a staged variable that represents the array responsible for the
tensor data. As MATLAB tensors can take arbitrary shape,
we represent the tensor data as a HeapArray of any type,
which (as the name suggests) represents an array allocated
on the heap. The interface of CShape is given as follows:
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abstract class CShape(shapeMIR: IR.Shape) {
val id: C.Exp[C.HeapArray[Any]] // tensor data
val td: C.Var[Typel // tensor type
val cd: C.Var[Boolean] // complex type
val 1d: DArray // tensor dimensions

def allocate (): C.Rep[Unit] // allocate memory

def terminate (): C.Rep[Unit] // free memory

def getCArray (tp: Type, isComplex: Boolean): CArray
¥

N e N I N O

The 1d parameter represents a DArray instance, which
is a one-to-one translation of an M-IR Shape.dims meta-
container. The metadata in this metacontainer provides us
with all necessary information to allocate tensor data. For
this purpose we include a method allocate to govern heap
allocations, and terminate to relinquish them.

CShape specializes on input and output tensors, as well
as tensors that represent intermediate operations. The input
and output tensors are represented with C-struct objects
containing memory regions for the data, as well as dimension
and type information, while the intermediate tensors are kept
“unboxed” in the generated code.

Memory allocations When lowering a MATLAB compu-
tation to C-IR, we need to allocate memory regions to store
the results of the computation. When assigning and reading
tensor variables in the M-IR, we also need to allocate and
copy tensor data in the C-IR. As the CShape holds all required
informations including dimension, type and complex type,
each allocation generates code that calculates the required
memory in bytes, and invokes malloc. Each assignment and
each read results in a memcpy call. Each CShape is terminated
at the end of the block where it is allocated.

Type specialization To lower M-IR computations into C-
IR, we need to know the exact type of every variable at a
given point in the program. To achieve that, we specialize a
CShape metacontainer to a CArray metacontainer with fixed
type and fixed complex type:

abstract class CArray {
val tpe : Type
val complex : Boolean // fixed complex type

1

2 // fixed type

3

4 def size (): Rep[Int] // linear tensor size
5

6

7

def apply (i: Rep[Int]): Element
def update (i: Rep[Int], s: Element): Unit
¥

Since CShape can hold multiple types, we devise a method
concretize, that takes all possible types of all operands of a
MATLAB operator, and generates nested switch statements
for all possible type combinations. The possible types are
provided by the M-IR Shape metacontainer for each operand,
and the valid type combinations per operator are then pruned
through the corresponding TypeFunction also provided by
the M-IR. This routine generates all possible combinations
of CArray, and for each we include the lowering as a contin-
uation in the concretize routine.

The abstraction vastly simplifies the lowering to C-IR.
Consider the lowering of the addition operator:
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1 trait MIR2CIR extends NestedBlockTraversal {

2 val IR: MIR, C: MCIR

3 def traverseStm (stm: IR.Stm): Unit = stm match {
4 case (s: Sym[_], op@ShapePlusN(a, b)) =>

5 val (ca, cb) = CShape(s), CShape(a))

6 val cs = CShape(s)

7 // use 'concretize' to generate all possible

8 // type combinations for the addition operator

9 concretize (op)(ca, cb)(cs)(

10 (p: CArray, q: CArray, r: CArray) => {

11 // lower a specific type combination

12 C.loop(r.size(), i => r(i) = p(i) + q(i))
13 }

14 )

15 // all other cases are implemented here

16 3}

The routine shown above iterates through all elements of
the tensor and performs addition. The abstraction allows
us to handle any type combination and any complex type
combination in a single codebase.

Numerical operations LMS supports the operations for
all MATLAB primitives, but does not provide support for
saturated arithmetic. Therefore we extended LMS, provid-
ing the standard operations including addition, subtraction,
multiplication, division and power with saturation. Some of
these functions are straightforward to implement:

1 void saturated_subtraction_u32_t(u32_t a, u32_t b) {

2 if (a < b) return 0; else return a - b;

3%

For others, however, we used the MATLAB Coder [26] to
generate different type combinations, and then we staged
the generated code back in LMS. For example, consider a
power function using 32-bit unsigned integers:

1 void saturated_power_u32_t(uint32_t a, uint32_t b) {
2 uint32_t x, ak, bku; int32_t exitgl; uint64_t uoQ;
3 ak = a; x = 1U; bku = b;

4 do {

5 exitgl = 0;

6 if ((bku & 1U) != oU) {

7 ud = (uint64_t)ak * x;

8 if (u@ > 4294967295UL) u@ = 4294967295UL;
9 x = (uint32_t)uo;

10 }

11 bku >>= 1U;

12 if ((int)bku == @) exitgl = 1; else {

13 ud = (uint64_t)ak x ak;

14 if (u@ > 4294967295UL) u@ = 4294967295UL;
15 ak = (uint32_t)uo;

16 h!

17 } while (exitgl == 0);

18 return x;

19 3}

The primitive numerical operations are then abstracted in the
Element metacontainer with polymorphic structures that
can specialize on real or complex elements, having any of
the 12 primitives in MATLAB. This metacontainer is imple-
mented in a similar fashion as described in Section 3.

4.7 Vectorization

In MGen we vectorize each operator individually. The vec-
torization is done through layers of abstractions that build
on top of the Ims-intrinsics package [49]. We provide
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a short description for each layer, starting from low-level
abstractions and working our way upwards.

Packed operations On top of the Ims-intrinsics, we
build abstractions using metacontainers. We use the Packed
metacontainer that contains a staged variable representing
a vector primitive and its base type. Then we provide op-
erators that also include a parameter that describes the set
of available ISAs. This parameter allows us to opportunis-
tically select the best ISA, and dispatch the corresponding
implementation:

1 def packed_plus (

2 ap: Packed, bp: Packed, setISAs: Set[ISA]
3 ): Packed = {

4 assert(ap.tp() == bp.tp())

5 val exp = ap.getISA() match {

6 case AVX if setISAs.contains(AVX2) =>

7 packed_plus_avx2(ap, bp, setISAs)

8 case AVX if setISAs.contains(AVX) =>

9 packed_plus_avx (ap, bp, setISAs)

10 case SSE if setISAs.contains(SSE2) =>
11 packed_plus_sse2(ap, bp, setISAs)

12 case SSE if setISAs.contains(SSE) =>
13 packed_plus_sse (ap, bp, setISAs)

14 case _ => packed_plus_error(ap, bp, setISAs)
15 }

16 Packed(ap.tp(), exp)

17 3}

18 protected def packed_plus_sse2 (

19 a: Packed, b: Packed, setISAs: Set[ISA]
20 ) = a.typ match {

21 case DoubleType =>

22 _mm_add_pd (a.get[__m128d], b.get[__m128d])
23 case ULongType | LongType =>

24 _mm_add_epi64(a.get[__m128i], b.get[__m128i])
25 case UIntType | IntType =>

26 _mm_add_epi32(a.get[__m128i], b.get[__m128i])
27 case UShortType | ShortType =>

28 _mm_add_epil6(a.get[__m128i], b.get[__m128i])
29 case UByteType | ByteType =>

30 _mm_add_epi8 (a.get[__m128i], b.get[__m128i])
31 case CharType =>

32 _mm_add_epi8 (a.get[__m128i], b.get[__m128i])
33 case _ if setISAs.contains(SSE) =>

34 packed_plus_sse(a, b, setISAs)

35 case _ => packed_plus_error(a, b, setISAs)

In MGen, we do not provide all possible type combina-
tions for packed operators. Instead, we only focus on vector
operations that involve equal types.

Vector operations and vector elements From this point
forward, we follow [48] to build abstractions for data-level
parallelism, however, we use metacontainers instead of type
classes. We abstract vector operations on top of packed op-
erations. They are responsible for dispatching the correct
implementation to satisfy MATLAB type interaction. For ex-
ample, if saturated arithmetic is expected, they dispatch the
implementation that uses saturation, and if not, they proceed
with packed operators that do not reason about overflows
and underflows.

VectorElement is a metacontainer, representing complex
or real vector elements. They can reason about the layout
of the vector primitive they represent, providing specialized
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1 2 3 4 5
Analysis
Type inference v X v N/ A X
Shape inference v X v N/ A X
Overloaded built-ins v X v N/ A X
Range analysis X v v N/A v

Code Generation

Arithmetic operations v X N/ A v X
Saturation arithmetics v v N/A X X
Memory optimizations X v N/A 4 4
Explicit vectorization v X N/A X X

Table 2. MGen features compared to (1) MGen, (2) MATLAB
Coder, (3) Tamer, (4) MiX10 and Mc2For, (5) MATISSE.

implementations for split complex representation or an in-
terleaved complex representation, using the already defined
vector operations.

VArray Finally, to enable vectorization, we specialize CArray
into VArray, providing vectorized loads and stores that apply
or update an instance of VectorElement in the array.

1 abstract class VArray { import C._

2 val tpe: Type

3 def apply (i: Rep[Int]): VectorElement

4 def update (i: Rep[Int], s: VectorElement): Unit
5 %}

VArray can also be further specialized, representing arrays
of complex or real elements.

Every time an operator is lowered to the C-IR, we use the
available set of ISAs provided as input in MGen. If vectoriza-
tion is available, the operator will generate vectorized code.
If not, MGen will switch to the scalar version that is available
for all type combinations.

5 Results

In this section we evaluate MGen’s capability to generate
correct C code for a given set of MATLAB functions. First,
we give an overview on the infrastructure built to validate
MGen-generated code against MATLAB virtual machine ex-
ecution for a given MATLAB function. Then we use the
infrastructure to derive thorough tests to validate type and
shape inference.

We compare MGen’s capabilities to MATLAB Coder [26],
a MathWorks commercial solution for MATLAB to C/C++
compilation. We also compare it to the recent open source re-
search alternatives MATISSE [5], Mc2For [25] and MiX10 [23].
The high level overview of this comparison is shown in Ta-
ble 2. Finally, we evaluate MGen by generating correct C code
for common MATLAB computations and discuss limitations.

5.1 Evaluation

Testing infrastructure Our evaluation is based on MAT-
LAB version 2016A. MGen requires Java 8 and Scala SBT to
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compile, generates C11 compliant code, and is compatible
with Mac OS X, Linux and Windows. Our testing environ-
ment uses Mac OS X 10.11.6, Java JDK version 1.8.0 144-b01,
Intel ICC compiler version 17.0.4, and LLVM using clang ver-
sion 800.0.42.1. All tests are implemented using ScalaTest [3].
For validation, MGen assumes a pre-installed MATLAB ver-
sion. It is able to spawn a MATLAB VM process from within
the JVM and execute arbitrary MATLAB code. The testing
infrastructure allows us to execute any MATLAB function,
in MATLAB VM, or as a standalone MGen-generated C pro-
gram, and compare the results.

Validation of operators With the testing infrastructure
we can easily invoke any function of any arity in both MGen
and MATLAB. We generate a small MATLAB snippet replac-
ing foo with the corresponding operator:

1 function [x] = validate (A, B)

2 x = foo(A, B);

3 end
Then we generate code for each operator, and instantiate it
with different inputs. For each tensor input:

1. The type can be one of the 12 primitive types.

2. The tensor can represent complex or real data.

3. The tensor order can either be fixed to 1, 2, 3, or be
passed as a variable.

4. If the tensor order is variable, then the values for each
dimensions are passed as an array. If the order is con-
stant, then we pass a tensor of order 1, 2, 3 with con-
stant or variable dimensions.

5. We repeat the test several times, producing scalar, SSE,
and AVX code in each case.

The above creates more than 144 different instantiations
per single tensor. MGen produces results which are binary
compatible with MATLAB in most cases. All operations us-
ing integral types are bitwise identical, as well as IEEE754
computations with standalone implementation. However,
for trigonometric, logarithms, power functions and other
libc-dependant functons, binary compatibility is no longer
guaranteed. MATLAB Coder handles all numerical types,
with few exception. For example, the plus operator fails once
characters are added to 8-bit integers. MATISSE does not
support complex numbers, and, along with Mc2For / MiX10,
none of them support saturated arithmetic.

Type inference validation We validate correct type infer-
ence by performing assignments in combination with nested
if-conditional branches and loops. MGen passes all our tests,
inferring all types at each point in the code. Mc2For & MiX10
use Tamer [15] as a front-end to perform type inference and
analysis; thus, we only consider Tamer-generated IR. All
our tests suggest that types are correctly inferred at each
location in the code. MATLAB Coder and MATISSE variables
expect each variable to have a single type at each point of
the program and would fail on programs such as:
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Figure 4. Performance evaluation of MGen: 10 iterations of
gradient descent applied on various matrix sizes

1 function [result] = addition(a)
2 while a < 10

3 a = a + int32(1);

4 end;

5 result = a;

6 end

Shape inference validation We validate shape inference
in the same manner as validating type inference, but we also
consider indexed assignments. MGen and MATLAB Tamer
pass all our tests. MATLAB Coder, as well as MATISSE fail
when extending a matrix to a tensor of order 3. Both genera-
tors have troubles handling overloaded operators. Consider
the function below, where a is a matrix and b is a scalar:

1 function [result] = foo(a, b)

2 if (rand > 0.5) ¢ = a .x a, else ¢c = b .x b, end;
3 result = a + c;

4 end

In this function, the addition at line 3 will either result in
a matrix-matrix addition, or a matrix-scalar addition, which
is not handled in either generator.

Validation of programs We collected a set of benchmarks,
acquiring MATLAB code from a variety of sources and re-
lated projects, including Mc2For [25], FALCON [44], OTTER
[38], and The MathWorks Central File Exchange [28]. The
benchmarks sample the subset of MATLAB supported by
MGen, including standard constructs such as if-else, for,
and while loop statements, dynamic growth of tensor or-
der, array growth by out-of-bound array indexing, multiple
type values per variable, and built-in function overloading. A
brief description of each benchmark is given in Table 3. Our
experiments confirm that MGen-generated code produces
the same functionality as the MATLAB runtime.

Performance evaluation In the current state, MGen does
not offer competitive performance. The biggest impediment
is the lack of memory optimizations. Namely, for each inter-
mediate computation, memory is allocated to facilitate the
temporary tensor. When a mutable tensor is read or assigned,
MGen performs copy-on-read and copy-on-write, or in other
words copies the memory region from the temporary tensor
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fib calculates the n-th Fibonacci number. The benchmark
includes a simple for-loop.

gd calculates 1000 iterations of the gradient descent algo-
rithm. The benchmark includes a for-loop with matrix
transposition, matrix-vector multiplication, and point-
wise addition and multiplication of vectors.

adpt  finds the adaptive quadrature using Simpson’s rule. This
benchmark features an array whose size cannot be pre-
dicted before compilation.

bbai  uses Babai’s algorithm computed on fixed-sized arrays.

bubl  is the standard bubble sort algorithm. This benchmark
contains nested loops and consists of many array read
and write operations.

capr  computes the capacitance of a transmission line using
the finite difference and Gauss-Seidel method. It is loop-
based, having scalar operations on small-sized arrays.

clos  calculates the transitive closure of a directed graph. It
contains matrix multiplication operations between two
450-by-450 arrays.

crni  computes the Crank-Nicholson solution to the heat
equation. This benchmark involves some elementary
scalar operations on a 2300-by-2300 array.

dich  computes the Dirichlet solution to Laplace’s Equation.
It’s also a loop-based program which involves basic
scalar operation on a small-sized array.

diff  calculates the diffraction pattern of monochromatic
light through a transmission grating for two slits. This
benchmark also features an array whose size is in-
creased dynamically like as in the benchmark adpt.

fiff  computes the finite-difference solution to the wave
equation. It is a loop-based program which involves
basic scalar operation on a 2-dimensional array.

mbrt computes a Mandelbrot set with a specified number
of elements and number of iterations. This benchmark
contains elementary scalar operations on complex data.

nbld simulates the gravitational movement of a set of objects.
It computes on vectors inside nested loops.

Table 3. Test-cases used in MGen

to the mutable tensor or vice-versa, instead of computing it
in-place. Consequently, this imposes significant overheads,
in particular if the computation is in the hot-path of the code.

To illustrate the diminishing effects due to lack of memory
optimizations on performance, we consider the the gradient
descent benchmark. We evaluate 3 versions: MATLAB VM,
MGen, and MATLAB Coder generated code. We benchmark
on an Intel Core i7-4980HQ machine with 16GB of RAM and
25.6 GB/s bandwidth to main memory.

We set up the benchmark to run for 10 iterations, operating
on an n X n double precision matrix and a double precision
vector of size n. For all 3 versions, the flop count is given as
4n? + n flops, and we report the results in flops / cycle.

Figure 4 shows the performance profile. MGen generated
code is up to 37 times slower than MATLAB Coder and up
to 8 times slower than MATLAB VM execution time.
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5.2 Limitations

The work presented in this paper focused on the abstractions
required to stage MATLAB code and to produce correct C
code. However, many performance optimizations are still
missing. These limitations are not due to the proposed ab-
straction model of metacontainers, but opportunities that
this work has not yet explored.

High level optimizations MGen performs certain high
level optimization such as dead code elimination and com-
mon subexpression elimination. However, others such as
multi-level tiling, loop merging, and loop exchange are not
implemented in this work. Even before applying loop opti-
mization, semantic properties of matrix operations can be
used to perform high-level optimizations [4]. Prior work [9,
16, 30] shows that MATLAB programs can be partially eval-
uated and optimized by automatically transforming loops
to equivalent computations already available in the built-in
operations. This suggests that optimization opportunities
are available even before staging the initial MATLAB code.

Memory optimizations As indicated in the evaluation
subsection, MGen does not employ any memory optimiza-
tions. These problems can be alleviated by performing in-
place computations when possible, reusing memory regions
in subsequent computations and coalescing arrays as sug-
gested in prior work [21].

Range analysis Range analysis is not implemented in MGen.
As a result, tensor indexing and indexed assignment opera-
tions must undergo bound checks to ensure valid memory
accesses. Many of these runtime checks can be removed, as
shown in prior work [13, 40].

6 Related Work

The Sable Lab at McGill University has done extensive work
around the MATLAB language [8], developing an open-
source MATLAB virtual machine, toolkits for static com-
pilation and source-to-source MATLAB translation. We start
with a brief overview.

McVM [10] is a virtual machine that performs function
specialization based on the runtime knowledge of the types
and shapes in function calls. McVM supports hundreds of
built-in functions, but no integer or single-precision float
matrices. McVM uses an LLVM-based JIT compiler and relies
on autovectorization.

MATLAB Tamer [15] is a compiler toolkit that translates
MATLAB programs into an IR suitable for static compila-
tion. It uses static analysis techniques to infer shape, class,
and complex information, supporting more than 300 built-
in MATLAB functions. Their type and shape behaviour is
specified using a set of DSLs, which are then processed by
ANTLR [36], resulting in AST trees that will be interpreted
by the MATLAB Tamer tool to perform analysis.
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Mc2For [25] and MiX10 [23] are backends to MATLAB
Tamer, generating Fortran and X10 code respectively. They
support integer types but no saturation arithmetic and rely
on autovectorization by the compiler.

Prior work on compiling Matlab started with the FAL-
CON compiler [1, 14, 44] to generate FORTRAN90 code. It
uses aggressive type inference for base types (doubles and
complex) and matrix shapes. Further inference techniques
were introduced in [20, 22] and Olmos et al. [35] for partial
support of the MATLAB type system.

MATLAB Coder [26] is a MathWorks proprietary solu-
tion for MATLAB to C/C++ compilation. It supports a large
subset of MATLAB and allows code customizations through
directives and options but has also limitations. Until version
R2016D, it did not support changing types through assign-
ment or generation of standalone vector code.

MATISSE [5] compiles MATLAB to C or OpenCL [6] with
focus on embedded systems and heterogeneous architectures.
It uses aspect-oriented programming (AOP) concepts, using
the LARA [7] domain specific language. It does not support
complex numbers or variables that can hold multiple types
at the same point in the program.

MATLAB has several free open-source alternatives, in-
cluding Octave [19], Scilab [45] and FreeMat [11].

Orthogonally to our work, there have been approaches to
translate MATLAB / Octave to languages suitable for mul-
ticore or GPU architectures [2, 18, 31, 38, 39]. MEGHA [37]
compiler MATLAB / Octave scripts to CUDA and C/C++ code
using heuristics to determine the partition.

7 Conclusion

We used stage polymorphism as an abstraction tool for build-
ing a MATLAB-to-C code generator. In particular, we demon-
strated that by using the proposed metacontainer abstraction,
we can simplify the analysis and transformation of tensor
expressions, and handle many aspects in generating code for
a dynamically typed numeric DSL such as MATLAB.

Specifically, we show how metacontainers maintain re-
lationships between IR nodes that no longer require to be
explicitly encoded in the IR and thus reduce its complex-
ity. This property allowed us to systematically add nodes in
the IR to build an overlay IR that can reason about type and
shape propagation of tensor computations. Using the overlay
IR we performed type and shape inference with data-flow
analysis in a way agnostic towards the structure of the meta-
container and the actual tensor computation. By specializing
metacontainers, we demonstrated that we can provide a pow-
erful abstraction to build a code generator for a subset of
MATLAB, supporting all primitive types, including explicit
vectorization to produce SIMD code.
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