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Abstract. Embedded domain-specific languages (DSLs) are the subject
of wide-spread interest, and a variety of implementation techniques exist.
Some of them have been invented, and some of them discovered. Many
are based on a form of generative or multi-stage programming, where
the host language program builds up DSL terms during its evaluation.
In this paper, we examine the execution model of LMS (Lightweight
Modular Staging), a framework for embedded DSLs in Scala, and link it
to evaluation in a two-stage lambda calculus. This clarifies the seman-
tics of certain ad-hoc implementation choices, and provides guidance for
implementing similar multi-stage evaluation facilities in other languages.
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1 Introduction

Embedded domain-specific languages (DSLs) are the subject of wide-spread in-
terest across communities and languages. If a host-language program computes
and assembles DSL terms, we are dealing with a form of generative or multi-
stage programming [65]. Exactly how this is done depends on the language and
framework that is used. But in any case, the interactions between meta-language
and object-language (DSL) semantics can be non-trivial.

In this paper, we examine the evaluation mechanism of LMS (Lightweight
Modular Staging) [54]. LMS is a framework for building embedded DSLs and
program generators in Scala that uses types to identify staged expressions: any
normal Scala expression of type Int, String, or in general T, is evaluated at
program generation time, and expressions of type Rep[Int], Rep[String], or in
general Rep[T], produce staged expressions that will evaluate to values of the
corresponding type T when the generated code is run. In general, operations on
Rep[T] mirror those on T but lifted to the Rep level. For example, adding two
Rep[Int] values will produce a Rep[Int] result.

While this description succeeds in giving an overall idea of the approach, it
leaves many details unspecified. For example, how does one deal with functions?
Primitive constants of, e.g., type Int can be lifted to Rep[Int] values without
much effort as constant expressions, but it is less clear how to create a staged
function of type Rep[A=>B]. The approach chosen by LMS is to use an explicit
constructor fun that converts a present-stage function of type Rep[A]=>Rep[B]

into a staged function of type Rep[A=>B].



Armed with this knowledge, we can build up some intuition on how Rep

types enable interesting program transformations. Here is a staged version of
Ackermann’s function (note the use of the fun constructor):
val ack: Int => Rep[Int => Int] = { m: Int => fun { n: Rep[Int] =>
if (m==0) n+1
else if (n==0) ack(m-1)(1)
else ack(m-1)(ack(m)(n-1))

}}
ack(2)

What will be the result of this computation? The type of ack is a mixed-stage
function type Int => Rep[Int => Int], so ack(m) for a given integer m will have
type Rep[Int => Int]: a staged function from Int to Int that corresponds to
the body of ack but with all computations that depend on m but not n (nor any
other Rep value) readily evaluated.
val ack0: Int => Int = { n: Int => n+1 }
val ack1: Int => Int = { n: Int => if (n==0) ack0(1) else ack0(ack1(n-1)) }
val ack2: Int => Int = { n: Int => if (n==0) ack1(1) else ack1(ack2(n-1)) }
ack2

The question we would like to address in this paper is: how does all this work?
To do so, we will link the evaluation strategy of Scala and LMS to a two-stage
lambda calculus. Such multi-level calculi have been popularized by Nielson and
Nielson [46] and play a key role in the partial evaluation literature to describe
binding-time information similar to the Rep[T] vs T distinction in LMS.

Our two-level language is derived from Chapters 8 and 10 in the book by
Jones, Gomard, and Sestoft [32]. We will build an evaluator for this calculus
from the ground up and show how it computes the specialized ack function
above, pointing to similarities and differences with systems from the literature.

While partial evaluation experts will most likely not find much novelty in
this paper, we hope that this exposition will be useful in clarifying the semantics
of multi-stage evaluation as it is implemented in LMS and that it may serve as
guidance for implementing similar facilities in other languages or frameworks.

2 A Two-Stage Lambda Calculus

The term language of our calculus is as follows:
Exp ::= Lit(Int) | Var(Int) | Let(Exp,Exp)

| Lit2(Exp)
| Lam(Exp) | App(Exp,Exp) | Tic
| Lam2(Exp) | App2(Exp,Exp) | Tic2
| Ifz(Exp,Exp,Exp) | Plus(Exp,Exp) | Minus(Exp,Exp)
| Ifz2(Exp,Exp,Exp) | Plus2(Exp,Exp) | Minus2(Exp,Exp)

For ease of implementation, we use DeBrujin levels to represent binders. The
term syntax contains integer literals, variables, let expressions, lambda abstrac-
tions, function application, simple side effects (Tic), conditionals, and arithmetic.
Most (but not all) constructs come in two versions. For example, Lam is the
present-stage lambda abstraction and Lam2 is the future-stage lambda abstrac-
tion. We will see later that variables and let bindings need not be duplicated.



In what sense does this calculus model Scala and LMS? Since Rep types are
just regular Scala types and operations on Rep[T] are implemented within the
Scala language using operator overloading, Scala’s local type inference mecha-
nism essentially performs a local binding-time analysis [32] for us.

Here is the desugared version of ack:
val ack: Int => Rep[Int => Int] = { m: Int =>
fun { n: Rep[Int] =>
if (m==0) __plus(n, __lit(1))
else __ifThenElse(__equals(n, __lit(0)),

__apply(ack(m-1), __lit(1)),
__apply(ack(m-1), __apply(ack(m), __minus(n, __lit(1)))))

}
}
ack(2)

We can see that Scala’s typechecker has replaced all operations that involve
Rep values with method calls like __plus and __minus, using standard language
facilities like method overloading and implicits. These methods serve as smart
constructors that create corresponding expression terms when the program is
executed.

If we want to model the same behavior in our calculus, we can directly
translate the program above to our two-level language, replacing the primitive
Scala constructs with first-level terms and method calls with second-level terms:
Let(Lam(
Lam2(Lam(
Ifz(m,n+1,
Ifz2(n,App2(App(ack,m-1),Lit2(Lit(1))),

App2(App(ack,m-1),App2(App(ack,m),n-1)))))),
App(ack,Lit(2)))

A few expressions have been factored out for clarity:
ack = Var(0) m = Var(1) n = Var(3)

m-1 = Minus(m,Lit(1)) n-1 = Minus2(n,Lit2(Lit(1)))
n+1 = Plus2(n,Lit2(Lit(1)))

Note that we map staged function definitions such as fun { m => ... } to
nested expressions Lam2(Lam(...)). For a faithful correspondance, we need to
model both the constructor invocation and the Scala function passed as argu-
ment. Likewise, we map staged constant literals like __lit(1) to nested terms
Lit2(Lit(1)).

Now that we have introduced the two-level term language, how should multi-
stage evaluation proceed? Intuitively, each future-stage operator should create a
program term at runtime, but a priori it is not clear how these terms are to be
composed. For example:
Let(Tic2,
Lit2(Lit(1)))

This term could either evaluate to Lit(1), assuming that Tic2 evaluates to Tic,
which is then discarded, or it could evaluate to Let(Tic,Lit(1)). Arguably, the
second option is the desired one, but it takes some additional work to preserve
the evaluation order and sharing behavior across evaluation stages. A well estab-



lished approach to achieve this is to insert let-bindings eagerly for all “serious”
expressions and pass around only atomic identifiers or primitve constants. We
will build our multi-stage evaluator in steps, starting from a standard single-
stage evaluator, and add the necessary let-insertion logic in a second step, by
composing the evaluator with a transformation into administrative normal form
(ANF) [23].

3 Single-Stage Evaluation

The starting point for our multi-stage evaluator is a completely standard lambda
calculus evaluator with environments and closures:
Exp ::= Lit(Int) | Var(Int) | Tic | Lam(Exp) | Let(Exp,Exp) | App(Exp,Exp)
Val ::= Cst(Int) | Clo(Env,Exp)
Env = List[Val]

var stC = 0
def tick() = { stC += 1; stC - 1 }

def eval(env: List[Val], e: Exp): Val = e match {
case Lit(n) => Cst(n)
case Var(n) => env(n)
case Tic => Cst(tick())
case Lam(e) => Clo(env,e)
case Let(e1,e2) => eval(env:+eval(env,e1),e2)
case App(e1,e2) =>
val Clo(env3,e3) = eval(env,e1)
eval(env3:+eval(env,e2),e3)

}

In Scala, the snoc operator :+ appends an element to the right of a list, so
env:+eval(env,e1) will first evaluate e1 in environment env, and then append
the result to the right of env. Variable lookup uses DeBruijn levels, where env(n)
returns the nth element from the left of a list.

To make matters slightly more interesting, we include a side-effecting oper-
ation Tic in our language, which we implement using side effects of the meta
language: the implicit Scala monad. Of course we could also build a purely func-
tional version based on monads, but for our purposes it is beneficial to trade off
this bit of impurity for ease in composition later.

4 ANF Conversion / Let-Insertion

The second building block is ANF conversion [23], which brings programs into
a normal form that makes the evaluation order explicit in a program and ex-
tracts all intermediate results into let bindings. The ANF syntax is given by the
nonterminal N as follows:
V ::= Lit(Int) | Var(Int)
M ::= V | Lam(N) | App(V,V) | Tic
N ::= V | Let(M,N)



We will implement ANF conversion again using side-effects in the meta lan-
guage of our evaluator. We need two pieces of state: an accumulator for generated
let bindings stBlock and a counter for the next fresh variable name stFresh. We
also introduce a function run that implements a dynamic scoping discipline for
these two variables:
var stFresh = 0
var stBlock: List[Exp] = Nil
def run[A](f: => A): A = {
val sF = stFresh
val sB = stBlock
try f finally { stFresh = sF; stBlock = sB }

}

With this handling of mutable state in place, we can implement a first cut
of our ANF conversion function:
def anf(env: List[Exp], e: Exp): Exp = e match {
case Lit(n) => Lit(n)
case Var(n) => env(n)
case Tic =>
val s = Tic
val f = stFresh
stBlock:+= s
stFresh += 1
Var(f)

case App(e1,e2) =>
val ex1 = anf(env,e1)
val ex2 = anf(env,e2)
val s = App(ex1,ex2)
val f = stFresh
stBlock:+= s
stFresh += 1
Var(f)

case Lam(e) =>
val e1 = run {
val f = stFresh
stBlock = Nil
stFresh += 1
val res = anf(env:+Var(f),e)
stBlock.foldRight(res)(Let)

}
val f = stFresh
stBlock:+= Lam(e1)
stFresh += 1
Var(f)

case Let(e1,e2) =>
val ex1 = anf(env,e1)
anf(env:+ex1,e2)

}

Function anf recurses structurally over the given term e and emits a let
binding for each encountered non-trivial expression. For lambda abstractions,
we use the dynamically scoped run construct to clear the stateful list of bindings
when entering the nested scope and to reset the bindings and the fresh name
reservoir when exiting the nested scope.

While this implementation gets the job done, it is not pretty. But it is easy
to recognize some patterns: fresh variables are created in several places, and the



emitting of let bindings can also be abstracted over. We factor out the repetitive
operations as follows:
def fresh() = { stFresh += 1; Var(stFresh-1) }
def reflect(s:Exp) = { stBlock :+= s; fresh() }
def reify(f: => Exp) = run { stBlock = Nil; val last = f; stBlock.foldRight(last)(Let) }

Function fresh creates a fresh variable, reflect emits a let binding and returns
the new identifier, and reify accumulates all let bindings created in a given
block (note that f is a by-name parameter =>Exp).

Now we can go ahead and greatly simplify our implementation:
def anf(env: List[Exp], e: Exp): Exp = e match {
case Lit(n) => Lit(n)
case Var(n) => env(n)
case Tic => reflect(Tic)
case Lam(e) => reflect(Lam(reify(anf(env:+fresh(),e))))
case App(e1,e2) => reflect(App(anf(env,e1),anf(env,e2)))
case Let(e1,e2) => anf(env:+(anf(env,e1)),e2)

}

In fact, we no longer mention mutable state directly in the conversion function
anymore, which brings it much closer to common definitions of ANF conversion
based on evaluation contexts [23].

Based on this formulation it is easy to convince oneself that ANF conversion
preserves semantics:
eval(Nil, anf(Nil, e)) = eval(Nil, e)

5 Multi-Stage Evaluation

We now turn our attention to multi-stage evaluation. We start off with a slightly
more uniform term language than the one given above:
Exp ::= Lit(Int) | Var(Int) | Tic | Lam(Exp) | Let(Exp,Exp) | App(Exp,Exp)

| Lit2(Int) | Var2(Int) | Tic2 | Lam2(Exp) | Let2(Exp,Exp) | App2(Exp,Exp)
Val ::= Cst(Int) | Clo(Env,Exp) | Code(Exp)

For every operation in the term language there is a corresponding future-stage
variant that serves as term constructor. In addition, the syntax of values now
includes a Code(e) case for future-stage expressions.

The key idea now is to combine present-stage evaluation with future-stage
normalization into ANF. The ANF conversion part is adapted slightly to map
present-stage term constructors (App2, Lam2, ...) to code values containing their
normal term equivalents (App, Lam, ...). This wrapping in Code values necessitates
a few tweaks to the helper functions:
def freshc() = Code(fresh())
def reflectc(s: Exp) = Code(reflect(s))
def reifyc(f: => Val) = reify { val Code(r) = f; r }

Now we are ready to put together eval and anf into a single multi-stage
evaluator (Figure 1). As we can see, term constructors like App2 first evaluate
their arguments in the present-stage to code values, from which the argument
terms are extracted and the new App term is reflected.



def evalms(env: Env, e: Exp): Val = e match {
case Lit(n) => Cst(n)
case Var(n) => env(n)
case Tic => Cst(tick())
case Lam(e) => Clo(env,e)
case Let(e1,e2) => evalms(env:+evalms(env,e1),e2)
case App(e1,e2) =>
val Clo(env3,e3) = evalms(env,e1)
evalms(env3:+evalms(env,e2),e3)

case Lit2(n) => Code(Lit(n))
case Var2(n) => env(n)
case Tic2 => reflectc(Tic)
case Lam2(e) => reflectc(Lam(reifyc(evalms(env:+freshc(),e))))
case Let2(e1,e2) => evalms(env:+evalms(env,e1),e2)
case App2(e1,e2) =>
val Code(s1) = evalms(env,e1)
val Code(s2) = evalms(env,e2)
reflectc(App(s1,s2))

}

Fig. 1. Multi-stage evaluation: composing eval and anf

It is important to note that there are only three ways in which code values are
constructed: (1) via reflectc, which creates a variable reference; (2) via freshc

in the environment, and then accessed through variable lookup; (3) directly from
a constant literal. The results of the only call to reifyc, which may create non-
atomic expressions, are only used to fill in the bodies of Lam terms which are
itself reflected immediately.

Thus, all code values are atomic expressions, terminating, and side-effect free.
They can be freely stored, duplicated and passed around without changing the
meaning of the program. Staged expressions will appear in the generated code in
the same order they were encountered when running the multi-stage program.

Partial evaluators that support side effects work in a similar way, insert-
ing let-bindings to prevent reordering or duplication of code. Many specializers
are implemented in continuation-passing style, which also leads to an elegant
on-the-fly ANF conversion. A version that corresponds very closely to the one
above is shown by Lawall and Thiemann [37,67]. Our method of ANF conver-
sion with direct-style reflect and reify operators can be seen as an instance of
normalization by evaluation [40,17,22] or monadic reflection [21,44].

To obtain the full generated code for a top-level expression e one can use
reifyc(evalms(Nil,e)). Another thing that becomes clear when looking at evalms
is that Var2 and Let2 behave in exactly the same way as Var and Let. Therefore,
we can drop them from our term language, as we had done in Section 2. Adding
the other constructs, Ifz, Plus, and Minus, is straightforward.



6 Recursion

Where does this multi-stage evaluator leave us? We can almost, but not quite,
run our ack example. The last missing bit is support for recursion. We could add
an explicit fix combinator but instead, we chose to pass closures to themselves
as first argument when called. Thus, all functions can potentially be recursive.

However, if we leave it at that, we will find that our example (and in fact
many programs) will not terminate in the first stage. Here is a simpler example:
def f: Rep[Int => Int] = fun { n: Rep[Int] =>
if (n == 0) 1 else f(n-1)

}

If we multi-stage evaluate this code naively, we will end up in a sequence
of calls trying to compute the body of f — but in order to do that, we must
compute the body of f again!

We need an additional insight: the body of fun in LMS or of Lam2 in the
calculus is itself an expression that will be evaluated. And if two functions have
the same body expression, and the same free variables, then they must com-
pute the same results for all inputs: intensional, i.e., structural equality implies
extensional equality.

Thus, we can memoize the function expressions we are in the process of
evaluating and tie the recursive knot to an enclosing function if we hit a recursive
call. We achieve this by adding a small lookup table to the existing dynamically
scoped mutable state:
var stFun: List[(Int,Env,Exp)] = Nil
def run[A](f: => A): A = {
...
val sN = stFun
try f finally { ...; stFun = sN }

}

In addition, we modify the handling of lambda abstractions to check whether
we are trying to expand a given function body inside itself. If that is the case, we
just return the already existing parent symbol. Otherwise, the function is new.
We create an entry in our memo table and proceed to evaluate the body.
def evalms(env: Env, e: Exp): Val = e match {
...
case App(e1,e2) =>
val Clo(env3,e3) = evalms(env,e1)
val v2 = evalms(env,e2)
evalms(env3:+Clo(env3,e3):+v2,e3)

...
case Lam2(e) =>
stFun collectFirst { case (n,‘env‘,‘e‘) => n } match {
case Some(n) =>
Code(Var(n))

case None =>
stFun :+= (stFresh,env,e)
reflectc(Lam(reifyc(evalms(env:+freshc():+freshc(),e))))

}
...

}



The code snippet also shows the modified App case that passes the closure to
itself as first argument. The Lam case is updated correspondingly to create two
fresh vars as placeholders for the arguments.

With this support for specializing recursive functions in place, we can suc-
cessfully evaluate our ack example. We obtain the following result for ack(2).
Term syntax on the left, translated to Scala on the right:

Let(Lam(
Let(Ifz(Var(1),
Let(Lam(Let(Ifz(Var(3),
Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(App(Var(4),Lit(1)),Var(5))),

Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(Minus(Var(3),Lit(1)),Let(App(Var(2),Var(5)),
Let(App(Var(4),Var(6)),Var(7)))))

),Var(4))),
Let(App(Var(2),Lit(1)),Var(3))),

Let(Lam(Let(Ifz(Var(3),
Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(App(Var(4),Lit(1)),Var(5))),

Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(Minus(Var(3),Lit(1)),Let(App(Var(2),Var(5)),
Let(App(Var(4),Var(6)),Var(7)))))

),Var(4))),
Let(Minus(Var(1),Lit(1)),Let(App(Var(0),Var(3)),
Let(App(Var(2),Var(4)),Var(5)))))

),Var(2))),
Let(App(Var(0),Lit(2)),Var(1)))

val ack2: Int => Int = { n: Int =>
if (n==0) {
val ack1: Int => Int = { n: Int =>
if (n==0) {
val ack0: Int => Int = { n: Int => n+1 }
ack0(1)

} else {
val ack0: Int => Int = { n: Int => n+1 }
ack0(ack1(n-1))

}
}
ack1(1)

} else {
val ack1: Int => Int = { n: Int =>
if (n==0) {
val ack0: Int => Int = { n: Int => n+1 }
ack0(1)

} else {
val ack0: Int => Int = { n: Int => n+1 }
ack0(ack1(n-1))

}
}
ack1(ack2(n-1))

}
}
ack2

We can see that this code does the right thing and corresponds to the right
recursion pattern, but it contains duplicated function definitions for ack0 and
ack1. These are easily reclaimed by a code motion and common subexpression
elimination or global value numbering algorithm. Hoisting functions and remov-
ing duplicates yields exactly the desired result:
val ack0: Int => Int = { n: Int => n+1 }
val ack1: Int => Int = { n: Int => if (n==0) ack0(1) else ack0(ack1(n-1)) }
val ack2: Int => Int = { n: Int => if (n==0) ack1(1) else ack1(ack2(n-1)) }
ack2

In the partial evaluation literature such patterns are known as polyvariant
specialization [8]: one function in the source yields multiple specialized variants
in the residual generated code. Sophisticated partial evaluators such as Similix
or PGG implement similar techniques [6,28,37,67].

7 Relation to LMS

We have seen how we can model and describe a simple multi-stage evaluation
algorithm for a small language. But how can we relate it to the actual implemen-
tation of LMS? Essentially we take the evalms function and turn it inside out,
from an interpreter over an initial term language to an evaluator in tagless-final
[10] style. But there is a problem: since we are working inside a running Scala
program we cannot get our hands on unevaluated Scala expressions, as would be
required by our implementation of staged literals and staged lambdas:



def evalms(env: Env, e: Exp): Val = e match {
...
case Lit2(n) => Code(Lit(n))
case Lam2(e) => reflectc(Lam(reifyc(evalms(env:+freshc(),e))))

}

The argument n for Lit2 would correspond to a literal constant in the Scala
source code, and the argument e for Lam2 corresponds to an unevaluated Scala
expression, which we would evaluate at our own leisure, in an extended context,
on the right hand side. The fact that tools like LMS operate as libraries inside
a general-purpose host language is a key difference to offline partial evaluation
systems that operate on the program text.

We generalize our implementation in such a way that Lit2 takes an expression
that evaluates to a constant, and Lam2 takes an expression that evaluates to a
function. The intention is that Lit2(Lit(n)) and Lam2(Lam(e)) correspond to the
previous behavior. The construct Lit2 now implements a lifting facility, which
enables embedding of arbitrary values computed in the present stage as constants
in the generated code. Note, however, that lifting (or cross-stage-persistance) is
not automatically valid for all possible types. It is easy to see, for example, that
a present-stage Scala closure does not necessarily have a valid representation
as C source code. For this reason, we restrict Lit to integers here, and handle
functions separately using Lam2. The implementation of Lam2 can be seen as a
pretty standard use of higher-order abstract syntax.

We modify our evaluator as follows to immediately evaluate all subexpres-
sions and introduce the required indirection for functions:
def evalms(env: Env, e: Exp): Val = e match {
...
case Lit2(e) => val Cst(n) = evalms(env,e); Code(Lit(n))
case Tic2 => reflectc(Tic)
case Lam2(e) =>
val f = evalms(env,e) // memoization elided
reflectc(Lam(reifyc(evalms(env,App(f,freshc())))))

case App2(e1,e2) =>
val Code(s1) = evalms(env,e1)
val Code(s2) = evalms(env,e2)
reflectc(App(s1,s2))

}

As the last step towards our tagless-final interpreter, we refactor the evaluator
to introduce constructor methods for each kind of term:
def evalms(env: Env, e: Exp): Val = e match {
...
case Lit2(e) => val Cst(n) = evalms(env,e); Code(lit(n))
case Tic2 => Code(tic())
case Lam2(e) =>
val f = evalms(env,e)
val f1 = { x => val Code(r) = evalms(env,App(f,Code(x))); r }
Code(lam(f1))

case App2(e1,e2) =>
val Code(s1) = evalms(env,e1)
val Code(s2) = evalms(env,e2)
Code(app(s1,s2))

}



These term constructors are defined as follows to abstract over explicit envi-
ronments, recursive calls to evalms, and Code values:
type Rep[T] = Exp
def lit(n: Int): Rep[Int] = Lit(n)
def tic() = reflect(Tic)
def app[A,B](f:Rep[A=>B],x:Rep[A]): Rep[B] = reflect(App(f,x))
def lam[A,B](f:Rep[A]=>Rep[B]): Rep[A=>B] = reflect(Lam(reify(f(fresh()))))

// memoization elided

At this point, we no longer need the explicit evaluator, and we can just use
the standard Scala evaluation to construct staged terms.

This API corresponds almost directly to the actual implementation in LMS.
Behind the reflect and reify API, the internal representation of LMS is dif-
ferent though. Rather than as simple expression trees, LMS has a graph-based
intermediate representation (IR) that directly supports code motion, common
subexpression elimination, dead code elimination and a range of other optimiza-
tions [54,55,14]. LMS also makes pervasive use of smart constructors to perform
rewriting while the IR is constructed.

But can we still handle recursion correctly in this setting? By switching away
from our explicit evaluator we lose control over the representation of closures,
which was key for detecting recursive calls through memoization. Fortunately,
Scala implements closures as objects on the JVM, with free references stored as
fields that can be queried via runtime reflection. In practice, LMS uses Java seri-
alization to convert closures to byte arrays, and then takes this binary fingerprint
as a key for memoization. This method neatly takes care of cyclic references, too.
To implement a framework similar to LMS in other languages, a similar facil-
ity would likely be needed, or an alternative strategy for supporting recursive
functions would need to be used (e.g. explicit staged fixpoint combinators).

8 Case Study: Regular Expression Matchers

While the ack example in the previous sections served as a good example for
exposition, it is arguable not one that has a lot of practical uses. But the pattern
directly translates to more interesting applications.

In this section, we give a short overview of a fast regular expression matcher
that was developed using essentially the same technique by Nada Amin and the
author. Part of the code and description below has appeared in the author’s PhD
thesis [53] and in a paper at POPL 2013 [55]. Specializing string matchers and
parsers is a popular benchmark in the partial evaluation and supercompilation
literature [15,58,1,61,69,59].

We consider regular expression matchers that are “multi-threaded” and spawn
a new conceptual thread to process alternatives in parallel. Of course these
matchers do not actually spawn OS-level threads, but rather need to be ad-
vanced manually by client code. Thus, they are similar to coroutines.

From these non-deterministic matchers, we generate a set of mutually tail-
recursive functions that implement a deterministic finite automaton (DFA) that
recognizes the same regexp pattern without backtracking.



8.1 Regexp Matchers as Nondeterministic Finite Automata (NFA)

Here is a simple example for the fixed regular expression ‘.*AAB‘:
def findAAB(): NIO = {
guard(Set(’A’)) {
guard(Set(’A’)) {
guard(Set(’B’), Found)) {
stop()

}}} ++
guard(None) { findAAB() } // in parallel...

}

We can easily add combinators on top of the core abstractions that take care
of producing matchers from textual regular expressions. However the point here
is to demonstrate how the implementation works. The given matcher uses an
API that models nondeterministic finite automata (NFA):
type NIO = List[Trans] // state: many possible transitions
case class Trans(c: Set[Char], x: Flag, s: () => NIO)
def guard(cond: Set[Char], flag: Flag)(e: => NIO): NIO =
List(Trans(cond, flag, () => e))

def stop(): NIO = Nil

An NFA state consists of a list of possible transitions (type NIO). Each transi-
tion may be guarded by a set of characters and it may have a flag to be signaled
if the transition is taken. It also knows how to compute the following state. We
use Chars for simplicity, but of course we could use generic types as well. From
a given NFA transition, we can obtain the following state, and thus recursively
unfold the state space. Thus, it is sometimes useful to identify the notions of
NFA and NFA state. NFA states, and thus NFAs, can be composed in parallel
through list concatenation. Method guard implements sequential composition.
It creates a new NFA state with a single start transition and “the rest of the
automaton” given as a by-name expression (type =>NIO) that computes the fol-
lowing state. Note that the API does not mention where input is obtained from
(files, streams, etc).

8.2 From NFA to DFA using Staging

We will translate NFAs to DFAs using LMS. This is the unstaged DFA API that
will be used by the generated code:
abstract class DfaState {
def hasFlag(x: Flag): Boolean
def next(c: Char): DfaState

}
def dfaFlagged(flag: Flag, link: DfaState) = new DfaState {
def hasFlag(x: Flag) = x == flag || link.hasFlag(x)
def next(c: Char) = link.next(c)

}
def dfaState(f: Char => DfaState) = new DfaState {
def hasFlag(x: Flag) = false
def next(c: Char) = f(c)

}



The staged API is just a thin wrapper:
type DIO = Rep[DfaState]
def dfa_flag(x: Flag)(link: DIO): DIO
def dfa_trans(f: Rep[Char] => DIO): DIO

Translating an NFA to a DFA is accomplished by creating a DFA state for each
encountered NFA configuration (removing duplicate states via canonicalize):
def convertNFAtoDFA(state: NIO): DIO = {
val cstate = canonicalize(state)
dfa_trans { c: Rep[Char] =>
exploreNFA(cstate, c)(dfa_flag) { next =>
convertNFAtoDFA(next)

}
}

}
convertNFAtoDFA(findAAB())

Since LMS memoizes functions in the same was as we have shown in Section 6
(here, the argument to dfa_trans), the framework ensures termination if the
NFA is indeed finite. We use a separate function to explore the NFA space
(see below), advancing the automaton by a symbolic character cin to invoke
its continuations k with a new automaton, i.e. the possible set of states after
consuming cin. The given implementation assumes that character sets contain
either zero or one characters, the empty set Set() denoting a wildcard match.
More elaborate cases such as character ranges are easy to add. The algorithm
tries to remove as many redundant checks and impossible branches as possible.
This only works because the character guards are staging-time values.
def exploreNFA[A](xs: NIO, cin: Rep[Char])(flag: Flag => Rep[A] => Rep[A])

(k: NIO => Rep[A]):Rep[A] = xs match {
case Nil => k(Nil)
case Trans(Set(c), e, s)::rest =>
if (cin == c) {
// found match: drop transitions that look for other chars and
// remove redundant checks
val xs1 = rest collect { case Trans(Set(‘c‘)|None,e,s) => Trans(Set(),e,s) }
val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(xs1, cin)(acc => k(acc ++ s())))

} else {
// no match, drop transitions that look for same char
val xs1 = rest filter { case Trans(Set(‘c‘),_,_) => false case _ => true }
exploreNFA(xs1, cin)(k)

}
case Trans(Set(), e, s)::rest =>
val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(rest, cin)(acc => k(acc ++ s())))

}

8.3 Generated State Machine Code

The generated matcher code for regular expression .*AAB is shown below, with
some slight syntactic changes to make it more readable. Each function corre-
sponds to one DFA state. Note how negative information has been used to prune
the transition space: given input such as ...AAB the automaton jumps back to



the initial state, i.e. it recognizes that the last character B cannot also be A, and
it starts looking for two As after the B.
def stagedFindAAB(): DfaState = {
val found = dfaFlagged(Found, matched_nothing)
val matched_AA = dfaState { c: (Char) =>
if (c == B) found
else if (c == A) matched_AA
else matched_nothing

}
val matched_A = dfaState { c: (Char) =>
if (c == A) matched_AA
else matched_nothing

}
val matched_nothing = dfaState { c: (Char) =>
if (c == A) matched_A
else matched_nothing

}
}

9 Related Work

Multi-stage programming (MSP, staging for short), as established by Taha and
Sheard [65] enables programmers to delay evaluation of certain expressions to a
generated stage. MetaOCaml [9] implements a classic staging system based on
quasi-quotation. Lightweight Modular Staging (LMS) [54] uses types instead of
syntax to identify binding times, and generates an intermediate representation
instead of target code [53]. LMS draws inspiration from earlier work such as
TaskGraph [4], a C++ framework for program generation and optimization.
Delite is a compiler framework for embedded DSLs that provides parallelization
and heterogeneous code generation on top of LMS [55,7,56,38,63].

Partial Evaluation Partial evaluation [32] is an automatic program spe-
cialization technique. Despite their automatic nature, most partial evaluators
also provide annotations to guide specialization decisions. Some notable systems
include DyC [26], an annotation-directed specializer for C, JSpec/Tempo [57],
the JSC Java Supercompiler [34], and Civet [58].

Partial evaluation has addressed higher-order languages with state using
similar let-insertion techniques as discussed here [6,28,37,67]. Further work has
studied partially static structures [43] and partially static operations [66], and
compilation based on combinations of partial evaluation, staging and abstract
interpretation [60,16,33]. Two-level languages are frequently used as a basis for
describing binding-time annotated programs [32,47].

Embedded DSLs Embedded languages have a long history [36]. Hudak
introduced the concept of embedding DSLs as pure libraries [30,31]. Steele pro-
posed the idea of “growing” a language [62]. The concept of linguistic reuse goes
back to Krishnamurthi [35]; Language virtualization to Chafi et al. [12]. The idea
of representing an embedded language abstractly as methods (finally tagless) is
due to Carette et al. [10] and Hofer et al. [29], going back to much earlier work by
Reynolds [52]. Compiling embedded DSLs through dynamically generated ASTs



was pioneered by Leijen and Meijer [39] and Elliot et al. [20]. All these works
greatly inspired the development of LMS. Haskell is a popular host language for
embedded DSLs [64,25], examples being Accelerate [42], Feldspar [3], Nikola [41].
Recent work presents new approaches around quotation and normalization for
DSLs [45,13]. Other performance oriented DSLs include Firepile [48] (Scala),
Terra [18,19] (Lua). Copperhead [11] (Python). Rackets macros [68] provide full
control over the syntax and semantics.

Program Generators A number of high-performance program generators
have been built, for example ATLAS [70] (linear algebra), FFTW [24] (discrete
fourier transform), and Spiral [49] (general linear transformations). Other sys-
tems include PetaBricks [2], CVXgen [27] and Halide [51,50].
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