
Go Meta! A Case for Generative Programming
and DSLs in Performance Critical Systems
Tiark Rompf1, Kevin J. Brown2, HyoukJoong Lee2, Arvind K.
Sujeeth2, Manohar Jonnalagedda4, Nada Amin4, Georg Ofenbeck5,
Alen Stojanov5, Yannis Klonatos3, Mohammad Dashti3, Christoph
Koch3, Markus Püschel5, and Kunle Olukotun2

1 Purdue University, USA {first}@purdue.edu

2 Stanford University, USA {kjbrown,hyouklee,asujeeth,kunle}@stanford.edu

3 EPFL DATA, Switzerland {first.last}@epfl.ch

4 EPFL LAMP, Switzerland {first.last}@epfl.ch

5 ETH Zurich, Switzerland {ofgeorg,astojanov,pueschel}@inf.ethz.ch

Abstract
Most performance critical software is developed using very low-level techniques. We argue that
this needs to change, and that generative programming is an effective avenue to enable the use
of high-level languages and programming techniques in many such circumstances.

1998 ACM Subject Classification D.1 Programming Techniques

Keywords and phrases Performance, Generative Programming, Staging, DSLs

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 The Cost of Performance

Performance critical software is almost always developed in C and sometimes even in assem-
bly. While implementations of high-level languages have come a long way, programmers do
not trust them to deliver the same reliable performance. This is bad, because low-level code
in unsafe languages attracts security vulnerabilities and development is far less agile and
productive. It also means that PL advances are mostly lost on programmers operating un-
der tight performance constraints. Furthermore, in the age of heterogeneous architectures,
“big data” workloads and cloud computing, a single hand-optimized C codebase no longer
provides the best, or even good, performance across different target platforms with diverse
programming models (multi-core, clusters, NUMA, GPU, ...).

1.1 Abstraction Without Regret

We argue for a radical rethinking of the role of high-level languages in performance critical
code: developers should be able to leverage high-level programming abstractions without
having to pay the hefty price in performance. The shift in perspective that enables this
vision of “abstraction without regret” is a properly executed form of generative programming:
instead of running the whole system in a high-level managed language runtime, we advocate
to focus the abstraction power of high level languages on composing pieces of low-level code,
making runtime code generation and domain-specific optimization a fundamental part of
the program logic. This design fits naturally with a distinction into control and data paths,
which already exists in many systems.

© Tiark Rompf et al.;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Go Meta! A Case for Generative Performance Programming

1.2 Towards a Discipline of Generative Performance Programming
While the general idea of program generation is already well understood and many lan-
guages provide facilities to generate and execute code at runtime (e.g., via quotation in the
LISP tradition and “eval” even in JavaScript), generative programming remains somewhat
esoteric—a black art, accessible only to the most skilled and daring of programmers. We
believe that generative programming should become a part of every performance-minded
programmer’s toolbox. What is lacking is an established discipline of practical genera-
tive performance programming, including design patterns, best practices, and well-designed
teaching material. To make up for this deficiency, we advocate for a research program and
education effort, and describe our ongoing work in this direction:

Compiling queries in database systems (Section 3)
Protocol and data format parsers (Section 4)
Delite: A DSL compiler framework for heterogeneous hardware (Section 5)
Spiral: Synthesis of very high-performance numeric kernels (Section 6)

Along the way, we discuss programming patterns such as staged interpreters, mixed-stage
datastructures, and how certain language features such as type classes enable powerful gen-
erative abstractions. We survey related work in Section 7, and we attempt to synthesize
lessons learned and discuss limitations and challenges in Section 8.

2 Background and Context

A famous quote, attributed to David Wheeler, says that:

“Any problem in computer science can be solved by adding a level of indirection.”

What is less widely appreciated is the second part of this quote: “Except problems that
are caused by too many levels of indirection”. In practice, many of these problems are
performance problems. More generally, there appears to be a fundamental conflict between
performance and productivity: to increase productivity we need to add indirection, and to
increase performance, we need to remove indirection.

Remove&Indirec-on& Add&Indirec-on&

Produc'vity,

Performance,

2.1 About Performance
The business of program optimization is one of diminishing returns: more effort leads to
increased efficiency, but further gains come at an exponentially higher price. Often, the
biggest gains can be achieved by choosing a better algorithm. Thus, in the most common
case, a programmer implements a work-optimal algorithm, and relies on a compiler to create
an efficient mapping to architectural and microarchitectural details.

The problem with the former is that “work-optimal” is often only established asymp-
totically, thus ignoring constants, the choice of data structure, or locality. The problem
with the latter is that compilers are automatic systems that need to work for all programs,
and thus cannot be expected to deliver the best possible results for any particular program.
The ability of a compiler to optimize a given program depends very much on the program-
ming language and on the particular programming style. In general, high-level languages

Tiark Rompf et al. 3

Programmer(

Hardware(

Matrix,(Graph,(SQL(...(

Array,(Struct,(Loop,(...(

SIMD,(GPU,(cluster,(...(

Programmer(

Hardware(

Object,(Class,((
Module,(HigherC(
Order(FuncFon(

Figure 1 General purpose compilers (left) vs. DSL compiler toolchains (right).

are partly interpreted, with just-in-time compilers of varying sophistication. Programs in
high-level languages can easily be 10x to 100x slower than equivalent C programs, and
the individual coding style makes a big difference. In general, the more high-level features
and indirection is used (objects, classes, higher-order functions, ...) the bigger the price in
performance, because indirection fundamentally stands in the way of automatic program
analysis. Thus, after algorithmic changes, a big performance boost can be obtained by
rewriting a program in a low-level style, and moving “closer to the metal” by eliminating
other overheads such as unnecessary data transfers. To give one example, a recent study
[76] shows that simple single-threaded Rust programs can outperform big data processing
frameworks running on a cluster of several hundred nodes on important graph applications.
This inefficiency translates directly into higher energy consumption and data center bills.

But even reasonably optimized C implementations can be suboptimal by a large margin
[13, 77], and speed-ups of sometimes 2x, 5x, or more can be achieved with careful tuning to
the microarchitecture and employment of the right coding style—a non portable approach.
The situation worsens considerably when parallelizing or distributing computation to ho-
mogeneous or heterogeneous processors. Here, a single C codebase is no longer sufficient
as each class of devices comes with its own specific programming model (Pthreads, MPI,
OpenMP, CUDA). Effectively, separate implementations are needed for each architecture,
and for best performance, different heterogeneous devices may need to be combined (e.g.
clusters of machines with CPUs and GPUs), which exacerbates the problem.

Compilers are unable to target this multitude of architectures automatically, mostly
because they lack domain knowledge: general purpose languages provide generic abstractions
such as functions, objects, etc. on top of which program-specific concepts are built, but they
do not expose these more specific concepts to the compiler. Thus, the compiler is unable
to restructure algorithms or rearrange data layouts to map well to a hardware platform,
and cope with the large number of choices in transformations, data representations, and
optimizations. This “general purpose bottleneck” is visualized in Figure 1 and contrasted
with a domain-specific approach, which enables a compiler to reason about and optimize
programs on multiple levels of abstraction.

2.2 About Staging
Generative or multi-stage programming (staging for short), goes back at least to Jørring and
Scherlis [55], who observed that many programs can be separated into stages, distinguished
by frequency of execution or by availability of data. Taha and Sheard [111] made these stages

4 Go Meta! A Case for Generative Performance Programming

explicit in the programming model and introduced MetaML as a language for multi-stage
programming. A staged computation does not immediately compute a result, but it returns
a program fragment that represents the computation, and that can be explicitly executed
to form the next computational stage. MetaML’s staging operators bracket, escape and run
are modeled after the quote, unquote and eval facilities known from LISP and Scheme.

The presentation in this paper uses Scala and LMS (Lightweight Modular Staging) [97],
a staging technique based on types. LMS is implemented as a library (hence lightweight),
and instead of syntactic quotations, it uses Scala’s overloading facilities to build staged
computations. Staged expressions can be further processed and unparsed into source code
in Scala or a different language, including C. Since all staged operations are defined in
library code, it is easy to restrict operations to those with a C counterpart (hence modular).
Even C constructs with no Scala counterpart (e.g. pointers) can be represented abstractly,
to get the same low-level behavior and performance. The key benefit of staging is that the
present-stage code can be written in a high-level style, yet generate future-stage code that
is very low-level and efficient. Staging is a programmatic way to remove indirection—when
generating code in one step, Scala becomes a glorified macro system to generate C code.

2.3 About DSLs
Traditionally, the appeal of DSLs is in increasing productivity by providing a higher level,
more intuitive programming model for domain experts, who are not necessarily expert pro-
grammers (“user-facing” DSLs). While this is an important direction and good tool support
exists (e.g. language workbenches like Spoofax [59]), our interest in DSLs is as a vehicle for
exposing knowledge about high-level program structures to a compiler. The effectiveness of
a DSL-based program generation approach was demonstrated, among others, by the origi-
nal Spiral system, which used a complete DSL-based generative approach for the automatic
parallelization and locality optimization of linear transforms [85, 86]. In such systems, DSLs
are implementation details, much like intermediate representations (IRs) in a compiler, that
enable specific analyses and transformations at different levels of abstractions (Figure 1).

Staging in the style of LMS is a natural fit for these “internal” DSLs: instead of generating
target code directly, one simply generates expressions in a domain-specific intermediate
language. The key benefit of staging remains: computation at staging time, while the DSL
program is assembled, is “free”, i.e. without cost at DSL runtime. Thus, the DSL does not
need to include features like higher order functions, objects, etc. which are hard to analyze,
but it can focus exclusively on the elements of interest (e.g. matrices, graphs, SQL queries).

The second benefit of staging in a DSL context comes in when we consider how to
translate from one DSL representation to the next lower-level one. In the partial evaluation
community, it is well known that specializing an interpreter yields a compiler (the first
Futamura projection [37]). Thus, a staged interpreter is a translator from one language to
another: in other words, we can translate from one intermediate DSL to the next by defining
an interpreter for the first language, and staging it [98, 83]. This drastically reduces the
effort required to implement sophisticated multi-pass compiler toolchains.

With a properly designed layered approach, building new DSLs becomes simpler as well.
Instead of starting from scratch, it is sufficient to implement a DSL front-end, consisting of
the required datatypes, optimizations, and translation to an already existing backend [109].

2.4 Convergence: Generative Performance Programming
DSLs and generative approaches have been around for quite some time, with a number of
successes but with few examples of more mainstream adoption. SQL is perhaps the biggest

Tiark Rompf et al. 5

DSL success story: by restricting their interface to a well defined, restricted, language,
database systems are able to leverage elaborate query optimization techniques. Traditionally,
database systems stop short of generating machine code to run queries, but recently query
compilation is seeing a surge of interest. We will come back to this in Section 3. A recent
system that is rapidly making an impact in industry is Halide [90, 89], which generates fast
image processing kernels from high-level algorithmic descriptions.

We believe that generative techniques for performance optimization are an exciting area
of research with the potential to deliver important tools for real world software development.
The reason is in the concurrent evolution of three trends:

Hardware: With contemporary and emerging architectures, the pain involved in achiev-
ing high performance has increased dramatically. Frequency scaling, and with it free
speed-up, has ceased a decade ago. Systems are becoming increasingly parallel, hetero-
geneous, and distributed, with diverse programming models. This means that mapping
algorithms optimally is more difficult than ever, and likely requires new solutions, even
if domain-specific.
Applications: With a shift towards big data workloads in the cloud and a proliferation
of mobile devices and embedded systems, there is a growing demand for highly efficient
software. Mobile users expect an “always on” experience and are growing accustomed
to applications based on sophisticated machine learning algorithms that process data in
near realtime. In addition to the traditional latency and throughput requirements, this
demand for efficiency is increasingly driven by concerns of energy consumption, which
often dominates the operating costs of a system.
Programming Languages: High-level languages focus increasingly on generality and
abstraction, allowing programmers to build large systems from simple but versatile parts.
On the one hand, this makes it even harder for compilers to translate high-level programs
to efficient code. But on the other hand, these highly expressive languages enable the
sophisticated meta-programming techniques that are needed for effective generative pro-
gramming.

The bottom line of our approach can be summarized succinctly as follows:

Use$Indirec+on$and$Abstrac+on$to$Solve$Performance$Problems,$too.$

3 Case Study: Databases and Query Processors

Popular open-source and commercial database systems have been shown [125, 106] to per-
form 10 to 100x worse on certain queries than specialized, hand-written C implementations
of the same query. At the same time such systems contain hundreds of thousands of lines of
optimized C code, with a lot of manual specialization. On last count in a recent version of
the PostgreSQL server, there were about 20 distinct implementations of the memory page
abstraction and 7 implementations of B-trees [63]. This form of human inlining and special-
ization creates a maintenance nightmare but is probably justified by improved performance.

Why, then, are database systems still falling short of hand-written queries? One reason is
that most systems interpret query plans, operator by operator and record by record. Clearly
this layer of interpretation can be a bottleneck. So why aren’t databases using compilers?
Because compilers are way too hard to implement! In fact this is a well-known part of
database folklore: The first relational DBMS, IBM’s System R, initially compiled its query

6 Go Meta! A Case for Generative Performance Programming

plans, but before the first commercial release, changed to interpretation. The reason was
that code generation for the large set of query techniques being investigated was incredibly
painful. Nowadays, among mainstream DBMS, only data stream processing systems such
as IBM Spade or StreamBase use compilation. The reason here is that ultra-low latencies
are necessary and justify the inconvenience of creating a compiler. Still, compilation has
received renewed interest [62, 63, 80, 78] and very recently, compilation based systems have
started to appear again (e.g. Microsoft Hekaton, Cloudera Impala and MemSQL).

The good news is that generative programming offers a generic recipe to turn interpreters
into compilers: staging an interpreter enables us to specialize it with respect to any program.
The result of specialization is that the interpreter is dissolved and only the computation of
the interpreted program remains as residual generated code [38, 2]. We discuss two research
databases systems and one tutorial system that use this technique next.

3.1 DBToaster and LegoBase
DBToaster incrementalizes query evaluators and generates low-level C++ or Scala code.
The first compilation stage turns SQL queries into update event triggers. These triggers
prescribe how to efficiently refresh a materialized view of the query as the base data in the
database changes. The second compiler stage optimizes the event triggers and generates
efficient code. Experimental results show that DBToaster improves the performance of
IVM by several orders of magnitude compared to the state of the art [3]. The second-stage
compiler was originally written in about 15k lines of OCAML code; recently, it was rewritten
in 2k lines of Scala/LMS code. Combined with other optimizations, the query running times
improved by one to two further orders of magnitude compared to the results from [3].

LegoBase (a joint project between Oracle Labs and EPFL) is an analytic query engine
[61] developed from scratch using Scala and LMS. With just about 3000 lines of Scala code,
it runs all 22 queries from the industry-standard TPCH benchmark, achieving up to 20x
speedups over a commercial database system, and competetive performance in comparison
to other state-of-the-art query compilers that are implemented using LLVM, in a much more
low-level style [80]. LegoBase removes all interpretive overhead by performing whole-query
optimization, and generates specialized low-level datastructures (e.g. hash tables) based on
the query and data schema.

3.2 The Essence of a SQL Compiler in 500 LOC
The LegoBase design went through several iterations, and we have distilled the essence into
a generative programming tutorial (presented at CUFP’151). By removing functionality
that was just a variation of a common theme or which did not offer specific insights (no
sorting, only inner joins, ...) we were able to implement an end-to-end SQL compiler in just
under 500 lines of Scala [94].

Our starting point–without any compilation–is a generic library function to read CSV
files. A CSV file contains tabular data, where the first line defines the schema, i.e. column
names. We would like to iterate over all rows in a file and access data fields by name:

processCSV("data.txt") { record => // sample data:

if (record("Flag") == "yes") // Name, Value, Flag

println(record("Name")) // A, 7, no

} // B, 2, yes

1 scala-lms.github.io/tutorials/query.html

scala-lms.github.io/tutorials/query.html

Tiark Rompf et al. 7

Records are objects of the following class, which carries both the field data and the
schema, and enables lookup by key:

class Record(fields: Array[String], schema: Array[String]) {

def apply(key: String) = fields(schema indexOf key)

}

This record class enables a nice high-level programming style but unfortunately it comes
at a high price. The code above runs much slower than just writing a specialized while loop:

while (lines.hasNext) {

val fields = lines.next().split(",")

if (fields(2)) == yes) println(fields(0))

}

Being generic means that a system contains interpretive structure. In this example, we
are interpreting the schema that is read from the file. In a DBMS, queries are optimized
at the SQL level and then translated to low-level execution plans, which are interpreted,
operator by operator.

3.2.1 Interpreter + Staging = Compiler
Let us turn our CSV reader into a query engine that can run simple SQL queries. Our
example above would be expressed as

SELECT Name FROM data.txt WHERE Flag == ’yes’

and we assume that we already receive a parsed (and possibly optimized) structured repre-
sentation, the execution plan. In this case:

Print(

Project(List("Name"))(

Filter(Eq(Field("Flag"),Const("yes")))(

Scan("data.txt"))))

The operators are arranged in a tree, and apart from Scan, each of them has a parent from
which it obtains a stream of records. We can implement a query interpreter as follows:

def eval(p: Predicate)(rec: Record): Boolean = ... // elided

def exec(o: Operator)(yld: Record => Unit) = o match {

case Scan(file) => processCSV(file)(yld)

case Filter(pred)(parent) => exec(parent) { rec => if (eval(pred)(rec)) yld(rec) }

case Project(fields)(parent) => exec(parent) { rec => yld(fields map (k => rec(k))) }

case Print(parent) => exec(parent) { rec => println(rec.fields mkString ",") }

}

We now turn this interpreter into a compiler by adding staging using LMS (Lightweight
Modular Staging) [96]. As we will see, the necessary modifications are rather minor.

3.2.2 Mixed-Stage Data Structures and Functions
LMS is a staging technique driven by types. The type Rep[T] represents a delayed compu-
tation of type T. Thus, during staging, a bare “static” type T means “executes now”, while
a wrapped “dynamic” type Rep[T] means “generate code to execute later”. We tweak the
Record class so that only the fields are “dynamic”:

8 Go Meta! A Case for Generative Performance Programming

class Record(fields: Rep[Array[String]], schema:Array[String]) {

def apply(key:String) = fields(schema indexOf key)

}

Now record objects exist purely at staging time, and never become part of the generated
code. For our example, the generated code will be exactly the efficient while loop shown
above, even if we are starting from a SQL query as our input. Let us look at the definition
of procedure processCSV, which forms the core of our data processing engine:
def processCSV(file: String)(yld: Record => Rep[Unit]) = {

val lines = FileReader(file); val schema = lines.next.split(",")

run { while (lines.hasNext) {

val fields = lines.next().split(",")

yld(new Record(fields,schema))

}}}

The type of the closure argument yld is Record => Rep[Unit], a present-stage function.
Invoking it will inline the computation, a key difference to a staged function of type Rep[A=>B],
which results in a function call in the generated code. The while loop is virtualized [95], i.e.
overloaded to yield a staged expression when the condition or loop body is a Rep expression.

This is essentially all that is required to convert our query interpreter into a query
compiler. Using types to drive staging decisions enables us to mix present-stage and future-
stage code quite freely, without the syntactic noise introduced by quotation brackets. The
full code adds data structure specialization, join and aggregation operators, and optimized
input processing using memory-mapped IO, all in about 500 lines of Scala [94].

4 Regular Expressions and Parser Combinators

Data is not only stored but also transferred. Fast encoding and decoding of data formats
is therefore a key concern in data processing pipelines. The accepted standard is to write
protocol parsers by hand. Parser generators, which are common for compilers, are not
frequently used. One reason is that many protocols require a level of context-sensitivity (e.g.
read a value n, then read n bytes), which is not readily supported by common grammar
formalisms. Many open-source projects, such as Joyent/Nginx and Apache have hand-
optimized HTTP parsers, which span over 2000 lines of low-level C code. From a software
engineering standpoint, big chunks of low-level code are never a desirable situation. First,
there may be hidden and hard to detect security issues like buffer overflows. Second, the
low-level optimization effort needs to be repeated for new protocol versions or if a variation
of a protocol is desired: for example, a social network mining application may have different
parsing requirements than an HTTP load balancer, although both process the same protocol.

Parser combinators could be a very attractive implementation alternative, but are usually
simply too slow. Their main benefit is that the full host language can be used to compose
parsers, so context sensitivity and variations of protocols are easily supported. We have
recently shown how parser combinators can be implemented in a generative style [54], yield-
ing parser generator combinators. Clever use of present-stage and staged functions enables
recursive grammars and prevents code size explosion.

We evaluate staged parser combinators against hand-written parsers for HTTP and JSON
data from the NGINX and JQ projects. Our generated Scala code, running on the JVM,
achieves HTTP throughput of 75% of NGINX’s low-level C code, and 120% of JQ’s JSON
parser. Other Scala tools such as Spray are at least an order of magnitude slower. The
standard Scala combinator implementation is 4 orders of magnitude slower (Figure 2).

Tiark Rompf et al. 9

Scala combinators
Staged Scala

NGINX Java port
NGINX / gcc -O2

0 75 150 225 300
274.32

112.58
200.82

0.03

Spray/parboiled
Staged Scala
JQ / gcc -O3

0 15 30 45 60
48.60

57.80
5.72

Figure 2 Parser performance (throughput in MB/s) for HTTP (top) and JSON (bottom)

Staged parser combinators can be implemented for different parsing styles. Communica-
tion protocols are designed to be unambiguous, so recursive decent works well and does not
cause backtracking. For ambiguous grammars, we have also studied bottom up parsers [54].

An interesting special case of parsing are regular expressions. We have shown that NFA
to DFA conversion can be expressed as a staged interpreter. We achieve speedups of 2x over
optimized automata libraries, 100x over the JDK implementation, and more than 2000x
over unstaged Scala code [98].

5 Delite: DSLs for Heterogeneous Targets

While SQL and C code generation are important use cases, contemporary “big data” work-
loads require more flexibility. On the application side, we need to deal with machine learning
algorithms and graph processing. On the target side, we need to support GPUs, NUMA
machines, and clusters. General purpose compilers are a bottleneck, unable to translate all
these applications efficiently to different targets.

Delite [17, 99, 69, 70] is an extensible compiler framework for building embedded domain
specific languages (DSLs). Delite supports a versatile intermediate language of parallel pat-
terns called “Delite Ops” (including e.g. data-parallel map, filter, and reduce abstractions)
to which domain-specific operations are translated, and code generation as well as runtime
support for heterogeneous targets. Multiple DSLs can be used together in a single program,
since all of them are translated to the common IR [109]. On the IR level, sophisticated
optimizations like loop fusion and loop nesting optimizations are shared by all DSLs.

To give an example of the types of transformations that can be performed, here are two
different ways of writing the computation loop (one iteration) of k-means clustering using
data-parallel patterns. For shared-memory execution, the rows of the large dataset (matrix)
are clustered, with data implicitly shuffled via the indexing operation matrix(as):

val assigned = matrix.mapRows { row =>

oldClusters.mapRows(centroid => dist(row, centroid)).minIndex

}

val newClusters = oldClusters.mapIndices { i =>

val as = assigned.filter(a => a == i)

matrix(as).sumRows.map(s => s / as.size)

}

For distributed-memory execution, however, we shuffle data explicitly via groupBy:

val clusteredData = matrix.groupRowsBy { row =>

oldClusters.mapRows(centroid => dist(row, centroid)).minIndex

}

val newClusters = clusteredData.map(e => e.sum / e.size)

10 Go Meta! A Case for Generative Performance Programming

0.0#10.0#

Spark# Delite#CPU# Delite#GPU#

0.0#

10.0#

20.0#

30.0#

40.0#

50.0#

60.0#

70.0#

Q1# Gene# GDA#

Sp
ee
du

p#
ov
er
#H
ad

oo
p#

Compute#Component#

0#

50#

100#

150#

200#

250#

300#

350#

1.7#GB# 17GB#
k3means#

0#
50#
100#
150#
200#
250#
300#
350#
400#
450#
500#

3.4GB# 17GB#
LogReg#

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

7.0#

8.0#

k3means# LogReg#

Sp
ee
du

p#
ov
er
#S
pa

rk
#

GPU#Cluster#

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

Pa
ge
Ra
nk
#

Tri
an
gle
#Ct
#

Sp
ee
du

p#
ov
er
#P
ow

er
Gr
ap

h#

Figure 3 Delite performance for machine learning and graph apps on heterogeneous clusters.

This way the required data movement is explicitly visible to the compiler and Delite can
then reason about how to automatically partition matrix and the intermediate results across
distributed memories and perform the required data movement. We have developed a num-
ber of DSLs for different domains, including OptiML (machine learning), OptiGraph (graph
processing), OptiQL (SQL-like data querying), and OptiWrangler (data cleaning). All of
these exhibit very competetive performance compared to stand-alone systems and other
DSLs [108, 109]. Delite DSLs achieve high sequential performance via LMS optimizations
and systematic removal of high-level domain abstractions. Parallel scalability is provided
by efficient implementations of Delite Ops for multiple hardware platforms as well as the
locality-improving loop transformations Delite performs on these Ops.

We show experiments comparing Delite, Spark [124], and Hadoop [12] performance on
a 20 node Amazon cluster for machine learning applications, and comparing to Power-
Graph [42] for graph analytics applications on a 4 node cluster connected within a single
rack. The results are shown in Figure 3.

Extremely large speedups compared to Hadoop are possible for applications that perform
multiple passes over a single dataset. While Hadoop loads the data from disk every iteration,
Delite and Spark both keep the data in memory. Delite also shows large speedups over Spark
(a Scala library) due to efficient code generation provided by LMS compared to Scala library
overheads. Speedup over PowerGraph is very modest due to the graph applications being
bound by network communication rather than computational efficiency.

6 Synthesis of High-Performance Numeric Kernels

For some ubiquitous computation kernels (e.g. basic linear algebra routines, FFTs, filters,
Viterbi decoders), there is high demand for not only good, but absolute peak performance.
The difference between a regular optimized implementation and the best known one can be
staggering: for FFT kernels more than 10x, using the same algorithm and the same number
of floating point operations. The difference is mostly due to low-level details such as locality
optimizations, SIMD vectorization, and instruction scheduling.

Producing optimized kernels for such numeric operations is one of the established use
cases for program generation [77] with early examples including ATLAS [122], FFTW codelet
generator [36], and the aforementioned Spiral [85, 86]. All three were developed from scratch
as stand alone tools, which are hard to extend, reuse, combine, or maintain.

Tiark Rompf et al. 11

type T = Double
add[Rep,Real,NoRep,SISD,T]

type T = Double
add[NoRep,Real,Rep,SISD,T]

type T = Double
add[Rep,Real,NoRep,SIMD,T]

type T = Double
add[NoRep,Real,Rep,SIMD,T]

#define T double
#define N 4
void add(T* x, T* y, T* z) {

int i = 0;
for(; i < N; ++i) {

T x1 = x[i];
T y1 = y[i];
T z1 = x1 + y1;
z[i] = z1;

}
}

#define T double
void add(T* x, T* y, T* z) {

T x1 = x[0]; T x2 = x[1];
T x3 = x[2]; T x4 = x[3];
T y1 = y[0]; T y2 = y[1];
T y3 = y[2]; T y4 = y[3];
T z1 = x1 + y1;
T z2 = x2 + y2;
T z3 = x3 + y3;
T z4 = x4 + y4;
z[0] = z1; z[1] = z2;
z[2] = z3; z[3] = z4;

}

#define T double
#define N 1
void add(T* x, T* y, T* z) {

int i = 0;
for(; i < N; ++i) {

__m256d x1, y1, z1;
x1 = _mm256_loadu_pd(x + i);
y1 = _mm256_loadu_pd(y + i);
z1 = _mm256_add_pd(x1, y1);
_mm256_storeu_pd(z + i, y1);

}
}

#define T double
void add(T* x, T* y, T* z) {

__m256d x1, y1, z1;
x1 = _mm256_loadu_pd(x + 0);
y1 = _mm256_loadu_pd(y + 0);
z1 = _mm256_add_pd(x1, y1);
_mm256_storeu_pd(z + 0, y1);

}

(a) Staged SISD Array (b) SISD Array of Staged Doubles (c) Staged SIMD Array (d) SIMD Array of Staged Doubles

Figure 4: Different Data Type Instantiations result with different code style (assuming arrays of size 4 and AVX as an ISA)

c = f(a,b)
// staged computation
a: Rep[Int]; b: Rep[Int], c: Rep[Int]
c = f(a,b)

This also applies to Scala for comprehensions which Scala treats
as regular functions, with a parameter of type Range that can be
overloaded in a similar fashion:
for (range: Range) { body } // Regular loop
for (range: Rep[Range]) { body } // AST loop node

The first version executes the body expression, and the second
version creates an AST node representing a loop that includes the
body expression.

Encapsulating staging decisions. FGen heavily utilizes this mech-
anism to abstract over staging decisions as described in full detail
in [13]. For this work, these abstraction have been extend further
to also include vectorization. Within I-IR the operands of our DSL
are highly polymorphic classes that take the shape:
class CVector[V[_], E[_], R[_], P[_], T](...) {

type Element = E[R[P[T]]]
def size (): V[Int]
def apply (i: V[Int]) : Element
def update (i: V[Int], v: Element)

}

For simplicity the code above omits the type classes that are im-
plicitly passed together with each type parameter. Within each of
the type parameters provided to the CVector class we encode part
of the abstraction, by providing abstract composable interfaces that
are implemented through those type classes.

• T describes the underlying array primitive (double, float, etc).

• P[_] describes whether we deal with SIMD or SISD instruc-
tions. It is accompanied by a type class that abstracts SIMD
specific operators such as shuffle, hadd, vadd etc., and SISD
specific operations such as addition, multiplication etc.

• R[_] describes whether we stage the elements of the array.
The accompanying type class abstracts numerical operations for
both staged and non-staged version.

• E[_] describes the the structure of one array element. E.g. it
can be complex numbers consisting of two primitves or directly
primitves. E[_]. Abstractions for numerical operations relative
to the element such as addition, multiplications, complex num-
ber interleaving are implemented in the accompanied type class.

• V[_] encodes whether array accesses will be visible in the
target code element operations.

A concrete choice of a data layout, code style and the vectorization
is done through instantiating the CVector class accordingly, e.g.,
class Scalar_SISD_Double_Vecor extends
CVector[NoRep, Real, Rep, SISD, Double] ...

where the type NoRep is a higher order type defined as

type NoRep[T] = T

In the translation process from ⌃-LL to I-IR, this enables us to
define the target translations in terms of the type polymorphic base
class CVector as e.g.
def add[V[_], E[_], R[_], P[_], T] (

(x, y, z) : Tuple3[CVector[V,E,R,P,T]]
) = for (i <- 0 until x.size()) {

z(i) = x(i) + y(i)
}

Concrete implementations can be picked by passing corresponding
instantiations of the base class to the function. Figure 4 illustrates
this for four variants that could be passed to the add functions.

Staging decisions are of crucial importance to FGen. When tiling
is performed to fit the SIMD vector length, SIMD instantiations are
performed to generate the vectorized part of the code; the leftover
computation is instantiated as unvectorized SISD code. When tiling
for registers, data structures are properly instantiated to generate the
unrolled version of the code. Data abstraction and staging decisions
are used to provide a single codebase that will fit all generated code
versions.

3.5 ISA Abstraction

Once data types are fixed, the next step is to replace each ⌃-LL
expression with one or several I-IR expressions. The Intrinsics IR
is ISA independent and it only specializes to a particular ISA, once
this argument is fixed in the generator. The specialization to a par-
ticular ISA is inter-dependent on the data abstraction. We observe
this in the case of Interleaved Complex Array. Real and imagi-
nary parts must be interleaved when data is loaded or stored. To
achieve this, the ISA abstraction calls the corresponding shuffle,
unpackhi and unpacklo instructions, to perform the desired in-
terleaving.

FIR intrinsics. Once the ISA is fixed, we perform the conversion
of ⌃-LL expressions to I-IR. FGen implements translation of ⌃-LL
to I-IR in a single codebase and uses staging decisions to generate
different code versions. The actual SIMD conversion of the PFIR
filter is given below:
class SigmaLL2CIRTrasnlator[E[_], R[_], P[_], T] {

4 2014/4/29

Figure 4 Different code styles generated from single vector add function (taken from [105])

To investigate whether a) these generators can be implemented using embedded DSLs
and staging, and b) what proper language support can offer for this application, we reim-
plemented a subset of Spiral using Scala and LMS, leading to a draft proposal for a more
systematic approach to constructing this kind of program generators [83]. Spiral was chosen
because it is almost completely DSL-based. In particular, Spiral uses three internal DSLs:
one to capture recursive algorithms as breakdown rules, one to mathematically express loops
and access patterns, and one a C-like intermediate representation. Algorithmic choice arises
from different combinations of breakdown rules and structural optimizations for locality and
parallelism are performed by rewriting on the second DSL.

The main results of this work were a) a staging approach to translate a DSL into another
DSL, b) the use of type classes to abstract over data type and code style used in the generated
code. We briefly survey the last contribution.

6.1 Type Classes and Generic Programming
Generated libraries often need to support multiple input/output data formats, such as inter-
leaved, split, or C99 format of complex number arrays. A key result of the Spiral-LMS proto-
type has been to show that established generic programming techniques such as Haskell-style
type classes [121], applied in a generative style, are well suited to model this diversity.

But type classes are even more powerful in the context of LMS, as they make it possi-
ble to abstract over staging decisions. In particular, some necessary but tedious low-level
transformations such as loop unrolling with scalar replacement, selective precomputation or
specialization to partially known input can all be expressed as instantiations of a generic
CVector class with suitable type parameters.

More recent work has shown that this approach can also cover abstraction over SIMD
architectures [105]. In Figure 4, we show how a generic add function can generate different
code shapes depending on the type parameter instantiations. The definition of the CVector

class and add function is given below:

class CVector[V[_], E[_], R[_], P[_], T](...) {

type Element = E[R[P[T]]]

def size (): V[Int]

def apply (i: V[Int]) : Element

def update (i: V[Int], v: Element)

}

def add[V[_], E[_], R[_], P[_], T] (

(x, y, z) : Tuple3[CVector[V,E,R,P,T]]

) = {

for (i <- 0 until x.size())

z(i) = x(i) + y(i)

}

12 Go Meta! A Case for Generative Performance Programming

T: array primitive (double, float, etc).
P[_]: SIMD or SISD array.
R[_]: staged or non-staged elements of
the array.

E[_]: complex or real array elements.
V[_]: encodes whether array accesses will
be visible in the target code element op-
erations.

Each type parameter, defined in the CVector class, is accompanied by a corresponding implicit
type class instance, which defines the shape of CVector upon instantiation:

type NoRep[T] = T

class Staged_SISD_Double_Vector extends CVector[Rep , Real, NoRep, SISD, Double]

class Scalar_SISD_Double_Vector extends CVector[NoRep, Real, Rep, SISD, Double]

class Staged_SIMD_Double_Vector extends CVector[Rep , Real, NoRep, SIMD, Double]

class Scalar_SIMD_Double_Vector extends CVector[NoRep, Real, Rep, SIMD, Double]

The main prerogative of the CVector class is to generate code in lower level DSLs, C-IR and
I-IR. The C-IR DSL represents a C-like intermediate language representation, and I-IR repre-
sents ISA-specific C intrinsics. Both DSLs model low level variable and array manipulations
as well as arithmetic and binary operations, provided as extension to LMS.

val IR = new CIR (); IR.setISA(AVX2); import IR._

Once concrete CVector classes are created, the abstraction layer deals with a concrete ISA,
specified in the CIR class, concrete staging decisions, and a concrete array type.

var x, y, z = new Staged_SISD_Double_Vector () var x, y, z = new Staged_SIMD_Double_Vector ()

var x, y, z = new Scalar_SISD_Double_Vector () var x, y, z = new Scalar_SIMD_Double_Vector ()

The add function operates on CVector elements constrained by the provided types. Type
information propagates through each arithmetic operation, generating ISA-specific C-IR and
I-IR. As a result, once C code is emitted, we obtain different versions (Figure 4) from a
single source:

emitCode(add(x, y, z))

Abstracting over SIMD architectures enables the generator developer to deal with the
higher-level specification using SIMD agnostic and architecture agnostic expressions. While
SIMD-specific optimizations are required to achieve the highest performance, the abstraction
layer is able to automatically invoke the particular architecture optimization, when the lower
I-IR / C-IR is generated. As these optimizations are implemented in a modular fashion, they
can be reused in the context of the abstraction layer, and also as stand-alone optimizations
for building generators directly.

7 Related Work

Embedded DSLs Embedded languages have a long history [66]. Hudak introduced the
concept of embedding DSLs as pure libraries [46, 47]. Steele proposed the idea of “growing”
a language [104]. The concept of linguistic reuse goes back to Krishnamurthi [65]; Language
virtualization to Chafi et al. [20]. The idea of representing an embedded language abstractly
as methods (finally tagless) is due to Carette et al. [18] and Hofer et al. [45], going back to
much earlier work by Reynolds [91]. Compiling embedded DSLs through dynamically gen-
erated ASTs was pioneered by Leijen and Meijer [71] and Elliot et al. [33]. All these works
greatly inspired the development of LMS. Haskell is a popular host language for embed-
ded DSLs [110, 41], examples being Accelerate [75], Feldspar [8], Nikola [74]. Recent work

Tiark Rompf et al. 13

presents new approaches around quotation and normalization for DSLs [79, 24]. Other per-
formance oriented DSLs include Firepile [82] (Scala), Terra [30, 31] (Lua). Copperhead [19]
(Python). Rackets macros [114] provide full control over the syntax and semantics: Typed
Racket [113] is implemented entirely as macros. DSLs are also used to target hardware
generation, for example Lime [7], Chisel [9], Bluespec [6], or based on Delite/LMS [40, 39].
Related work on low-level systems oriented programming in high-level languages includes
[35] and the Singularity operating system [67].

C++ Templates Metaprogramming facilities exist in many languages, including C++
templates [115]. Expression Templates [116] can produce customized generation, and are
used by Blitz++ [117]. Veldhuizen introduced active libraries [118], which are libraries that
participate in compilation. Kennedy introduced telescoping languages [60], efficient DSLs
created from annotated component libraries. TaskGraph [11] is a meta-programming library
that sports run-time code generation in C++. Bassetti et al. review some of the challenges
and benefits of expression templates[10]. Examples of successful packages are the Matrix
Template Library [101], POOMA [58], ROSE [28] and the portable expression template
engine PETE [27]. Many of these contain reusable generic components.

Compiler Optimizations Compiler transformations in LMS [98] leverage work on rewrite
rules [16], on combing optimizations in a modular fashion [72, 119, 25], on loop fusion [43],
and on eliminating intermediate results [120, 26]. Other work focuses on tiling and loop
nests[123][4]. Extensible compiler tools include Polyglot [81] and JastAdd [32]. The Glasgow
Haskell Compiler also supports custom rewrite rules [53]. ROSE [88] derives source-to-source
optimizations from semantics annotations on library code. COBALT [73] is a domain-specific
language for optimizations amenable to automated correctness reasoning. Tate et al. [112]
generate compiler optimizations automatically from program examples.

Cluster and Parallel Programming There are many cluster programming frameworks, in-
cluding MapReduce [29], Hadoop [12], Spark [124], Dryad [49]. Data parallel programming
languages include NESL [14], SISAL [34], SaC [100], Fortress [57], Chapel [21], Data-Parallel
Haskell [52], High Performance Fortran [1], and X10 [23]. Implicit parallelization framworks
include Array Building Blocks [48], DryadLINQ [50], FlumeJava [22]. Another line of re-
search focuses on irregular workloads [84].

Program Generators A number of high-performance program generators have been built,
for example ATLAS [122] (linear algebra), FFTW [36] (discrete fourier transform), and Spi-
ral [87] (general linear transformations). Other systems include PetaBricks [5], CVXgen [44]
and Halide [90, 89].

8 Outlook and Conclusions

In the preceding sections, we have presented several case studies of DSL-based generative
performance programming with Scala and LMS. We could have mentioned more projects,
e.g. generative programming for the web [64, 92] and domain-specific hardware generation
[39, 40], but considered them beyond the scope of this paper.

What has enabled these results? First, we built on decades of prior art in DSLs, staging,
and performance optimization, some of which we surveyed in Section 1 and Section 7. Sec-
ond, all surveyed projects are collaborative efforts between experts in PL, architecture, DB,

14 Go Meta! A Case for Generative Performance Programming

and performance optimizations. Third, the use of a common infrastructure enabled cross
pollination and reuse of knowledge and code. Fourth, the embedding in Scala as host lan-
guage (versus external DSLs) gave us the necessary flexibility to customize and the ability
to reuse prior Java and Scala libraries. We discuss these and other important aspects below.

8.1 Modularity, Reuse, and Low Cognitive Overhead
One size does not fit all: all systems we presented use LMS with some slight variations. It
is important that a system provides good core functionality out of the box but can easily
accommodate extensions and modifications.

It is also important that the subjective overhead of generative programming is low, i.e.
program generation should “feel” natural to programmers. While it may appear as a small
detail, we have found that being able to freely mix present-stage and future-stage code with
low syntactic overhead is extremely helpful. In LMS, the types in method signatures provide
guidance as to which arguments are staged and which are not, as for other types in normal
Scala code. As always, reading code is at least as important as writing code.

In Scala we achieve almost seamless language virtualization: allowing built-ins such as
conditionals or loops to be overloaded like ordinary methods, so that they can create staged
expressions. The necessary language support (Scala-Virtualized [95]) can be implemented
as a modified compiler or using Scala macros.

8.2 Staging Should Preserve Semantics
Let us consider our Record abstraction from Section 2 with fields of type Rep[T], this time
using explicit quotation syntax:

val fields = <| lines.next().split(",") |>

yld(new Record(fields,schema))

If Rep[T] merely represents a quoted code fragment, every access to a record field may
duplicate the computation! This is not only costly, but also not semantics-preserving with
respect to termination and side effects. In this example:

processCSV("data.txt") { rec => <| print(${ rec("Name") }) + rec(${ "Flag") }) |> }

The code fragment containing lines.next() would be executed twice for each record – clearly
not the intended behavior. The problem is that quotation is usually a purely syntactic
mechanism. To achieve semantic guarantees for realistic, call-by-value, computations we
have proposed to make quotation context-sensitive [93]. We express quotation using two
operators, reflect and reify, with the following reduction semantics:

(1) <| foo ${ bar } baz |> --> reflect(" foo {" + reify { bar } + "} baz ")

(2) reify { E[reflect("str")] } --> "val fresh = str; " + reify { E[Code("fresh")] }

(3) reify { Code("str") } --> "str"

Here, E[.] denotes a reify-free execution context and fresh a fresh identifier. As we can see,
each quotation is immediately bound to a fresh identifier in the generated code, and only
identifiers are passed around as Rep values. Thus, the evaluation order in the generated code
mirrors the evaluation order of the quotations.

This development is a natural extension of previous work on quotations: Lisp intro-
duced unhygienic quote/unquote/eval operators; MetaML [111] provided guarantees about
the binding structure; LMS additionally maintains evaluation order.

Tiark Rompf et al. 15

8.3 One-Pass Code Generation is not Enough
Most previous work on staging and generative programming focused on code generation
as a single pass. However, a single-pass code generator is fundamentally disadvantaged
compared to a multi-pass compiler pipeline. As indicated in Section 2, low-level code is not
enough to achieve best performance—for this one needs to build compiler systems around
domain-specific intermediate languages. Potentially there are multiple levels of such DSLs
to capture different optimization opportunities.

The key insight here is that staging greatly simplifies building such multi-pass DSL
compilers: just as one can stage interpreters for regular expressions or SQL queries, many
program transformations can be expressed as interpreters for intermediate languages, which
are potentially annoted with auxiliary information derived by program analysis passes.

8.4 Challenges and Limitations
Understanding the limitations of a proposed techniques is key to using it effectively. First
of all, we wish to note that we do not propose a silver bullet that will magically accelerate
programs without help from the programmer.

Program generation shares some ideas with program synthesis, but is in a sense less
ambitious. Whereas program synthesis promises to come up with an efficient and cor-
rect program automatically, generative programming still requires programming, i.e. the
implementation of an algorithm. However, the tedium of manually applying performance
optimizations is removed. Staging is also less ambitious than automatic just-in-time (JIT)
compilation. Whereas JIT compilation aspires to identify chunks of code that are profitable
to compile automatically based on runtime profiling, staging delegates such decisions to the
programmer. The result is a deterministic performance model and strong guarantees about
the shape of compiled code and when compilation happens.

Staging and DSLs work well if there is indeed a stage distinction: some piece of code is run
much more often than another or after certain crucial data becomes available that enables
optimization. A challenge in the deployment in real systems is that generated code must
amortize the code generation and compilation time. Thus, staging only pays off if compiled
code is used often or a single run offsets the generation cost. In Spiral, for example, code is
generated offline and used many times. Many real-world systems have a natural separation
into control and data paths. In these cases staging is a very good fit. In SQL databases,
some queries from the TPCH benchmark take minutes to run and query compilation needs
at most seconds. OptiMesh, a Delite DSL, performs iterative computations on large meshes,
which would be altogether infeasible without compilation.

When going beyond single-pass code generation, a suitable DSL or potentially a stack
of DSLs is needed that captures the essential degrees of freedom that can be exploited
for optimization. Designing such DSLs is a creative process, and no tool can completely
eliminate this effort. However, tools can help building these DSLs and implementing the
corresponding transformations. Defining a DSL in LMS requires some boilerplate, which
has lead us to build Forge [107], a meta-DSL that can generate DSL implementations from
declarative specifications. YinYang [56] is another approach to generate necessary definitions
automatically.

Generative programming itself has a learning curve. Our experience suggests that stu-
dents can be productive within a semester without prior experience with LMS. While ef-
fective generative programming demands a certain way of thinking, and teasing apart what
should be static and what dynamic requires cleverness at times, we believe that generative
programming is not fundamentally harder than other kinds of programming. It is easy to

16 Go Meta! A Case for Generative Performance Programming

forget that in the early days of OOP, concepts like objects and inheritance were difficult to
grasp for many programmers.

8.5 A Call to Action
As mentioned in Section 1 and throughout the paper, we argue for a rethinking of the role
of high-level languages in performance critical code. In particular, as our work and the
work of others have shown, generative abstractions and DSLs can help in achieving high
performance by programmatically removing indirection, enabling domain-specific optimiza-
tions, and mapping code to parallel and heterogeneous platforms. Our examples used Scala,
but other, similarly expressive modern languages can be used just as well, as demonstrated
by Racket macros [114], DSLs Accelerate [75], Feldspar [8], Nikola [74] (Haskell), Copper-
head [19] (Python), or Terra [30, 31] (Lua).

What will it take to realize the full potential of generative performance programming on
a broad scale? We believe that concerted efforts along three major lines are necessary:

Research: While the mechanics of code generation are well understood, we have only
begun to understand what practical generative programming means. What are the pro-
gramming language features that can be used to good effect in a generative style that
targets performance? We have identified type classes as an important feature, others have
worked with polytypic programming [102, 103] and metaobject protocols [31]. Special-
izing interpreters is another well known technique. What are key programming patterns
beyond those?
Engineering: For effective practical use, we need toolchains and frameworks that come
with “batteries included”, but are at the same time accessible for customization. Building
and maintaining such systems takes considerable engineering effort, but pays off in the
long run through reuse. A case in point is the LLVM compiler framewok [68].
Teaching: Today, generative programming is somewhat of a black art. We need learning
materials, textbooks, and university courses that teach effective meta-programming tech-
niques to drive adoption beyond the perhaps 1% of programmers that are intrinsically
inclined towards such techniques.

We believe that this is an exciting opportunity for PL research, with a big potential
impact on the whole computing industry. If high-level programming becomes more often
the tool of choice for performance critical systems, and less code is written in low-level,
unsafe, languages, the overall reliability and safety of software will improve, with transitive
benefits to the whole society.

Acknowledgements

The work presented in this paper has profited from numerous interactions with other re-
searchers in the area, for example at Shonan Meetings 2012 and 2014, and annual IFIP
WG 2.11 meetings. Many other people have contributed to the development of our tools,
including Nithin George, Vojin Jovanovic, Sandro Stucki, Vera Salvisberg, Adriaan Moors,
Thierry Coppey, Julien Richard-Foy, Hassan Chafi, Chris De Sa, Christopher R. Aberger,
Jithin Thomas, Alexey Romanov, Alexander Slesarenko, Lewis Brown.

This work is supported, among other sources, by ERC grant 587327 DOPPLER, DARPA Contract- Air Force,
Xgraphs; Language and Algorithms for Heterogeneous Graph Streams, FA8750-12-2-0335; Army Contract AHPCRC
W911NF-07-2-0027-1; NSF Grant, BIGDATA: Mid-Scale: DA: Collaborative Research: Genomes Galore - Core
Techniques, Libraries, and Domain Specific Languages for High-Throughput DNA Sequencing, IIS-1247701; NSF
Grant, SHF: Large: Domain Specific Language Infrastructure for Biological Simulation Software, CCF-1111943;
Dept. of Energy- Pacific Northwest National Lab (PNNL)- Integrated Compiler and Runtime Autotuning In-
frastructure for Power, Energy and Resilience-Subcontract 108845; NSF Grant- EAGER- XPS:DSD:Synthesizing
Domain Specific Systems-CCF-1337375; Stanford PPL affiliates program, Pervasive Parallelism Lab.

Tiark Rompf et al. 17

References
1 High Performance Fortran. http://hpff.rice.edu/index.htm.
2 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional cor-

respondence between evaluators and abstract machines. In Proceedings of the 5th ACM
SIGPLAN International Conference on Principles and Practice of Declaritive Program-
ming, PPDP ’03, pages 8–19, New York, NY, USA, 2003. ACM.

3 Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. Dbtoaster: Higher-order
delta processing for dynamic, frequently fresh views. PVLDB, 5(10):968–979, 2012.

4 Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested loop nests.
In Supercomputing, ACM/IEEE 2000 Conference, pages 31–31. IEEE, 2000.

5 Saman P. Amarasinghe. Petabricks: a language and compiler based on autotuning. In
Manolis Katevenis, Margaret Martonosi, Christos Kozyrakis, and Olivier Temam, editors,
High Performance Embedded Architectures and Compilers, 6th International Conference,
HiPEAC 2011, Heraklion, Crete, Greece, January 24-26, 2011. Proceedings, page 3. ACM,
2011.

6 Arvind. Bluespec: A language for hardware design, simulation, synthesis and verification.
In 1st ACM & IEEE International Conference on Formal Methods and Models for Co-
Design (MEMOCODE 2003), 24-26 June 2003, Mont Saint-Michel, France, Proceedings,
page 249. IEEE Computer Society, 2003.

7 Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: a Java-
compatible and synthesizable language for heterogeneous architectures. In Proceedings of
the ACM international conference on Object oriented programming systems languages and
applications, OOPSLA, pages 89–108, New York, NY, USA, 2010. ACM.

8 Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and An-
ders Persson. The design and implementation of feldspar: An embedded language for digital
signal processing. In Proceedings of the 22nd international conference on Implementation
and application of functional languages, IFL’10, pages 121–136, Berlin, Heidelberg, 2011.
Springer-Verlag.

9 Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing hardware in a scala
embedded language. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors,
The 49th Annual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA,
June 3-7, 2012, pages 1216–1225. ACM, 2012.

10 Federico Bassetti, Kei Davis, and Daniel J. Quinlan. C++ expression templates perfor-
mance issues in scientific computing. In IPPS/SPDP, pages 635–639, 1998.

11 Olav Beckmann, Alastair Houghton, Michael Mellor, and Paul H.J. Kelly. Runtime code
generation in c++ as a foundation for domain-specific optimisation. In Christian Lengauer,
Don Batory, Charles Consel, and Martin Odersky, editors, Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science, pages 77–210. Springer Berlin
/ Heidelberg, 2004.

12 Andrzej Bialecki, Michael Cafarella, Doug Cutting, and Owen O’Malley. Hadoop: a frame-
work for running applications on large clusters built of commodity hardware. Wiki at
http://lucene. apache. org/hadoop, 11, 2005.

13 Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix mul-
tiply using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Inter-
national Conference on Supercomputing (ICS), pages 340–347, 1997.

14 Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97, 1996.
15 Hans-Juergen Boehm and Cormac Flanagan, editors. ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013. ACM, 2013.

http://hpff.rice.edu/index.htm

18 Go Meta! A Case for Generative Performance Programming

16 Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. Program transfor-
mation with scoped dynamic rewrite rules. Fundam. Inf., 69:123–178, July 2005.

17 Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. A heterogeneous parallel framework for domain-specific
languages. In PACT, 2011.

18 Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Program., 19(5):509–543,
2009.

19 Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: compiling an embed-
ded data parallel language. In Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, PPoPP, pages 47–56, New York, NY, USA, 2011. ACM.

20 H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Odersky, and
K. Olukotun. Language Virtualization for Heterogeneous Parallel Computing. Onward!,
2010.

21 Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel programmability
and the chapel language. IJHPCA, 21(3):291–312, 2007.

22 Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry,
Robert Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel
pipelines. In Proceedings of the 2010 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI. ACM, 2010.

23 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. SIGPLAN Not., 40(10):519–538, 2005.

24 James Cheney, Sam Lindley, and Philip Wadler. A practical theory of language-integrated
query. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 403–416. ACM, 2013.

25 Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. ACM
Trans. Program. Lang. Syst., 17:181–196, March 1995.

26 Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: from lists to
streams to nothing at all. In ICFP, pages 315–326, 2007.

27 James Crotinger, Scott Haney, Stephen Smith, and Steve Karmesin. PETE: The portable
expression template engine. Dr. Dobb’s J., October 1999.

28 Kei Davis and Daniel J. Quinlan. Rose: An optimizing transformation system for c++
array-class libraries. In Serge Demeyer and Jan Bosch, editors, ECOOP Workshops, volume
1543 of Lecture Notes in Computer Science, pages 452–453. Springer, 1998.

29 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, OSDI, pages 137–150, 2004.

30 Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: a
multi-stage language for high-performance computing. In Boehm and Flanagan [15], pages
105–116.

31 Zachary DeVito, Daniel Ritchie, Matthew Fisher, Alex Aiken, and Pat Hanrahan. First-
class runtime generation of high-performance types using exotypes. In Michael F. P. O’Boyle
and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 11.
ACM, 2014.

32 Torbjörn Ekman and Görel Hedin. The jastadd system - modular extensible compiler
construction. Sci. Comput. Program., 69(1-3):14–26, 2007.

33 Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded languages. J.
Funct. Program., 13(3):455–481, 2003.

Tiark Rompf et al. 19

34 J. McGraw et. al. SISAL: Streams and iterators in a single assignment language, lan-
guage reference manual. Technical Report M-146, Lawrence Livermore National Labora-
tory, March 1985.

35 Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin Garner, David Grove,
J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic: high-level low-level pro-
gramming. In Antony L. Hosking, David F. Bacon, and Orran Krieger, editors, Proceed-
ings of the 5th International Conference on Virtual Execution Environments, VEE 2009,
Washington, DC, USA, March 11-13, 2009, pages 81–90. ACM, 2009.

36 Matteo Frigo. A fast fourier transform compiler. In PLDI, pages 169–180, 1999.
37 Yoshihiko Futamura. Partial evaluation of computation process - an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.
38 Yoshihiko Futamura. Partial evaluation of computation process, revisited. Higher-Order

and Symbolic Computation, 12(4):377–380, 1999.
39 Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J. Brown, Arvind K.

Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware system synthesis
from domain-specific languages. In 24th International Conference on Field Programmable
Logic and Applications, FPL 2014, Munich, Germany, 2-4 September, 2014, pages 1–8.
IEEE, 2014.

40 Nithin George, David Novo, Tiark Rompf, Martin Odersky, and Paolo Ienne. Making
domain-specific hardware synthesis tools cost-efficient. In 2013 International Conference
on Field-Programmable Technology, FPT 2013, Kyoto, Japan, December 9-11, 2013, pages
120–127. IEEE, 2013.

41 Andy Gill. Domain-specific languages and code synthesis using haskell. Queue, 12(4):30:30–
30:43, April 2014.

42 Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In OSDI, volume 12,
page 2, 2012.

43 Clemens Grelck, Karsten Hinckfuß, and Sven-Bodo Scholz. With-loop fusion for data
locality and parallelism. In Andrew Butterfield, Clemens Grelck, and Frank Huch, editors,
Implementation and Application of Functional Languages, IFL, pages 178–195. Springer
Berlin / Heidelberg, 2006.

44 Martin Hanger, Tor Arne Johansen, Geir Kare Mykland, and Aage Skullestad. Dynamic
model predictive control allocation using CVXGEN. In 9th IEEE International Conference
on Control and Automation, ICCA 2011, Santiago, Chile, December 19-21, 2011, pages
417–422. IEEE, 2011.

45 Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic
embedding of dsls. In Yannis Smaragdakis and Jeremy G. Siek, editors, GPCE, pages
137–148. ACM, 2008.

46 P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys, 28,
1996.

47 Paul Hudak. Modular domain specific languages and tools. In Proceedings of Fifth Inter-
national Conference on Software Reuse, pages 134–142, June 1998.

48 Intel. Intel array building blocks. http://software.intel.com/en-us/articles/

intel-array-building-blocks.
49 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: dis-

tributed data-parallel programs from sequential building blocks. In EuroSys ’07: Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys, pages 59–72, New York, NY, USA, 2007. ACM.

50 Michael Isard and Yuan Yu. Distributed data-parallel computing using a high-level pro-
gramming language. In SIGMOD ’09: Proceedings of the 35th SIGMOD international

http://software.intel.com/en-us/articles/intel-array-building-blocks
http://software.intel.com/en-us/articles/intel-array-building-blocks

20 Go Meta! A Case for Generative Performance Programming

conference on Management of data, SIGMOD, pages 987–994, New York, NY, USA, 2009.
ACM.

51 Jaakko Järvi and Christian Kästner, editors. Generative Programming: Concepts and
Experiences, GPCE’13, Indianapolis, IN, USA - October 27 - 28, 2013. ACM, 2013.

52 Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the multicores: Nested data parallelism in Haskell. In FSTTCS,
pages 383–414, 2008.

53 Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: rewriting
as a practical optimisation technique in ghc. Haskell, 2001.

54 Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Oder-
sky. Staged parser combinators for efficient data processing. In Andrew P. Black and
Todd D. Millstein, editors, Proceedings of the 2014 ACM International Conference on Ob-
ject Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 637–653. ACM, 2014.

55 Ulrik Jørring and William L. Scherlis. Compilers and staging transformations. In Con-
ference Record of the Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, USA, January 1986, pages 86–96. ACM Press,
1986.

56 Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph Koch,
and Martin Odersky. Yin-yang: concealing the deep embedding of dsls. In Ulrik Pagh
Schultz and Matthew Flatt, editors, Generative Programming: Concepts and Experiences,
GPCE’14, Vasteras, Sweden, September 15-16, 2014, pages 73–82. ACM, 2014.

57 Guy L. Steele Jr. Parallel programming and parallel abstractions in fortress. In IEEE
PACT, page 157, 2005.

58 Steve Karmesin, James Crotinger, Julian Cummings, Scott Haney, William Humphrey,
John Reynders, Stephen Smith, and Timothy J. Williams. Array design and expression
evaluation in pooma ii. In ISCOPE, pages 231–238, 1998.

59 Lennart C.L. Kats and Eelco Visser. The spoofax language workbench: rules for declarative
specification of languages and ides. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, OOPSLA ’10, pages 444–
463, New York, NY, USA, 2010. ACM.

60 Ken Kennedy, Bradley Broom, Arun Chauhan, Rob Fowler, John Garvin, Charles Koel-
bel, Cheryl McCosh, and John Mellor-Crummey. Telescoping languages: A system for
automatic generation of domain languages. Proceedings of the IEEE, 93(3):387–408, 2005.

61 Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building efficient query
engines in a high-level language. PVLDB, 7(10):853–864, 2014.

62 Christoph Koch. Abstraction without regret in data management systems. In CIDR 2013,
Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013.

63 Christoph Koch. Abstraction without regret in database systems building: a manifesto.
IEEE Data Eng. Bull., 37(1):70–79, 2014.

64 Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and Martin Odersky. Javascript as an
embedded dsl. In ECOOP, pages 409–434, 2012.

65 Shriram Krishnamurthi. Linguistic reuse. PhD thesis, Computer Science, Rice University,
Houston, 2001.

66 Peter J. Landin. The next 700 programming languages. Commun. ACM, 9(3):157–166,
1966.

67 James R. Larus and Galen C. Hunt. The singularity system. Commun. ACM, 53(8):72–79,
2010.

Tiark Rompf et al. 21

68 C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program analysis
transformation. In Code Generation and Optimization, 2004. CGO 2004. International
Symposium on, pages 75–86, 2004.

69 HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Hassan Chafi, Tiark Rompf, Martin
Odersky, and Kunle Olukotun. Implementing domain-specific languages for heterogeneous
parallel computing. IEEE Micro, 31(5):42–53, 2011.

70 HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Tiark Rompf, and Kunle Olukotun.
Locality-aware mapping of nested parallel patterns on gpus. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Micro, 2014.

71 Daan Leijen and Erik Meijer. Domain specific embedded compilers. In DSL, pages 109–122,
1999.

72 Sorin Lerner, David Grove, and Craig Chambers. Composing dataflow analyses and trans-
formations. SIGPLAN Not., 37:270–282, January 2002.

73 Sorin Lerner, Todd D. Millstein, and Craig Chambers. Automatically proving the correct-
ness of compiler optimizations. In PLDI, pages 220–231, 2003.

74 Geoffrey Mainland and Greg Morrisett. Nikola: embedding compiled GPU functions in
Haskell. In Proceedings of the third ACM Haskell symposium on Haskell, Haskell ’10, pages
67–78, New York, NY, USA, 2010. ACM.

75 Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Op-
timising purely functional GPU programs. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, pages 49–60, New York,
NY, USA, 2013. ACM.

76 Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what cost?
Technical report, Microsoft Research, 2015.

77 José M. F. Moura, Markus Püschel, David Padua, and Jack Dongarra. Scanning the issue:
Special issue on program generation, optimization, and platform adaptation. Proceed-
ings of the IEEE, special issue on “Program Generation, Optimization, and Adaptation”,
93(2):211–215, 2005.

78 Fabian Nagel, Gavin M. Bierman, and Stratis D. Viglas. Code generation for efficient query
processing in managed runtimes. PVLDB, 7(12):1095–1106, 2014.

79 Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. Everything old is new
again: Quoted domain specific languages. Technical report, University of Edinburgh, 2015.

80 Thomas Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.

81 Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible
compiler framework for java. In CC, pages 138–152, 2003.

82 Nathaniel Nystrom, Derek White, and Kishen Das. Firepile: run-time compilation for
GPUs in Scala. In Proceedings of the 10th ACM international conference on Generative
programming and component engineering, GPCE, pages 107–116, New York, NY, USA,
2011. ACM.

83 Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus Püschel. Spiral
in scala: towards the systematic construction of generators for performance libraries. In
Järvi and Kästner [51], pages 125–134.

84 Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, Muhammad Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms.
In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose,
CA, USA, June 4-8, 2011, pages 12–25. ACM, 2011.

22 Go Meta! A Case for Generative Performance Programming

85 M. Püschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo. Spiral:
Code generation for dsp transforms. Proceedings of the IEEE, 93(2):232 –275, feb. 2005.

86 Markus Püschel, Franz Franchetti, and Yevgen Voronenko. Encyclopedia of Parallel Com-
puting, chapter Spiral. Springer, 2011.

87 Markus Püschel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David A.
Padua, Manuela M. Veloso, and Robert W. Johnson. Spiral: A generator for platform-
adapted libraries of signal processing alogorithms. IJHPCA, 18(1):21–45, 2004.

88 Daniel J. Quinlan, Markus Schordan, Qing Yi, and Andreas Sæbjørnsen. Classification
and utilization of abstractions for optimization. In ISoLA (Preliminary proceedings), pages
2–9, 2004.

89 Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P. Amaras-
inghe, and Frédo Durand. Decoupling algorithms from schedules for easy optimization of
image processing pipelines. ACM Trans. Graph., 31(4):32, 2012.

90 Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman P. Amarasinghe. Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Boehm and Flanagan [15],
pages 519–530.

91 J.C. Reynolds. User-defined types and procedural data structures as complementary ap-
proaches to data abstraction. 1975.

92 Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel. Efficient high-level abstrac-
tions for web programming. In Järvi and Kästner [51], pages 53–60.

93 Tiark Rompf. Lightweight Modular Staging and Embedded Compilers: Abstraction Without
Regret for High-Level High-Performance Programming. PhD thesis, EPFL, 2012.

94 Tiark Rompf and Nada Amin. A SQL to C compiler in 500 lines of code. Technical report,
Purdue University, 2015.

95 Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky. Scala-
virtualized: linguistic reuse for deep embeddings. Higher-Order and Symbolic Computation,
pages 1–43, 2013.

96 Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach
to runtime code generation and compiled dsls. In Proceedings of the ninth international
conference on Generative programming and component engineering, GPCE, pages 127–136,
New York, NY, USA, 2010. ACM.

97 Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled dsls. Commun. ACM, 55(6):121–130, 2012.

98 Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin Brown, Vojin Jovanovic, HyoukJoong
Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Optimizing data struc-
tures in high-level programs. In POPL, 2013.

99 Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. Building-blocks for performance oriented dsls. In Olivier
Danvy and Chung-chieh Shan, editors, Proceedings IFIP Working Conference on Domain-
Specific Languages, DSL 2011, Bordeaux, France, 6-8th September 2011., volume 66 of
EPTCS, pages 93–117, 2011.

100 Sven-Bodo Scholz. Single assignment c: efficient support for high-level array operations
in a functional setting. J. Funct. Program., 13(6):1005–1059, 2003.

101 Jeremy G. Siek and Andrew Lumsdaine. The Matrix Template Library: A generic pro-
gramming approach to high performance numerical linear algebra. In International Sym-
posium on Computing in Object-Oriented Parallel Environments, number 1505 in Lecture
Notes in Computer Science, pages 59–70, 1998.

Tiark Rompf et al. 23

102 Alexander Slesarenko. Lightweight polytypic staging: a new approach to an implementa-
tion of nested data parallelism in scala. In Scala Workshop, 2012.

103 Alexander Slesarenko, Alexander Filippov, and Alexey Romanov. First-class isomorphic
specialization by staged evaluation. In Workshop on Generic Programming (WGP), 2014.

104 G.L. Steele. Growing a language. Higher-Order and Symbolic Computation, 12(3):221–236,
1999.

105 Alen Stojanov, Georg Ofenbeck, Tiark Rompf, and Markus Püschel. Abstracting vector
architectures in library generators: Case study convolution filters. In Laurie J. Hendren,
Alex Rubinsteyn, Mary Sheeran, and Jan Vitek, editors, ARRAY’14: Proceedings of the
2014 ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming, Edinburgh, United Kingdom, June 12-13, 2014, page 14. ACM, 2014.

106 Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era (it’s time for a complete
rewrite). In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava,
Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti,
Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors, VLDB, pages 1150–
1160. ACM, 2007.

107 Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf,
Martin Odersky, and Kunle Olukotun. Forge: generating a high performance DSL imple-
mentation from a declarative specification. In Järvi and Kästner [51], pages 145–154.

108 Arvind K. Sujeeth, HyoukJoong. Lee, Kevin J. Brown, Tiark Rompf, Michael Wu,
Anand R. Atreya, Martin Odersky, and Kunle Olukotun. OptiML: an implicitly paral-
lel domain-specific language for machine learning. In Proceedings of the 28th International
Conference on Machine Learning, ICML, 2011.

109 Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victo-
ria Popic, Michael Wu, Aleksander Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle
Olukotun. Composition and reuse with compiled domain-specific languages. In European
Conference on Object Oriented Programming, ECOOP, 2013.

110 Bo Joel Svensson, Mary Sheeran, and Ryan Newton. Design exploration through code-
generating dsls. Queue, 12(4):40:40–40:52, April 2014.

111 Walid Taha and Tim Sheard. Metaml and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

112 Ross Tate, Michael Stepp, and Sorin Lerner. Generating compiler optimizations from
proofs. In POPL, pages 389–402, 2010.

113 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In George C. Necula and Philip Wadler, editors, POPL, pages 395–406. ACM,
2008.

114 Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias
Felleisen. Languages as libraries. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’11, pages 132–141, New York,
NY, USA, 2011. ACM.

115 D. Vandevoorde and N.M. Josuttis. C++ templates: the Complete Guide. Addison-Wesley
Professional, 2003.

116 Todd L. Veldhuizen. Expression templates, C++ gems. SIGS Publications, Inc., New
York, NY, 1996.

117 Todd L. Veldhuizen. Arrays in blitz++. In ISCOPE, pages 223–230, 1998.
118 Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indiana

University Computer Science, May 2004.
119 Todd L. Veldhuizen and Jeremy G. Siek. Combining optimizations, combining theories.

Technical report, Indiana University, 2008.

24 Go Meta! A Case for Generative Performance Programming

120 Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Comput.
Sci., 73(2):231–248, 1990.

121 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
POPL, pages 60–76, 1989.

122 R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimiza-
tions of software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

123 Michael E Wolf and Monica S Lam. A loop transformation theory and an algorithm to
maximize parallelism. Parallel and Distributed Systems, IEEE Transactions on, 2(4):452–
471, 1991.

124 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, NSDI, 2011.

125 Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sándor Héman. Monetdb/x100 - a dbms
in the cpu cache. IEEE Data Eng. Bull., 28(2):17–22, 2005.

	The Cost of Performance
	Abstraction Without Regret
	Towards a Discipline of Generative Performance Programming

	Background and Context
	About Performance
	About Staging
	About DSLs
	Convergence: Generative Performance Programming

	Case Study: Databases and Query Processors
	DBToaster and LegoBase
	The Essence of a SQL Compiler in 500 LOC
	Interpreter + Staging = Compiler
	Mixed-Stage Data Structures and Functions

	Regular Expressions and Parser Combinators
	Delite: DSLs for Heterogeneous Targets
	Synthesis of High-Performance Numeric Kernels
	Type Classes and Generic Programming

	Related Work
	Outlook and Conclusions
	Modularity, Reuse, and Low Cognitive Overhead
	Staging Should Preserve Semantics
	One-Pass Code Generation is not Enough
	Challenges and Limitations
	A Call to Action

