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Abstract
Just-in-time (JIT) compilation of running programs provides more
optimization opportunities than offline compilation. Modern JIT
compilers, such as those in virtual machines like Oracle’s HotSpot
for Java or Google’s V8 for JavaScript, rely on dynamic profiling
as their key mechanism to guide optimizations. While these JIT
compilers offer good average performance, their behavior is a black
box and the achieved performance is highly unpredictable.

In this paper, we propose to turn JIT compilation into a preci-
sion tool by adding two essential and generic metaprogramming
facilities: First, allow programs to invoke JIT compilation explic-
itly. This enables controlled specialization of arbitrary code at run-
time, in the style of partial evaluation. It also enables the JIT com-
piler to report warnings and errors to the program when it is un-
able to compile a code path in the demanded way. Second, allow
the JIT compiler to call back into the program to perform compile-
time computation. This lets the program itself define the translation
strategy for certain constructs on the fly and gives rise to a powerful
JIT macro facility that enables “smart” libraries to supply domain-
specific compiler optimizations or safety checks.

We present Lancet, a JIT compiler framework for Java bytecode
that enables such a tight, two-way integration with the running pro-
gram. Lancet itself was derived from a high-level Java bytecode
interpreter: staging the interpreter using LMS (Lightweight Modu-
lar Staging) produced a simple bytecode compiler. Adding abstract
interpretation turned the simple compiler into an optimizing com-
piler. This fact provides compelling evidence for the scalability of
the staged-interpreter approach to compiler construction.

In the case of Lancet, JIT macros also provide a natural interface
to existing LMS-based toolchains such as the Delite parallelism and
DSL framework, which can now serve as accelerator macros for
arbitrary JVM bytecode.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code generation, Optimization, Run-time
environments; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming – Parallel programming

General Terms Design, Languages, Performance

Keywords JIT Compilation, Staging, Program Generation
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class Record(fields: Array[String], schema: Array[String]) {
def apply(key: String) = fields(schema indexOf key)
def foreach(f: (String,String) => Unit) =
for ((k,i) <- schema.zipWithIndex) f(k,fields(i))

}
def processCSV(file: String)(yld: Record => Unit) = {
val lines = FileReader(file)
val schema = lines.next.split(",")
while (lines.hasNext) {
val fields = lines.next().split(",")
val rec = new Record(fields,schema)
yld(rec)

}
}

Figure 1. Example: Processing CSV files.

1. Introduction
Just-in-time (JIT) compilation of running programs presents more
optimization opportunities than offline compilation. Modern JIT
compilers, such as those found in virtual machines like Oracle’s
HotSpot for Java[38] or Google’s V8 for JavaScript [19] base
their optimization decisions on dynamic properties of the program
which would not be available to a static compiler. To give one
key example, most modern VMs keep track of the call targets of
virtual method calls, which enables the JIT compiler to perform
inlining across virtual calls if the call site is monomorphic, i.e. it
only resolves to a single target, or polymorphic for a small, fixed
number. Such an inlining decision is speculative; at a later time in
the program’s execution, the method call might actually resolve to
a different target, which was not encountered before. In this case,
the caller needs to be deoptimized. The compiled code, which was
optimized using too optimistic assumptions, is thrown away and
recompiled to take the new information into account. These and
similar approaches go back to the seminal work of Urs Hölzle and
others on the Self [10] and StrongTalk [7] VMs.

A Motivating Example However, there is a lot more runtime
information that could be exploited, but is not readily accessible
via simple profiling alone. Let us consider an example (in Scala):
we would like to implement a library function to read CSV files.
A CSV file contains tabular data, where the first line defines the
schema, i.e. the names of the columns. We would like to iterate over
all the rows in a file and access the data fields by name (sample data
on the right):
processCSV("data.txt") { record => Name, Value, Flag
if (record("Flag") == "yes") A, 7, no
println(record("Name")) B, 2, yes

} ...

Moreover, we would like to process files of arbitrary schema and
be able to iterate over the fields of each record as (key,value) pairs:
processCSV("data.txt") { record =>
for ((k,v) <- record) print(k + ": " + v); println

}



A straightforward implementation of processCSV is shown in
Figure 1. The runtime information we wish to exploit is the schema
array: we can easily see that schema is never modified after reading
the first line of the file. As we know both the shape of the data
that follows and the code that performs the processing, we could
specialize our processing logic accordingly. In our second snippet
above, we would not need to execute a nested loop over the record
fields but could directly execute
while (lines.hasNext) {
val fields = lines.next().split(",")
print("Name: " + fields(0))
print("Value: " + fields(1))
print("Flag: " + fields(2))
println

}

and get away without the overhead of a name-to-column mapping
and a record abstraction altogether.

Alas, no existing JIT compiler will perform this kind of spe-
cialization reliably. Why? There are just too many things it would
need to guess. First, it would need to guess the right chunk to com-
pile. It must pick the loop after schema initialization, but not the
full method. Then it must prove that schema is actually a constant,
which is difficult because it is stored in Record objects that are ar-
guments to a method call, yld(rec), which needs to be inlined. Fi-
nally, multiple threads may read different files at the same time,
and we want to obtain a specialized compiled code path per invo-
cation. Specialization per program point – even temporal special-
ization with deoptimization and recompilation – would not work if
multiple versions need to be active at the same time.

Roadblocks for Deterministic Performance The word “reliably”
in the preceding paragraph is indeed our main concern. While JIT
compilers provide good average performance for a large set of pro-
grams, their behavior is in general a black box and in many cases,
the achieved performance is highly unpredictable. The programmer
has no influence on when and how JIT compilation takes place.
Key optimization decisions are often based on magic threshold val-
ues; the HotSpot Server compiler, for example, imposes a 35 byte
method size limit for early inlining. Thus, small changes in the pro-
gram source can drastically affect its runtime behavior. Since many
optimization decisions rely on dynamic profile data, performance
can vary significantly even between runs of the same program [17].
Profile data may be outdated or inaccurate after program transfor-
mations like inlining, if it is gathered before. To keep the runtime
overhead tractable, profiling is usually based on single call sites,
a scheme easily confused by higher order control flow [12]. More
generally, the set of dynamic properties used for optimizations is
naturally limited to those that can be easily detected and monitored.
Another key source of non-determinism on managed runtimes are
GC pauses. While JIT compilers generally try to reduce heap al-
locations by mapping non-escaping objects to registers, no guar-
antees can be given that a certain piece of code will not produce
garbage, although this would be highly desirable for latency critical
applications. Finally, like many offline compilers, JIT compilers do
not usually provide extension points for domain-specific optimiza-
tions or facilities to specialize generic code in a user-defined way.
Previous work has shown order of magnitude speedups for such
facilities [41].

All this means that despite the impressive advances of JIT com-
piler technology, for programmers who seek top performance or
operate under constraints that require deterministic execution char-
acteristics, the standard advice is still to avoid managed language
runtimes and JIT compilation and just write their programs in C.

JIT Compilation as Metaprogramming The goal of the present
work is to remedy this situation by turning JIT compilation into a
precision tool. A key observation is that JIT compilers share essen-

// JIT compile function f (explicit compilation)
def compile[T,U](f: T => U): T => U
// evaluate f at JIT-compile time (compile-time execution)
def freeze[T](f: => T): T
// unroll subsequent loops on xs
def unroll[T](xs: Iterable[T]): Iterable[T]

Figure 2. JIT API required for CSV example.

class Record(fields: Array[String], schema: Array[String]) {
def apply(key: String) = fields(freeze(schema indexOf key))
def foreach(f: (String,String) => Unit) =
for ((k,i) <- unroll(freeze(schema.zipWithIndex))) f(k,fields(i))

}
def processCSV(file: String) = {
val lines = FileReader(file)
val schema = lines.next.split(",")
compile { yld: (Record => Unit) =>
while (lines.hasNext) { ... yld(rec) }

}
}

Figure 3. CSV example with explicit JIT calls.

tial aspects with partial evaluators and staged meta-programming
systems: A JIT compiler does not operate on closed programs but
in the presence of static data, live objects on the heap, and static
code, pieces of the program which can be executed right away, ei-
ther because they are already compiled or because the VM also in-
cludes an interpreter. What sets current JIT compilers apart is their
fully automatic nature, unobservable to the running program, and
their support for dynamic deoptimization and recompilation.

We consider only the latter essential and argue that JIT compil-
ers should also come with reflective high-level APIs and extensi-
bility hooks instead of being black-box systems. In particular, we
propose to augment JIT compilers with two intuitive and general
metaprogramming facilities, upon which further functionality can
be built:

• Explicit compilation: if programs can invoke JIT compilation
explicitly, code can be specialized with respect to preexisting
objects on the heap, in the style of partial evaluation [28]. It
also allows the JIT compiler to report warnings and errors to
the program when it is unable to compile a code path in the
demanded way, enabling stronger contracts about generated
code than automatic background compilation.
• Compile-time computation: if the JIT compiler can call back

into the running program, it can let the program itself define the
meaning and translation strategy for certain constructs on the fly
and based on context, in the style of multi-stage programming
[48]. This gives rise to a JIT macro facility that makes the JIT
API extensible and enables “smart” libraries to supply domain-
specific compiler optimizations or safety checks.

Going back to our CSV example, we show that we need a JIT API
to provide just three high-level methods (Figure 2), which we use in
key places to achieve the desired specialization (Figure 3). The re-
sult of processCSV is now guaranteed to be a JIT compiled function
that has all computation on schema evaluated at JIT-compile time,
due to explicit compilation via compile and compile-time execu-
tion via freeze and unroll. However, compilation might fail with
an exception if the argument of freeze cannot be evaluated during
compilation. We argue that this is OK, and even desirable: instead
of running suboptimal code, we want to obtain a guarantee that
certain optimizations are performed and give the programmer the
opportunity to react if not. Once again we stress that we do not pro-
pose to replace existing automatic JIT compilation but to add an
additional facility for use cases where deterministic performance is
important.
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Figure 4. Lancet system overview.

1.1 Contributions

The rest of this paper demonstrates the viability and usefulness of
the proposed approach. We present Lancet, a JIT compiler frame-
work for Java bytecode. Lancet interfaces with the Oracle HotSpot
JVM through hooks developed for Graal [37], a JIT compiler writ-
ten in Java that grew out of the Maxine meta-circular JVM [54].
Figure 4 shows an overview of the system.

Deriving Realistic Optimizing Compilers from Interpreters Im-
plementing optimizing JIT compilers that need to interface with
the running program is by far no trivial undertaking. We demon-
strate that such realistic compilers can be derived systematically
from simple interpreters using pre-existing metaprogramming tech-
niques (Section 2).

• We developed Lancet by taking a bytecode interpreter from
the Graal project. We translated this interpreter to Scala and
turned it into a bytecode compiler by adding staging, using
the LMS (Lightweight Modular Staging) framework [40], a
library-based program generation approach. This fact provides
compelling evidence that the staged-interpreter approach can
scale to compilers for complex non-toy languages like JVM
bytecode (Section 2.1).
• We show how adding abstract interpretation to this staged inter-

preter turned the simple compiler into an optimizing compiler.
This demonstrates that realistic optimizing compilers that per-
form aggressive constant propagation through object fields, spe-
cialization, etc. can be derived systematically from interpreters
(Section 2.2).
• We demonstrate further that the staged interpreter approach of-

fers a natural extension point to extend the core compiler func-
tionality via JIT macros. In the case of Lancet, JIT macros
are implemented using LMS as well and can redefine arbitrary
method calls with custom code generation. Moreover, Lancet
JIT macros can not only perform front-end desugaring but are
integrated with the optimizations of the core compiler (Sec-
tion 2.3).

Putting Surgical JIT Facilities to Use We demonstrate how JIT
macros and explicit compilation can be used to define rich higher
level APIs and support a number of important and challenging use-
cases (Section 3):
• Program specialization (Section 3.1). Controlled specialization

is key to remove abstraction overhead from generic code, and
obtaining predictable high performance. We demonstrate the ef-
fect of runtime specialization on the CSV processing example
from Section 1 and show that it outperforms statically compiled
C code. In addition, we discuss controlled inlining, loop un-
rolling, as well as code caching and on-demand compilation.

• Speculative optimization (Section 3.2). Sometimes up-front
specialization is not possible because the program behavior may
change right in the middle of a compiled piece of code. This
is where speculative optimization and deoptimization comes
in. We show a custom speculation strategy for handling big-
integer overflows. We also discuss search trees that speculate
on a mostly constant tree structure but support infrequent struc-
tural changes through deoptimization.
• Just-in-time program analysis (Section 3.3). Garbage collection

may be the biggest source of nondeterminism in managed run-
times. Explicit compilation can provide guarantees that gen-
erated code does not allocate data on the heap, and hence no
garbage needs to be collected later. We can also implement
more general just-in-time program analyses. JIT analysis ap-
plies static analysis algorithms at runtime and profits from the
same increased precision as JIT compilation, without the over-
head of dynamic analysis based on instrumented code.
• Smart libraries and DSLs (Section 3.4). Embedded compiled

DSLs that expose an LMS-based staged programming inter-
face to the end-user have been shown to yield orders of mag-
nitude speedups over regular Scala code [41]. Rich toolchains
have been built around LMS and the Delite DSL framework
[4, 8, 33, 42] that provide optimizations beyond the capabilities
of general purpose compilers, including parallelization and ex-
ecution on heterogeneous devices (multi-core CPUs, GPUs and
clusters). We demonstrate that we can hook up these toolchains
as backends with Lancet to build smart libraries that perform
on par with explicitly compiled DSLs. We also show that we
can build accelerator macros retroactively for existing libraries
such as collections. Even though accelerator macros are imple-
mented in Scala, they can be used from other JVM languages.
• Cross compilation (Section 3.5). Targeting LMS as a back-end

means we can also cross-compile byte code to other targets,
for example CUDA, JavaScript, or SQL. In the case of SQL
for language-embedded queries, it is possible to avoid common
problems of heterogeneous environments like duplicate execu-
tion of queries and query avalanches by taking the context of
the query into account during translation.

2. Deriving Realistic Compilers from Interpreters
It has long been known that specializing an interpreter to a program
yields a compiled program (the first Futamura projection [16]),
and that staging an interpreter, which enables specialization for
arbitrary programs, effectively turns an interpreter into a compiler
[1]. Here we give a slightly different intuition.

2.1 Interpreter + Staging = Compiler

We start with a simple toy language that contains just arithmetic
operations, variables, and while loops. The syntax and denotational
semantics are given in Figure 5. From the denotational semantics,
it is easy to read off an interpreter, taking the liberty to implement
object language while loops using while loops of the host language:
type Store = Map[String,Int]
type Val = Int
def eval(e: Exp)(st: Store): Val = e match {
case Const(c) => c
case Var(x) => st(x)
case Plus(e1,e2) => eval(e1)(st) + eval(e2)(st)

}
def exec(s: Stm)(st: Store): Store = s match {
case Assign(x,e) => st + (x -> eval(e)(st))
case While(e,s) =>
var st1 = st; while (eval(e)(st1) != 0) st1 = exec(s)(st1); st1

}

However, we can also read the semantics as a recipe for trans-
lation that describes how to map object language terms to meta



language terms. In the case of denotational semantics, the meta-
language is mathematics. The key enabling property is composi-
tionality: the semantics of each term are described in terms of the
semantics of its proper subterms. Thus, there is a clear phase dis-
tinction between object and meta language and translation can pro-
ceed via structural recursion. The key idea of turning interpreters
into compilers via staging is to treat an interpreter itself, not a more
abstract semantics specification, as a recipe for translation, by re-
placing the domain of values and its associated operations with a
domain of program expressions that are constructed and composed
by the staged interpreter.

In Scala, we use the LMS (Lightweight Modular Staging)
framework [40], which provides a type constructor Rep[T] to distin-
guish staged expressions: whereas an expression of type T (where
T could be for example Int or String) is evaluated right away, an
expression of type Rep[T] denotes a piece of generated code that
computes a value of type T when executed later. Staged Rep[T]
expressions come with all operations of type T, but will repre-
sent these operations as code. For example, the staged addition on
Rep[Int] values is defined as follows:
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int] = reflect(s"x+y")

We turn our simple interpreter from above into a compiler by
changing the types of values and stores:
type Store = Rep[Map[String,Int]]
type Val = Rep[Int]

In this simple case, we do not need to change anything else, assum-
ing that staged versions of all the operators used in the interpreter
are provided. Given a program, and a staged expression that evalu-
ates to a store, our interpreter now produces code that performs the
computation of the given program. We have thus turned our inter-
preter into a compiler!

Scaling To a Realistic Language The example language in the
previous section was decidedly simple and we are unaware of any
“serious” compiler developed previously using this approach. How-
ever, this is precisely what we did to implement Lancet. We ported
an existing bytecode interpreter from the Graal/Truffle project from
Java to Scala and added staging annotations using LMS to turn the
interpreter into a compiler.

The main architecture of the bytecode interpreter is shown in
Figure 6. Figure 7 summarizes the delta of changes we applied to
turn the interpreter into a compiler. The core data structure to store
interpreter state is the Frame class, which contains an array of local
objects and a pointer to a parent frame. Class InterpreterFrame ex-
tends Frame with a link to a JVM method and abstractions for map-
ping an operand stack onto the frame’s local variable slots. The
basic structure of the interpreter corresponds to that of a CESK

Syntax:
x, v identifiers, values
st: x -> v stores
e ::= v | x | e + e | ... expressions
s ::= x = e | while (e) s | ... statements

Semantics:
E[[ . ]]: e -> st -> v
S[[ . ]]: s -> st -> st

E[[ c ]](st) = c
E[[ x ]](st) = st(x)

E[[ e1 + e2 ]](st) = E[[ e1 ]](st) + E[[ e2 ]](st)

S[[ x = e ]](st) = st[ x -> E[[ e ]](st) ]
S[[ while (e) s ]](st) = f(st)

where f(st’) = if (E[[ e ]](st’) != 0) f(S[[ s ]](st’))
else st’

Figure 5. Staged interpreter example: syntax and denotational se-
mantics for a toy language.

machine [15], with the linked InterpreterFrame objects pointed
to by variable globalFrame representing the control, environment,
and continuation components of the interpreter’s state. The store
component is modeled directly by the JVM heap, which is ac-
cessed through the Runtime interface. The main interpreter rou-
tine loop fetches the current frame, executes bytecodes one by one
via executeInstruction, and dispatches control transfers by calling
exec with a suitably setup frame.

To turn this interpreter into a compiler, only three aspects
had to be changed (see Figure 7). First, the array that holds lo-
cal data in class Frame changed its type from Array[Object] to
Array[Rep[Object]]. This type denotes a present-stage array that
contains staged objects. In other words, the stack layout and all
associated operations, like pushing or popping operands, are re-
solved in a fully static way. This is a key difference to the previous
section, where we had a global store that was fully dynamic, i.e.
of type Rep[Map[String,Int]]. Most importantly, the static execu-
tion includes all the bytecode dispatch logic; only the actual stack
contents and the low-level primitive or heap operations remain
dynamic. Following this type change, the method signatures in
classes Frame, InterpreterFrame and Runtime had to be changed to
add Rep[T] types to expressions that will hold dynamic values. The
second change was to introduce staged operations on primitives
and for heap accesses (class Staging). The actual implementation
differs from Figure 7 in that it creates IR nodes instead of strings.

The third change was to switch the main execution loop from an
“execute next frame until done” model to one that may add multiple
control flow branches to a worklist and compiles blocks on that
worklist until no more work remains.

2.2 Compiler + Abstract Interpreter = Optimizer

While adding staging gave us a simple compiler with very low
effort, it did not give us an optimizing compiler right away. How
can we add compiler optimizations if the starting point is just
an interpreter? The key idea is to combine the staged interpreter,
which performs code generation, with an abstract interpreter, which
performs program analysis.

We start by introducing a domain of abstract values alongside
the staged values that represent generated, residual code. Our main
goal is to perform aggressive constant propagation and specializa-
tion in the style of partial evaluation, so we distinguish primitive
constants, static objects, partially static objects, and unknown dy-
namic values:
abstract class AbsVal[T]
case class Const[T](x: T) extends AbsVal[T]
case class Static[T](x: T) extends AbsVal[T]
case class Partial[T](f: Map[JavaField,Rep[Any]]) extends AbsVal[T]
case class Unknown[T]() extends AbsVal[T]

We further introduce a mapping from staged values to abstract
values that allows us to attach abstract information (AbsVal[T]) to
pieces of generated code (Rep[T]). This information is uniformly
accessed through an evalA function:
def evalA[T](x: Rep[T]): AbsVal[T]

Function evalA can compute the abstract information in many dif-
ferent ways but provides a uniform interface that enables us to
implement individual optimization rewrites in a localized fashion
without knowledge about how the information is gathered.

To give an example, a simple constant folding rule for integer
addition can be implemented like this:
override def infix_+(x: Rep[Int], y: Rep[Int]) =
(evalA(x), evalA(y)) match {
case (Const(x),Const(y)) => liftConst(x+y)
case _ => super.infix_+(x,y) }

If both operands are constants, we return a constant as the result
of the plus operation (liftConst). If not, we perform a super call,
which will create an appropriate IR node for the operation.



class Frame(numLocals: Int, parent: Frame) {
val locals: Array[Object] = new Array[Object](numLocals)
def setObject(index: Int, value: Object): Unit = locals(index) = value;
def setInt(index: Int, value: Int): Unit = locals(index) = value.asInstanceOf[AnyRef]
def getObject(index: Int): Object = locals(index)
def getInt(index: Int): Int = locals(index).asInstanceOf[Int]

}
class InterpreterFrame(method: JavaMethod, parent: InterpreterFrame) extends Frame(method.getMaxLocals() + method.getMaxStackSize(), parent) {
private var tos: Int = 0;
def pushObject(value: Object): Unit = { tos += 1; setInt(tos, value) }
def pushInt(value: Int): Unit = { tos += 1; setInt(tos, value) }
def popObject(): Object = { val value = getObject(tos); tos -= 1; return value }
def popInt(): Int = { val value = getInt(tos); tos -= 1; return value }

}
class Runtime {
def setFieldObject(value: Object, base: Object, field: JavaField): Unit = unsafe.putObject(resolveBase(base, field), resolveOffset(field), value)
def setFieldInt(value: Int, base: Object, field: JavaField): Unit = unsafe.putInt(resolveBase(base, field), resolveOffset(field), value)
def getFieldObject(base: Object, field: JavaField): Object = unsafe.getObject(resolveBase(base, field), resolveOffset(field))
def getFieldInt(base: Object, field: JavaField): Int = unsafe.getInt(resolveBase(base, field), resolveOffset(field))

}
class Interpreter {
def executeInstruction(frame: InterpreterFrame, bs: BytecodeStream) = bs.currentBC() match {
case Bytecodes.IADD => frame.pushInt(frame.popInt() + frame.popInt())
case Bytecodes.LADD => frame.pushLong(frame.popLong() + frame.popLong())
case Bytecodes.FADD => frame.pushFloat(frame.popFloat() + frame.popFloat())
case Bytecodes.DADD => frame.pushDouble(frame.popDouble() + frame.popDouble())
case Bytecodes.GETFIELD => getField(frame, nullCheck(frame.popObject()), resolveField(frame, bs.currentBC(), bs.readCPI())
case Bytecodes.PUTFIELD => putField(frame, bs.readCPI());
case Bytecodes.INVOKEVIRTUAL => exec(invokeVirtual(frame, bs.readCPI()))
case Bytecodes.INVOKESPECIAL => ecec(invokeSpecial(frame, bs.readCPI()))

}
def getField(frame: InterpreterFrame, base: Rep[Object], field: JavaField): Unit = field.getKind() match {
case Kind.Object => frame.pushObject(runtimeInterface.getFieldObject(base, field));
case Kind.Int => frame.pushInt(runtimeInterface.getFieldInt(base, field));

}
def invokeVirtual(frame: InterpreterFrame, cpi: Char): Unit = {
// resolve call target and alloc caller frame with parent=frame

}
var globalFrame: InterpreterFrame
def exec(frame: InterpreterFrame) { globalFrame = frame }
def loop() = while (globalFrame != null) { /* exec instructions in current frame */ }

}

Figure 6. Core of the Java bytecode interpreter ported from the Graal/Truffle project (with minor modifications).
class Frame(...) { class InterpreterFrame(...) {
val locals: Array[Rep[Object]] = new Array[Rep[Object]](...) def pushObject(value: Rep[Object]): Unit = ...
def setObject(index: Int, value: Rep[Object]): Unit = ... def popObject(): Rep[Object] = ...
def getObject(index: Int): Rep[Object] = ... }

}
class Runtime {
def setFieldObject(value: Rep[Object], base: Rep[Object], field: JavaField): Unit = ...
def getFieldObject(base: Rep[Object], field: JavaField): Rep[Object] = ...

}
class Staging {
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int] = reflect[Int](s"$x + $y")
def infix_*(x: Rep[Int], y: Rep[Int]): Rep[Int] = reflect[Int](s"$x * $y")
object unsafe {
def putObject(base: Rep[Object], offset: Rep[Long], value: Rep[Object]): Rep[Unit] = reflect[Unit] (s"unsafe.putObject($base, $offset, $value")
def getObject(base: Rep[Object], offset: Rep[Long]): Rep[Object] = reflect[Object](s"unsafe.getObject($base, $offset")

}
}
class Interpreter {
var worklist: Set[InterpreterFrame]
def exec(frame: InterpreterFrame) { worklist += frame }
def loop() = while (worklist.nonEmpty) { /* exec instructions in current frame */ }

}

Figure 7. Turning the interpreter into a (simple) compiler by adding staging annotations (Rep[T] types) in key places. Method bodies remain
mostly unchanged; only primitive operations require explicit code generation.

A slightly more complicated case is short-cutting object field
reads:
override def getFieldObject(base: Rep[Object], field: JavaField]) =
evalA(base) match {
case Static(x) if field.isFinal => staticRuntime.getFieldObject(x,field)
case Partial(fields) if fields.contains(field) => fields(field)
case _ => super.getFieldObject(base, field)

}

Here, we rely on abstract store information. We maintain an ab-
stract store as a global data structure to reason statically about heap
objects (we elide the details). Method evalA may return a static ob-
ject that was created outside of the code to be compiled. For a final,
i.e. immutable, field, we just read and return its value. But evalA
may also return a Partial object, which consists of a list of abstract
fields. Partial objects denote either objects allocated in the com-
piled code or static objects that have been modified by generated
code. If we have an entry for the field we are looking for, we return
that, and if not, we again perform a super call to create an IR node
for the getFieldObject operation.

Finally, to make our analysis and optimizations flow-sensitive,
we need to modify the main execution loop to perform fixpoint iter-

ation and compute least upper bounds on abstract stores at control
flow joins. For the sake of explanation, we show the behavior as
pseudocode for while loops in the context of the toy language from
above instead of unstructured control flow as we have in bytecode:
type Store: Rep[Map[String,Int]] // residual code
type AbsStore: Map[String,AbsVal[Int]] // abstract info
def exec(s: Stm)(stg: Store, sta: AbsStore) = s match {
case While(e,s) =>
def loop(sta1: AbsStore) = {
val (stg2,sta2) = exec(s)(stg,st1)
if (sta2 != sta1) // not converged
loop(sta1 lub sta2)

else (stg2,sta2) // converged
}
val (stg2,sta2) = loop(sta)
reflect(s"while (${ eval(e) }) $stg2)

}

In short, we iterate until the abstract store at loop entry has con-
verged to a fixpoint and return the last generated expression for the
loop body. Using this straightforward combination of a staged in-
terpreter with an abstract interpreter, we perform dataflow analysis
interleaved with transformation, and are able to maintain optimistic



assumptions around loops in the style of [34]. This approach can
also be viewed as a (very simple) kind of supercompilation [51],
as we essentially use fixpoint iteration to generalize program frag-
ments directly, instead of first generalizing values in an abstract
dataflow domain and then transforming the program afterwards.
Overall, we follow closely the LMS-based extensible compiler ar-
chitecture that was proposed in previous work [41], with adapta-
tions as required by the comparatively lower-level nature of Java
bytecode.

2.3 JIT Macros as Extension Points

Since the core of Lancet is implemented using LMS, it can be easily
extended by other pieces of multi-stage code, even if they are de-
fined by the running program itself. In fact, Lancet provides explicit
hooks to register callbacks – JIT macros – that are called whenever
a certain method call occurs in bytecode under compilation.

To support these possibly user-defined macros, the essential
mechanism is to override the invokeVirtual method and look for
methods that have associated callbacks registered. If such a method
is found, we dispatch to the callback instead of compiling the
method body and whatever staged code fragment the callback re-
turns will replace the method call. Since macros are called from
the main fixpoint transformation and dataflow analysis loop, they
will always see up-to-date abstract information and may be invoked
multiple times as abstract values are refined.

Using this mechanism, we can for example implement method
freeze from Section 1, which evaluates its argument at JIT-compile
time. The user-facing method is declared with the signature of the
identity function:
object LancetLib {
def freeze[A](x: => A): A

}

The corresponding macro is defined as follows, with the same name
and signature but adding Rep types:
object LancetMacros {
def freeze[A](f:Rep[()=>A]): Rep[A] = liftConst(evalM(f)())

}

It is installed like this:
Lancet.install(classOf[LancetLib.this],LancetMacros)

Macros can easily interface with the compiler internals, for ex-
ample to inspect their arguments or the dynamic scope of their invo-
cation. Lancet provides a number of handy support functions. The
core of freeze is a call to evalM (evaluate materialized), which tries
to evaluate a Rep[T] value back to T. Its implementation first deter-
mines the precise class of the expression, allocates an uninitialized
object of that class and then recursively materializes all fields of the
object:
def evalM[A](x: Rep[A]): A = evalA(x) match {
case Static(x) => x
case Partial(fs) =>
val obj = staticRuntime.allocateInstance(evalClass(x))
fs.foreach(f=>staticRuntime.putObject(obj,f.offset,evalM(f.value)))
obj

}

If any of these steps fails, an error is raised. In the case of freeze,
the argument closure is materialized and called directly to produce
a constant result. In the same way, any other user-level method can
serve as a marker or high-level API to JIT functionality. We will
see more examples below.

3. Putting Surgical JIT Facilities to Use
3.1 Program Specialization

Controlled specialization is key to remove abstraction overhead
from generic code and obtaining predictable high performance, as
motivated already by the CSV processing example in Section 1.
Before going into further implementation details, we present per-

Input size: 23 46 69 92 MB
CSV Reading
C++ 1.00 0.98 0.99 0.99
Scala Library 0.92 0.91 1.16 1.25
Scala Lancet 2.19 2.20 2.91 2.65

Table 1. Effects of JIT specialization on the CSV processing app
from Section 1. Speedup numbers are relative to hand written C++
and normalized for input size.

formance numbers for this application in Figure 1. We compare
versions of the code in plain Scala, C++ and Scala specialized with
Lancet reading input files from 23 to 92 MB with 20 columns, out
of which 10 are accessed by name. The Lancet compiled code hand-
ily beats the plain Scala and C++ versions by a factor of 2. These
measurements include file IO as well as expensive library calls like
String.split. It is worth noting that C++ and Lancet performance
is almost unaffected by the input data size, whereas HotSpot com-
piled Scala code is slower than C++ for small sizes and faster for
large inputs.

Controlled Inlining In automatic JIT compilers, inlining deci-
sions are a major source of non-determinism. For example, higher-
order methods like foreach pose difficulties for call-site based pro-
filing:
def foreach(f: A => Unit) = {
var it = this.iterator
while (it.hasNext) f(it.next()) }

In many cases, profiling will identify the call site of f inside foreach
as hot, but since there may be many invocations of foreach in a
program, the same number of different call-targets for the closure
f exist [12]. The exact JIT behavior depends on many factors and
is hard to predict. What we really want instead is to inline foreach
itself at all of its callers to relate each particular closure allocation
with its invocation.

Lancet takes a different approach and will always try to inline
non-recursive functions, unless instructed otherwise. Of course this
is not always the right choice, and therefore inlining can be con-
trolled by high-level directives inlineAlways, inlineNonRec (default,
for non-recursive) and inlineNever, all of which are implemented
as JIT macros. For example:
inlineAlways { xs.foreach(i => foo(i)) }

Here, all methods calls, including recursive ones, will be inlined in
the dynamic scope of foreach, foo and its callees unless superseded
by another, closer, directive.

In addition to attaching directives to a full dynamic scope, we
can use higher-order directives atScope and inScope, which are
again implemented as JIT macros, to trigger directives only once
a method that matches a certain pattern is entered. For example:
inlineAlways {
atScope("^java.io.")(inlineNever) {
// no IO methods will be inlined

}}

In this case, all method calls in the dynamic scope will be inlined,
until a method on an object from the java.io package is hit. At this
point inlining stops and a method call in emitted. Using inScope in-
stead of atScope would trigger one level down, inside the first call
to a matching method. Compared to explicit inline annotations on
particular methods, the scope driven approach is more expressive
because decisions can be controlled in a non-local and composi-
tional way.

Loop Unrolling with Dynamic Scope Loop unrolling is a key
transformation in performance oriented code. For example, we may
want to implement an unrolling loop combinator ntimes:
ntimes(3) { i => println(i) }

The desired effect is to produce the following code:
println(0); println(1); println(2)



When implementing a suitable macro for ntimes, we can use evalM
to materialize the constant trip count. We could also use evalM to
materialize the closure that defines the loop body, but here, full ma-
terialization is actually not desired because the loop body may well
refer to non-static data. Therefore, we use a different operator, funR,
which turns a staged function Rep[A=>B] into a function on staged
values Rep[A]=>Rep[B]. Invoking the result of funR will inline the
function body, substituting the formal parameter with the argument
passed. Here, we use funR to obtain an unfoldable representation of
the closure that defines the loop body. Putting things together, we
arrive at the following macro definition:
def ntimes(n: Rep[Int])(f: Rep[Int=>Unit]): Rep[Unit] = {
val body = funR(f)
for (i < - 0 until evalM(n)) // staging-time for-loop
body(liftConst(i))

}

However, we can go a step further. Making unrolling decisions
separately for each loop limits modularity. We may want to put a
loop inside a function,
def loopy(x: Int) = ntimes(x) { i => println(i) }

which is called elsewhere, and we would like to make an unrolling
decision at the call site:
unrollTopLevel { loopy(7) }

Similar to the inlining directives, we can implement this pattern
using dynamic scope, relying on the fact that Lancet will inline
loopy at the point where it is used. We define the following macros:
var shouldInline = false
def unrollTopLevel(f:Rep[()=>Unit]) = {
val save = shouldInline; shouldInline = true
try funR(f)() finally shouldInline = save

}
def ntimes(n: Rep[Int])(f: Rep[Int=>Unit]): Rep[Unit] = {
// unroll only if shouldInline is true,
// and set shouldInline to false when unfolding f

}

As we can see, dynamically scoped variables enable communica-
tion between nested macro invocations.

Instead of using unrollTopLevel directly at the call site of loopy
we can use atScope or inScope to control unrolling from further up
the chain:
atScope("loopy")(unrollTopLevel) { ... }

Now, for any invocation of loopy within the dynamic scope of the
block, the enclosed loop will be unrolled. We believe that this abil-
ity of attaching directives to a dynamic scope instead of individual
methods or loops provides an advantage in expressiveness that is
hard to overstate.

Code Caching and On-Demand Compilation Specializing code
on demand is a truly “just in time” use-case. Let us consider the
general case of a two-argument function calc(x:Int,y:Int). We
would like to implement a variant of calc that creates specialized
versions for particular values of x on demand and on the fly, without
exposing this fact to the user of the function.

We implement a code cache, and a function calcJIT with the
same interface as calc:
val cache = new WeakHashMap[Int,Int=>Int]
def calcJIT(x:Int,y:Int)=
cache.getOrElseUpdate(x, compile(z => calc(x,z)))(y)

If we find a specialized version for a given x we will use that.
Otherwise, a new version is compiled and cached for later use.

Instead of relying on some VM-internal black-box behavior that
is not accessible to the program and might even change in the
next release, we have complete control over how code is compiled
and re-used. For example, we could easily extend our cache with
a custom eviction policy. In any event, this implementation of
calcJIT guarantees that it will execute a code path in which x is
a compile-time constant.

In some cases, this guarantee might be our primary interest,
but in other cases it might not. For example, we might care more
about amortizing compilation cost. This is a different concern, so
no single black-box solution is sufficient. With a programmable
JIT, we can easily accommodate. In our new version, calcHOT, we
choose not to specialize calc eagerly for all values of x, but only
after a certain value becomes “hot”. To achieve this, we add an
additional data structure to store profiling information:
val profile = new HashMap[Int,Int] withDefault 0
def calcHOT(x: Int, y: Int) = if (profile(x) < threshold) {
profile(x) += 1; calc(x,y)

} else calcJIT(x,y)

With just a little bit more effort we could add background compi-
lation by submitting the actual compilation as a task to a worker
thread.

Of course implementing code caches and profiling afresh for
individual methods is not very scalable in terms of effort, but
working in a high-level language, we can easily generalize and
provide combinators like makeJIT:
def makeJIT[A,B,C](f:(A,B)=>C) = {
val cache = new WeakHashMap[A,(A,B)=>C]
(x,y) => cache.getOrElseUpdate(x, compile(z => f(x,z)))(y)

}
val calcJIT = makeJIT(calc)

The implementation of makeHOT for the profiling case is analogous.

3.2 Speculative Optimization

In addition to straight compilation and program specialization, we
want to put the dynamic VM capabilities to good use, namely
speculative optimization, and the facility to discard optimized code
on the fly if it turns out that compilation assumptions were too
optimistic (deoptimization).

Using JIT macros, which provide access to the internal compiler
state, we can define a range of high-level operators to convey spec-
ulation directives. To start with a simple example, method likely
may tell the compiler to assume that a test will likely succeed:
if (likely(cond)) { ... } else { ... }

The VM could come to the same conclusion by profiling the actual
execution and recording the branches taken, but even in this case,
likely can serve as a contract, and cause the VM to signal a warning
if profiling suggests that the test is actually not likely. To give the
compiler even tougher guidelines, we introduce method speculate:
if (speculate(cond)) { ... } else { ... }

This will instruct the compiler to assume that the test will always
succeed and optimize the method accordingly, replacing the condi-
tional by its then branch. Of course Lancet cannot be certain that
this assumption always holds so it must insert a guard that, if the
check fails, takes a slow path and drops into interpreter mode for
this particular execution. A variant of this approach is stable:
if (stable(cond)) { ... } else { ... }

The assumption here is that the condition may change permanently
but infrequently. If the guard fails, the method is recompiled on the
fly with the new value instead of dropping into interpreter mode.

Implementing Deoptimization / OSR / Continuations Internally,
we can express operations like speculate and stable using lower-
level primitives slowpath and fastpath: explicit operations to inter-
pret and compile the current continuation, i.e. to switch to inter-
preted or freshly-compiled mode at the current point of program
execution. Method speculate uses slowpath like this:
def speculate(x: Boolean) =
if (x) true else { slowpath(); false }

Similarly, we can implement stable using fastpath and freeze:
def stable(x: => Boolean) = {
val c == freeze(x)
if (x == c) c else { fastpath(); x }

}



Of course we can apply the same technique to implement variants
that operate on types other than Boolean or perform more complex
check patterns.

In VM parlance, slowpath and fastpath perform on-stack-
replacement (OSR), in PL parlance, they discard the current con-
tinuation and replace it with an interpreted or freshly compiled ver-
sion of it. We implement on-stack-replacement using the operator
shiftR, which provides a macro-level variant of the shift delimited
control operator [14] with type (Rep[A=>B]=>Rep[B])=>Rep[B]. In-
voking shiftR will pass the current continuation, up to the nearest
enclosing resetR delimiter, to the argument closure. Internally, the
continuation is represented by a linked chain of InterpreterFrame
objects.

Implementing a user-facing shift operator as a macro is straight-
forward. We just unfold f with the continuation as its argument:
def shift[A,B](f: Rep[(A=>B)=>B]): Rep[B] = shiftR { k => funR(f)(k) }

User-facing shift and reset control operators have no direct rela-
tion to speculative optimization but go beyond the functionality that
is usually available on JVMs. Delimited continuations can be used
to implement all kinds of advanced control structures like corou-
tines, generators or asynchronous callbacks.

To implement slowpath and fastpath, we first convert the con-
tinuation to a function that is either interpreted or compiled and
then we invoke it:
def slowpath(): Rep[Unit] = shiftR { k => interpret(k)() }
def fastpath(): Rep[Unit] = shiftR { k => compile(k)() }

The process for both versions is similar: We traverse the linked
InterpreterFrame objects, and for each frame we emit code to
reconstruct a corresponding frame object at runtime. Naturally, all
local data in the versions created at runtime will be constants. After
the code that reconstructs the frame state, we emit a call to invoke
an interpreter or compiler instance with the newly created state.
By using shiftR, we have already aborted the current continuations
and thus achieve the desired effect of on-stack-replacement (OSR)
using a few high-level combinators. It is worth pointing out that
we can in principle compile or interpret arbitrary chains of frames,
as long as return types match. These chains do not have to be
created by actual call chains resulting from bytecode. This gives
us considerable freedom for deoptimization because we just need
to create some valid target we can “deoptimize into”.

Safe and Efficient Numeric Overflow Speculative optimization
is particularly useful for programs that do not have a clear stage
distinction, i.e. where up-front specialization is infeasible because
it is not clear when switching from one specialized version to
another will be required. For example, we may want to switch from
machine-size integers to BigInteger objects in case of an overflow.
But overflows may happen anywhere, even inside a loop, so we
cannot perform type-specialization ahead of time:
var prod = 1
while (i < n) { prod = prod * i; i += 1 } // overflow for large n

This is a prime use case for speculative optimization and deopti-
mization: we assume optimistically that no overflow will occur and
specialize the code for machine size integers. When an overflow
does occur, we back out and drop into interpreted mode or recom-
pile the code on the fly using on-stack-replacement. Here is our
definition of overflow-safe integers:
abstract class SafeInt { def toBigInt: BigInteger }
case class Small(x: Int) extends SafeInt { ... }
case class Big(x: BigInteger) extends SafeInt { ... }
def SafeInt(x: Long) =
if (x >= Int.MinValue && x <= Int.MaxValue) Small(x.toInt)
else { slowpath(); Big(new BigInteger(x)) }

def infix_+(x: SafeInt, y: SafeInt): SafeInt = (x,y) match {
case (Small(x),Small(y)) => SafeInt(x.toLong + y.toLong)
case _ => slowpath(); Big(x.toBigInt.add(y.toBigInt))

}

The internal representation can switch from small to big integers,
but the BigInteger case is treated as slow path. The key benefit
of dropping into interpreted mode is that all compiled operations
operate on Int values. Compiled code will never create Big objects,
so all checks whether inputs are Big in subsequent operations can
be eliminated. What remains are the overflow checks in SafeInt.

Exploiting Stable Structure in Trees or Graphs Speculative op-
timization can be useful in more complicated settings as well. Con-
sider, for example, a dictionary implemented as a search tree. In
many cases, reads dominate by orders of magnitude and updates to
the key set are very rare. To increase performance, we can com-
pile the lookup operation, i.e. map the search tree (represented as
datatype) to branching code that implements the decision logic di-
rectly. Let us assume that we process some incoming data and want
to increment a counter for a certain key. We can speculate that al-
most all key lookups will succeed, but we also need to handle the
uncommon case where a key is not yet present in the dictionary. In
this case we need to update the tree structure, and invalidate and
recompile the lookup code.

There are several design decisions about the granularity of spec-
ulation. A fine-grained option is to define the child pointers in
the tree as stable references, generalizing the stable operator from
above to an @stable annotation for variables and fields:
class Tree(var key: Int, var value: Int,

@stable var left: Tree, @stable var right: Tree)

This means that parts of the tree can be invalidated but the lookup
code will only be recompiled once an invalid path is hit. There will
also be guard checks for each node. Another option is to declare
only the root pointer of the tree as stable and produce a new tree
on each update. This reduces the number of guards but makes
invalidation more coarse-grained.

Another interesting use case are observer networks of reactive
dependencies. Again, structural updates are relatively infrequent
and performance is dominated by processing on a stable version
of the network.

3.3 Just-In-Time Program Analysis
Controlling Allocation / GC While we can control the behavior
of JIT compilation, it can be argued that the memory subsystem
and, in particular, garbage collection occurring at inopportune mo-
ments, are the biggest sources of nondeterminism in a VM. How-
ever, ultimately memory allocation is under the control of the JIT
compiler as well. If a JIT compiler is able to bound the lifetime of
objects, it can map object fields to local variables instead of allocat-
ing the object on the heap, which eliminates the need for garbage
collection when the object is no longer used. Unfortunately, the
current approaches based on simple escape analysis interact in in-
tricate ways with inlining and other optimizations, which makes the
outcome very unreliable again.

Making JIT compilation explicit, however, gives us an opportu-
nity to relay warnings or error messages to the program. Combined
with controlled inlining, dead code elimination and aggressive par-
tial evaluation that is able to propagate static values through object
fields, we can implement a directive checkNoAlloc { ... } that will
produce a JIT compile error when it is unable to replace any heap
allocation with local fields inside its dynamic scope. In addition, the
code must not contain any deoptimization points or calls to exter-
nal code not compiled with this directive. If compilation succeeds
without error, we get a guarantee that the compiled code will never
allocate objects on the heap and hence, no garbage will need to be
collected later.

Taint Analysis / Secure Information Flow We can also imple-
ment more general just-in-time program analyses that are not di-
rectly related to optimizations. The idea of JIT analysis is to apply
static analysis algorithms at runtime, in order to profit from the



// OptiML library implementation
class OptiMLCompanion {
type DM = DenseMatrix[Double]; type DV = DenseVector[Double]
def sum(start: Int, end: Int, size: Int)(block: Int => DV): DV = {
val acc = new DenseVector[Double](size, true)
for (i <- start until end) {
acc += block(i)

}
acc

}
def sumRows(m: DM): DV = {
sum(0, m.rows, m.cols) { i => m.row(i) }

}
}
// OptiML accelerator macros
object OptiMLMacros extends ClassMacros {
val targets = List(classOf[OptiMLCompanion])
def sum(self: Rep[OptiMLCompanion], start: Rep[Int], end: Rep[Int],
size: Rep[Int], block: Rep[Int => DV]): Rep[DV] = {
val block1 = funR(block)
new DeliteOpMapReduce[Int,DV] {
def zero = DenseVector[Double].empty
def reduce = (a,b) => a += b
def map = x => block1(x)
...

}
}

}

Figure 8. OptiML library and macro implementation, using Deli-
teOpMapReduce.

same increased precision as JIT compilation, due to preexisting dy-
namic data which the analysis can treat as static. At the same time,
JIT analysis is more efficient than dynamic analysis based on exe-
cuting instrumented code.

One interesting use-case is taint analysis for secure information
flow, with the goal of tracking what happens to user input. All user
input is considered tainted. Anything possibly derived from tainted
data is also considered tainted. We then want to check for a certain
piece of code that it does not leak any tainted data, including or
excluding basing branching decisions on tainted data which could
e.g. lead to observable timing differences.

In order to implement this analysis, we need to extend the core
Lancet implementation with an additional abstract interpretation
lattice to model taint state, and operations to propagate taint in-
formation. We treat the result of all operations as tainted unless we
can prove otherwise. The implementation is analogous to the in-
ternal analyses that are the basis for Lancet’s constant propagation
and partial evaluation engine. Moreover, taint analysis will be per-
formed at the same time as the other analyses and can profit from
increased precision due to constant propagation and other optimiza-
tions.

3.4 Active Libraries and Embedded DSLs

Lancet’s macro facility enables us to hook into existing LMS-based
toolchains like the Delite DSL framework [4, 8, 33, 42] directly
from ordinary Scala libraries. In this section, we demonstrate that a
library-only implementation of OptiML, a deeply embedded DSL
for machine learning [46], can be combined with Lancet macros
and Delite to construct an active library that performs as well as
the original deeply embedded DSL. We also show that we can
use Lancet and Delite to transparently accelerate a small existing
general-purpose Scala program.

Building Active Libraries In this experiment, we implemented
a scaled down version of OptiML as a pure Scala library. We
used the library to implement two existing OptiML applications,
k-means clustering and logistic regression. The library applications
contain no Rep annotations, interoperate smoothly with IDEs, and
are easy to debug, since they are regular Scala. We then separately

Cores: 1 2 4 8 GPU
K-Means Clustering
Scala library 1.00 1.37 1.50 1.83 –
Lancet-Delite 4.92 8.82 17.10 24.00 50.75
Delite (Graal) 5.17 10.03 19.81 24.78 54.82
Delite (HotSpot) 5.11 9.90 18.84 22.40 54.26
C++ 7.68 13.84 25.69 40.80 –
Logistic Regression
Scala library 1.00 2.03 3.32 5.81 –
Lancet-Delite 7.79 16.16 28.99 32.69 49.79
Delite (Graal) 7.84 16.09 27.74 40.01 52.30
Delite (HotSpot) 13.02 24.77 35.27 42.88 51.05
Delite (manual opt) 23.92 45.30 86.30 133.41 –
C++ 25.24 47.21 98.36 160.72 –
Name Score
Scala library 1.00 1.71 3.08 4.36 –
Lancet-Delite 1.92 3.15 6.54 9.67 –

Table 2. Performance speedup of Lancet-Delite, stand-alone
Delite, and C++ compared to pure Scala on k-means clustering and
logistic regression. Transparently-optimized name score computa-
tion in Lancet compared to the original Scala library version.

implemented Lancet macros for the OptiML library that invoke
existing deeply embedded OptiML DSL methods. Key parts of the
implementation are shown in Figure 8.

We use Lancet to JIT compile the Scala application, which
stages the application and executes the macros to construct Delite
IR nodes. Finally, Delite generates and executes heterogeneous
code (Scala and CUDA) for the staged block as usual. Table 2 com-
pares the performance of this approach (Lancet-Delite) compared
to the pure Scala library, stand-alone Delite (on both HotSpot 1.7
b17 and Graal revision 13489:780d53499ca2), and hand-optimized
C++. The Scala library versions are run on Graal and parallelized
using Scala Parallel Collections. The C++ versions are parallelized
using OpenMP. For each experiment we timed the computational
part of the application, ignoring initialization steps. We ran each
application (with initialization) ten times without interruption and
averaged the last five runs to smooth out fluctuations due to VM
warmup, garbage collection and other variables.

The active library implementation of OptiML is much simpler
for end users and within a small margin of the statically compiled
deeply embedded version. Starting from an ordinary Scala library,
we are still able to generate optimized Scala and CUDA code. In
contrast, running the library implementation without the Lancet
macros results in between 5-13x slower CPU performance on k-
means and 5-8x slower performance on logistic regression. The
performance improvements with Lancet and Delite come mainly
from compiling away data structures (the staged versions oper-
ate only on arrays) and fusing computationally heavy loops to-
gether, resulting in less traversals and intermediate data allocations.
Delite’s efficient static parallelization enables good scaling across
thread counts and we are also able to generate and execute CUDA
kernels for both applications, resulting in additional speedup. We
ran the stand-alone Delite version using both HotSpot and Graal;
Graal performed slightly better than HotSpot on k-means and sub-
stantially worse on logistic regression, although it catches up on
8 cores, probably due to short running times. This is an example
of the difficulty in predicting and understanding performance from
traditional black-box JIT compilers, even with two similar VMs.

To demonstrate an approximate upper-bound on achievable per-
formance, we also show hand-optimized, hand-parallelized C++
performance. In these versions, we manually fuse together oper-
ations and aggressively re-use memory. As a result, the applica-
tion code is much less readable than the Scala code that is the
starting point for the other versions. In k-means clustering, Lancet-
Delite is within 50% of the optimized C++ and outperforms it using



the GPU. However, the logistic regression C++ implementation is
faster than the compiled Delite version which is in turn much faster
than Scala library implementation. This is due to manual fusion of
a key part of the logistic regression algorithm (reducing a gradient
vector directly into a thread-local accumulator by computing and
reducing each scalar result individually) which is not yet supported
by Delite. However, we believe that it is possible to perform this
transformation on the Delite IR and plan to do so in future work (it
is simular in spirit to existing Delite fusion and loop interchange
transformations).

Accelerating Existing Libraries The previous section showed
how we can use Lancet to build active libraries that combine the
productivity characteristics of ordinary libraries with the perfor-
mance characteristics of compiled DSLs. We demonstrate next how
we can use Lancet to transparently optimize existing libraries by
adding JIT macros after-the-fact that convert library calls into op-
timized implementations. In particular, this enables us to now use
Delite as a general-purpose accelerator for arbitrary existing Java
bytecode programs, through appropriate macros. In this experi-
ment, we accelerate the following small file processing program:
def totalScore(sortedNames: Array[String]) = {
val scores = names.zipWithIndex map { case (a,i) =>
val score = a.map(c => c-64).reduce(_+_)
(i*score).toLong }

scores.reduce(_+_)
}

This simple program computes the “score” associated with
a given name based on the ascii value of the characters in the
name. To accelerate this program, we add Lancet macros to re-
place collection operations on Scala arrays with operations on
Rep[DeliteArray[_]], a Delite collection that supports high per-
formance parallel operators. We implement macros for Array
zipWithIndex, map, and reduce which call their corresponding
DeliteArray methods, similar to the OptiML macros in Figure 8.
Then, as in the active library case, we invoke compile on the
totalScore method, which JIT compiles the snippet by staging
it and then executes it with Delite. Table 2 shows the performance
improvement obtained by using these simple macros compared to
running the native Scala library with Scala Parallel Collections.
Even on a simple application like this, Delite obtains approxi-
mately a 2x speedup over the library version, by performing two
critical optimizations: unwrapping the array of tuples into two ar-
rays (array-of-struct to struct-of-array conversion) and fusing the
map with the reduce, eliminating a large intermediate data structure.

This experiment demonstrates that Lancet is a powerful tool for
accelerating existing libraries with simple front-ends by mapping
them to a common back-end toolchain like Delite. Previous work
has shown that mapping computation to a shared, high-level inter-
mediate representation is a good way to obtain high performance
across multiple compiled, embedded DSLs used in the same pro-
gram [47]. Lancet allows us to apply this principle not only to com-
piled embedded DSLs but also to active libraries by dynamically
and selectively mapping portions of the libraries to the common
back-end.

3.5 Cross-Compilation

Using LMS as a backend means that it is not difficult to gen-
erate code for other target languages. Previous work has shown
JavaScript [31] and SQL generation [52]. We briefly discuss gener-
ating code for these targets, using Lancet as a bytecode decompila-
tion front-end.

SQL / LINQ Language embedded query functionality, such as
LINQ [35] on the .Net platform, is a popular way to access external
data sources. A database query can look like a filter operation on
an in-memory collection:

val data = table[Item]("t_item")
val res = data.filter(x => x.price > 0)
println(res.count)

Behind the scenes, the filter call will be translated to a where
clause in a SQL query, which is shipped to the database. In LINQ
and other systems, this is achieved through lifting of expression
trees at (static) compile time. For simple cases like the one above
this works fine, but more complicated cases come with certain
issues.

In most systems, the following snippet will not work:
def p(x:Item) = ... // defined elsewhere
val data = table[Item]("t_item")
val res = data.filter(x => x.price > 0 && p(x))
println(res.count)

We are calling an externally defined function from inside the filter
closure, but only the filter closure itself is lifted as expression tree.
If we were using Lancet and lifting bytecode instead of static trees
this would not be a problem because bytecode is available for all
functions.

Another issue is that some operations like sum or count return
scalar types, not queries:
val data = table[Item]("t_item")
val res = data.map(x => x.price)
println(res.count)
println(res.sum)

Most systems will execute this query twice. If the whole snippet
were part of a larger block compiled with Lancet, queries could be
analyzed with respect to their context and the query result reused.
Similar transformation are performed internally by Delite.

Finally, nested queries often produce “query avalanches”, exe-
cuting a new query for each loop iteration:
val data = table[Item]("t_item")
val order = table[Order]("t_order")
for (x <- data) {
println("orders for item "+x)
val ordersForItem = order.filter(y => y.item == x)
println(ordersForItem)

}

By looking at the context of the query, however, we can first create
an index
val ordersForItemMap = order.groupBy(y => y.item)

and replace the nested filter call by an index lookup:
val ordersForItem = ordersForItemMap(x)

Now both data and order queries can be fetched in a single trip to
the DB before traversing the order data. Orders are then stored in
a hash table in the program. Avalanche avoiding transformations
have been studied by [11, 22, 52, 53].

JavaScript To cross-compile to JavaScript, we first define a
DOM interface as a Scala library containing only abstract classes.
We will use trait JS as a marker interface for all DOM classes:
object Dom extends JS {
trait Element extends JS
trait Canvas extends JS {
def getContext(key: String): Context

}
trait Context extends JS {
def translate(x: Double, y: Double)
def rotate(r: Double)
def moveTo(x: Double, y: Double)
def lineTo(x: Double, y: Double)
...

}
object document extends JS {
def getElementById(id: String): Element = error("not implemented")

}
}

Using this API, we can for example implement a small drawing
applicaton that will print Koch snowflakes on a HTML canvas
element (example taken from [31]):



def snowflake(c: Context, n: Int, x: Int, y: Int, len: Int) = {
c.save(); c.translate(x,y); c.moveTo(0,0); leg(n)
c.rotate(-120*deg); leg(n);
c.rotate(-120*deg); leg(n);
c.closePath(); c.restore();
def leg(n: Int) { ... }

}

Defining a translation from DOM library calls to actual JavaScript
code is achieved by a macro that looks for method invocations on
objects inheriting from JS (some details elided):
def invokeMethod(parent: InterpreterFrame, m: ResolvedJavaMethod) = {
if (classOf[JS].isAssignableFrom(m.getDeclaringClass)) {
... reflect[Object](""+receiver+

"."+m.getName+"("+parameters.mkString(",")+")") ...
} else false

}

With this macro support in place, we are ready to emit JavaScript
code that draws pretty pictures:

Of course only core functionality of a JavaScript cross-compiler
is implemented; to build a workable web application toolkit in
the style of GWT [18] that includes client-server interaction much
additional work would be needed.

4. Related Work
JIT compilers have made significant progress over the last two
decades, and are the method of choice for implementing many
modern programming languages. Where compiler optimizations
based on static analysis are largely considered intractable for dy-
namic languages, compiling pieces of the running program in the
background with optimizations based on dynamic feedback gath-
ered during program executing is an attractive choice. Combina-
tions of dynamic type feedback and static type inference have also
been shown to be beneficial [23].

JIT Compilers Many of the key technologies used by JIT com-
pilers today have their roots in the Self [10] and StrongTalk [7] sys-
tems. Examples are polymorphic inline caches [24], deoptimization
[25], run-time type feedback for dynamic calls [26], and adaptive
optimization to focus compilation on performance critical methods
[27].

Modern JIT compilers for Java bytecode include the Server
[38] and Client [32] compilers in the Oracle HotSpot VM, the
Jalapeño compiler [3] in Jikes RVM [2], and the Graal [37, 55]
compiler which evolved from the Maxine VM [54]. Google V8
[19, 20] is an advanced VM and JIT compiler system for JavaScript.
The Truffle runtime system [56, 57], built on top of Graal, brings
advanced dynamic optimizations to AST interpreters. PyPy [6, 39]
is a JIT framework in Python that works on program traces instead
of methods.

Staging, LMS, Delite Multi-stage programming (MSP, staging
for short), as established by Taha and Sheard [48] enables pro-
grammers to delay evaluation of certain expressions to a generated
stage. MetaOCaml [9] implements a classic staging system based
on quasi-quotation. Lightweight Modular Staging (LMS) [40] uses
types instead of syntax to identify binding times, and generates an
intermediate representation instead of target code. LMS draws in-
spiration from earlier work such as TaskGraph [5], a C++ frame-
work for program generation and optimization. Delite is a compiler
framework for embedded DSLs that provides parallelization and
heterogeneous code generation on top of LMS [4, 8, 33, 41, 42, 47].

Partial evaluation for Java/JVM Partial evaluation [28] has been
applied to Java and JVM code in a number of different contexts, for

example JSpec/Tempo [43] the JSC Java Supercompiler [30] and
Civet [44]. Despite their automatic nature, most of these systems
also provide annotations to guide specialization decisions. DyC
[21] is an annotation-directed specializer for C.

Further related work on partial evaluation adresses higher-order
languages with state [50], partially static structures [36] and par-
tially static operations [49]. Deriving compilers and virtual ma-
chines from interpreters has been studied in a formal context as
functional derivations [1]. Related work on compiling via combi-
nations of partial evaluation, staging and abstract interpretation in-
cludes [13, 29, 45].

5. Discussion
The main goals of this work are to make all aspects of JIT com-
pilation programmable and to bring domain specific optimizations
to libraries using JIT macros. The general programmer experience
we seek to provide is “you get what you ask for”. Thus, coming up
with clever heuristics or automatisms was decidedly a non-goal. We
also did not focus on compile speed, since compilation is explicitly
invoked.

Putting a JIT compiler under the control of user code, and even
(horrors!) executing arbitrary user code via macros may be a scary
thought for security-minded people. To some of them, it may seem
like we are deliberately throwing all of the VM’s safety assur-
ances out of the window. This is certainly a valid concern, but the
same concern applies for example to the sun.misc.unsafe package,
which is indispensable for performance programming but also al-
lows unsafe reads and writes to arbitrary memory locations. More-
over, many performance critical applications run in closed environ-
ments without being faced with possibly adversarial user code. If
we want to get more C programmers to adopt managed runtimes
and JIT compilation, we cannot put security above all other con-
cerns. Switching to a higher-level language and coding style will
already improve the overall safety of the software produced. Fi-
nally, safety can be regained through regular access control mech-
anism that restrict the use of the JIT API to certain parts of the
program or to certain libraries.

Some VM experts firmly believe that optimization decisions
should only be based on data gathered by dynamic profiling and
that programmers should not be allowed to interfere because they
would likely get it wrong anyways. This idea that JIT compilers are
always better at choosing profitable optimizations is not supported
by evidence (see e.g. [41]). Many interesting program properties
are not discernible by simple profiling alone and profile data may
be imprecise or inaccurate. While inexperienced programmers will
certainly get some of their optimization hints wrong, that does not
imply that expert programmers are unable to make crucial use of
such facilities. We believe that more research is needed into useful
high-level optimization abstractions that capture programmer in-
tent. Domain-specific languages and libraries are a promising av-
enue to reflect this high-level knowledge without requiring pro-
grammers to be explicit about details like, for example, which loop
to unroll and how many times.

6. Conclusion
In this paper, we have presented Lancet, a JIT compiler framework
that enables the running program to control all aspects of the JIT
compilation process. We have demonstrated the usefulness of pro-
grammable JIT compilation on a number of use cases and we have
presented performance results for runtime specialization that out-
perform C++ by 2x. Furthermore, we have demonstrated bytecode
libraries with accelerator macros that achieve up to 52x speedup
over plain Scala library implementations and are competitive with
dedicated staged, compiled DSLs, within 20% in all cases.
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