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Abstract
The Rust programming language demonstrates that memory
safety can be achieved in a practical systems language, based
on a sophisticated type system that controls object lifetimes
and aliasing through notions of ownership and borrowing.
While Scala has traditionally targeted only managed lan-
guage runtimes, the ScalaNative effort makes Scala a viable
low-level language as well. Thus, memory safety becomes
an important concern, and the question bears asking what, if
anything, Scala can learn from Rust. In addition, Rust’s type
system can encode forms of protocols, state machines, and
session types, which would also be useful for Scala in general.
A key challenge is that Rust’s typing rules are inherently
flow-sensitive, but Scala’s type system is not. In this paper,
we sketch one possible method of achieving static guaran-
tees similar to Rust with only mild extensions to Scala’s type
system. Our solution is based on two components: First, the
observation that continuation passing style (CPS) or monadic
style can transform a flow-sensitive checking problem into
a type-checking problem based on scopes. Second, on a pre-
viously presented type system extension with second-class
values, which we use to model scope-based lifetimes.

CCS Concepts • Theory of computation → Program
constructs; Type structures; • Software and its engineer-
ing→ Software safety; Patterns; Control structures;
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1 Introduction
It is well known thatmutability in imperative (as well as non-
pure functional) languages may lead to obscure bugs, not
only in a concurrent setting but also in sequential programs,
so long as multiple aliased references exist at a program
point. Examples of the former are data races, which occur
whenever there are two concurrent accesses to the same
memory location with at least one being a write, unless both
are atomic (which incurs synchronization overhead). A per-
haps unusual but important example of the latter is iterator
invalidation, which occurs due to concurrent modifications
of the traversed data structure through an aliased mutable
reference (the other reference is needed for traversal).

To restrict mutability to cases when it is safe, different pro-
gramming languages take different approaches. Two extreme
approaches are to disallowmutability or aliasing whatsoever;
these are arguably best witnessed by Haskell, a purely func-
tional language, and R, which copies data whenever aliasing
may occur (copy on write). Rust, a recent statically typed
language by Mozilla, on the other hand, offers zero-cost ab-
stractions and provides static guarantees that programs are
free of data races, null pointer dereferencing, as well as cer-
tain bugs present even in sequential programs with garbage
collection such as iterator invalidation. Its type system in-
cludes a borrow checker component that statically checks
that the following rules hold:
• one or more references (&T) to a resource; and
• no more than one live mutable reference (&mut T).

A live reference is roughly a reference that can be (safely)
dereferenced. Immutable references are always live unless
they are unreachable; i.e., their pointed-to values have been
moved out due to ownership transfer. However, a (reachable)
mutable reference can be reborrowed for a shorter lifetime,
such as through a function call, during which time the ref-
erence is not live. (For example, it is safe to pass a mutable
reference to a function while holding one at the call site.)

1.1 Motivation
Rust’s type system is flow-sensitive. Consequently, an ex-
pression may have different types depending on control flow;
e.g., the following snippet in Rust,
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let mut x = 5;

let y = &mut x;

*y += 1;

println!("{}", x);

fails to compile, producing the following error message:
error: cannot borrow 'x' as immutable because it is

also borrowed as mutable

println!("{}", x);

This is in contrast to Scala (and most other languages), where
types are flow-insensitive. To be more specific, the x variable
does not have the same “type” throughout the scope in the
above snippet, which means programs in Rust (or another
flow-sensitive language) are more complicated to reason
about in general. The line at fault here is let y = &mut x,
which restricts the “type” of x by disallowing any further
accesses to it for the remainder of the scope. (Indeed, if the
above snippet is rewritten as follows,
let mut x = 5;

{

let y = &mut x;

*y += 1;

}

println!("{}", x);

it does compile, since limiting the mutable alias of x (via *y)
to an inner scope makes x unaliased in the outer scope.)

For our goal of extending Scala with similar static checking
capabilities, a direct translation of Rust’s typing rules would
therefore lead to a quite different, and certainly much more
complicated language. Inspired by recent work on object
capabilities in Scala [13], we observe that we can remove
the dependence on flow sensitivity by introducing auxiliary
scopes whenever flow-dependent information changes. This
idea naturally leads to expressing programs in continuation
passing style (CPS) or monadic style. The example let y =

&mut x becomes in Scala syntax:
bindMut(x) { y => ... }

Observe that the visibility of y is based on the { y => ...

} scope, thus it suffices to solve a simpler checking prob-
lem that is based on scopes. For clarity, we will use explicit
monadic syntax throughout this paper, but the transforma-
tion can easily be automated and hidden from users [25].
In this paper, we show one way of retrofitting the con-

cepts of borrowing and alias control from Rust into Scala.
We describe a general method of adding flow sensitivity to
Scala’s type system, which is applicable to a broad set of
flow-insensitive languages. More precisely, we describe a
Scala extension that statically enforces the following as long
as the variables are introduced via the appropriate wrappers:

1. lexical scoping of variables;
2. no creation of mutable variables out of other variables;
3. no assignments on immutable variables.

On a high level, we use second-class values from a recent
work [23], subtyping and implicit conversions, and macros

and virtualization, to enforce 1., 2., and 3., respectively. As
noted before, the burden of writing programs in monadic
style can be eliminated throughmacros, like Scala async/await1,
or by using Scala’s existing CPS transformation plug-in [25].

1.2 Syntax and Examples
To demonstrate the mechanics of our facilities for enforc-
ing the aforementioned rules 1.–3., consider the following
snippet:
bindMut(42) { mut =>

bindImm(mut) { imm => ... } // error

bindMut(mut) { mutAlias => ... } // error

val mutAlias = mut // error

mut.value = 0 // ok

}

First, the literal integral value 42 is bound to a mutable vari-
able mut for the remainder of the snippet. In the second
line, an attempt is made to re-bind the mutable value as
immutable, which fails as expected; if our system was to
allow it, that would be unsafe because the same location that
holds 42 would be mutably aliased: writeable through mut

and readable through imm, two variables (aliases in our case).
The third line fails for the same but stronger reason. The next
line is yet another attempt to work around the type checker;
it fails for a less obvious reason that will be described shortly,
but intuitively it is because all variables in our system are
introduced as second-class (parameters of closures in the
continuation passing style (CPS)). (Being parameters, and
thus values, their re-assignment is disallowed in Scala by
design.) Finally, we provide a means to mutate mutable vari-
ables by assigning new values to them via a setter method
value_=, as demonstrated in the penultimate line.

Conversely, immutable variables can share their pointed-
to values, e.g.:
bindImm(1) { imm =>

bindImm(imm) { immAlias => ... } // ok

bindMut(imm) { mutAlias => ... } // error

imm.value = 0 // error

}

In the snippet above, an immutable variable imm is initially
assigned a 1 in the first line. In the second line, an alias to the
same value (1) is created by binding imm to a new variable,
immAlias; this is safe because the shared value (1) cannot
be changed due to absence of any mutable variable, hence
reading through either variable yields the same value. In the
third line, however, this would be invalidated, therefore our
system raises a compile-time error. The next line does not
type-check either, due to the lack of a hidden but required
implicit parameter in the setter method that is only available
for mutable variables.

1https://github.com/scala/async
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2 Design
In order to simplify our implementation, as well as the rea-
soning behind it, we break our system into two levels: the
library level, which enforces the rules but still provides es-
cape hatches (similar to the usage of unsafe in Rust); and
the meta level, which enforces that unsafe workarounds are
prohibited. Of course, both of these are enforced statically,
albeit using different facilities. In the former, we rely on an
extended Scala type system that is proven to be sound, and
enforce the CPS-style let bindings to make variable bind-
ings explicit. In the latter, we use Scala Macros [6] to dis-
allow certain syntactic patterns when binding to variables,
and override the usual behavior of assignments using Scala-
Virtualized [19] to confine the aliasing only to occur through
the facilities introduced by our library.

2.1 Library-level (core Scala)
For variables of type T, we introduce awrapper type Var[T,A],
where A is either of following types: Mut[T] or Imm[T], de-
pending on whether the binding is mutable (and thus also
reassignable) or immutable, as follows:
class Mut[T]

class Imm[T]

class Var[T,A](private var v: T) {

def value = v

def value_=(v2: T)(implicit ev: A =:= Mut[T]) = v = v2

}

In order to prevent mutability due to reassignments, we
enable the setter method value_= only if type parameter A
is Mut[T]; i.e., if the variable is mutable. (This is done by
requiring an implicit evidence that A is the same type as
Mut[T], which exists in instantiation Var[T,Mut[T]].)
Next, we introduce the bind* methods that bind a literal

value or an existing variable to a new variable. In case of the
immutable binding, it is safe to pass not only a literal value
but also an existing immutable variable. However, aliased
(shared) variable bindings are permitted only if none of them
is mutable. Therefore, we disallow conversion of variables
from immutable to mutable by ensuring that access type
parameter A is invariant and/or types Mut[T] and Imm[T]

are unrelated, which invalidates the subtyping relationship
Var[V,Imm[S]] <: Var[V,Mut[T]], for all types S,T and V,
and in turn disallows upcasting an immutable variable to a
mutable one.

Additionally, we need to prevent creation of shared muta-
ble variables, which we achieve by using second-class val-
ues [23]. Second-class values cannot be stored in mutable
variables, they cannot be returned from functions, and they
cannot be accessed by first-class (named or anonymous)
functions through free variables. These rules are statically
enforced through our existing compiler plug-in, thereby en-
suring that second-class values have stack-based lifetimes.

The trick is to introduce mutable variables as second-class
but require their sources to be first-class, as follows:
def bindImm[T, U](@local r: Var[T,Imm[T]])(

@local f: Var[T,Imm[T]] -> U) = f(new Var[T,Imm[T]](r.value))

def bindMut[T, U](r: Var[T,Mut[T]])(

@local f: Var[T,Mut[T]] -> U) = f(r)

The A -> B denotes a function in which the parameter of
type A is second-class but the return type is first-class; i.e.,
(@local A) => B, where @local annotation denotes a second-
class type. More specifically, introducing variables as second-
class values restricts their lifetime to the enclosing scope
defined by the passed closure, e.g.,
bindImm(42) { x =>

bindMut(0) { y =>

y.value = x

}

} // x cannot be returned/stored as a regular (1st-class) value

The function parameter must also be second-class to al-
low the usage of x in an inner closure, such as in the line
y.value = x. (Informally, using free second-class values lifts
the closure to second-class, and first-class values can be pro-
moted to second-class values but not vice versa.)

Lastly, we introduce bridgemethods to create variables out
of literals so that the above snippet actually type-checks. To
be as close to Rust as possible, we treat values as immutable
by default, and mutable only when required to appease the
type checker or explicitly requested. In Scala, this can be done
automatically through unambiguous implicit conversions
from values of type T to variables of type Var[T,A], such
that the conversion to mutable variables has less priority.
We achieve this by declaring an implicit conversion to a
mutable variable in a supertype, which is searched after the
corresponding Var companion object, as follows:
class LowPrioMut

object LowPrioMut {

implicit def valToMut[T](v: T): Var[T,Mut[T]] =

new Var[T,Mut[T]](v) }

object Var extends LowPrioMut {

implicit def valToImm[T](v: T): Var[T,Imm[T]] =

new Var[T,Imm[T]](v) }

2.2 Meta-level (Scala Macros & Scala-Virtualized)
What remains to enforce that ref.value for any variable ref
is not inadvertently passed to bindMut or bindImm, which
would bypass the above type-checking rules in cases such
as the following ones, respectively:
bindMut(123) { mut =>

bindImm(ref.value) { imm => ... /* ouch */ }

}

bindImm("foo") { imm =>

bindMut(ref.value) { mut => ... /* ouch */ }

}

To prevent this, we hide methods bindImm and bindMut,
instead encouraging the usage of let and letMut macros.
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These macros statically check that either another variable
or an r-value—such as 123 or new StringBuilder()—other
than ref.value, for any ref of type Var[_,_], is passed; oth-
erwise, it raises a compile error. Such a syntactic inspection
is performed by a straightforward pattern matching on the
AST of the first argument passed to let(Mut). (The second
argument is a closure, as in the case of bind*.) Similarly, we
disallow assignment of non-wrapped values to local variables
by overriding __newVar and __assign in Scala-Virtualized.
Hence, none of the following attempts type-check anymore:
letMut(123) { mut =>

letMut(ref.value) { mut => ... } // error (Var.value as arg.)

var indirect = mut.value // error (Var.value in assignment)

let(indirect) { imm => ... } // error (not an r-value/Var)

}

3 Borrowing
With the above API in place, we can model borrowing; i.e.,
permit temporary aliasing for the duration of a method call
(or an inner scope). It suffices to a turn function parameter
(or a local variable) into a second-class variable wrapper, e.g.:
def doWithBorrowed[T](@local ref: Var[T,Mut[T]]) = ...

bindMut(new MutableObject()) { mut =>

...

doWithBorrowed(mut)

...

{ @local val borrowed = mut // requires @local to type-check

...

} }

For performance and convenience of a reduced number
of changes to the existing functions when all parameters are
immutable, we introduce wrappers,
def call[T, R](f: T -> R)(@local ref: Var[T,_])

def call[T1,T2, R](f: (T1,T2) -> R)(

@local ref1: Var[T1,_])(@local ref2: Var[T2,_])

...

which unwrap the pointed-to values and pass them as second-
class arguments to a function. Pure functions that do not
store parameters can have all their parameters annotated
as second-class, and our system can statically check that
they indeed store no values and thus not create any perma-
nent aliases, which could be unsafe (or unexpected) if the
arguments are borrowed through a mutable reference, e.g.:
def storeMut(@local sb: StringBuilder,

@local store: Store): String = {

store.field = sb // error (cannot store 2nd-class/borrowed)

sb.toString

}

bindMut(new Store()) { storeThatLeaksMutable =>

bindMut(new StringBuilder()) { sb =>

val s = call(storeMut)(sb)(storeThatLeaksMutable)

sb.value.append("brakes encapsulation")

assert(s == storeThatLeaksMutable.field) // would fail

} }

4 Related Work
Stack-bounded Lifetimes and Escaping Strachey [26]
publicized the terminology of first- and second-class objects.
The issues around stack-implementability of functions in
LISP is also known as the funarg problem [20, 29], and con-
ditions for stack implementation of the simply-typed call-
by-value lambda calculus have been given by Banerjee and
Schmidt [2]. Hannan presented a type-based escape anal-
ysis [15], to infer when variables can be allocated on the
stack. The type systems in this paper are similar to Hannan’s
internal formulation. Taha and Nielson have proposed en-
vironment classifiers [27] to ensure non-escaping behavior
in the context of program generation. Tanter has proposed
notions of scope more fine grained than the usual notions of
lexical vs dynamic scope [28].

Unique Ownership and Borrowing Ownership type sys-
tems [7, 9] were developed to protect against unintentional
aliasing and unexpected side effects in object-oriented pro-
grams. Some researchers allow temporary aliasing and bor-
rowing [16, 22], which do not require destructive reads, and
is thus similar to our approach. Clarke and Wrigstad [8, 30]
allow it in the form of borrowing, and statically enforce ex-
ternal uniqueness otherwise. In AliasJava [1], this is done
via lent references, which cannot be stored to fields, and thus
can safely point to any ownership context. Boyland uses
technique called alias burying [4], which is based on static
analysis that tracks live aliases. Haller and Odersky [12, 14]
model unique and borrowed references in Scala using capa-
bilities, and also support ownership transfer. In contrast, our
work exploits the fact that second-class values cannot be
stored in a field or returned from a function, and is entirely
type-directed. It is similar to generic universe types [11, 21],
except that we do not support ownership transfer; however,
this is not limiting because our references may be temporar-
ily aliased when they are passed to second-class function
parameters during a function call. Overall, our design is simi-
lar to LaCasa [13]—their boxes map to our variable wrappers
(references), and opening a box is similar to introducing a
scope-based dereferenced value in our case—but we also dis-
tinguish between immutable and mutable references, like
the Pony language [10].

Rust borrowing and ownership semantics is informally
explained by its authors [18] and developers [3]. A formal-
ization of its semantics is still an ongoing effort [24], and/or
is currently awaiting peer review [17].

5 Conclusions and Future Work
We presented a minimalistic design for statically enforcing
Rust-like notion of borrowing and alias control for references,
which prevents various bugs in concurrent and sequential
settings alike, but without putting a burden of appeasing a
flow-sensitive type checking on the programmer as Rust does.
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Therefore, our system is both practical and integrates well
with the existing context-insensitive type system with local
type inference rules, in particular, Scala. Moreover, our ap-
proach requires only a minor extension to Scala’s (or another
context-insensitive) type system—a support for second-class
values—and the code is mostly self-contained in this paper.

In the future, we plan to further investigate how to pre-
cisely model ownership (transfer) and lifetimes of bound
values, perhaps using state-of-the-art capability-based ap-
proaches [5, 14] in conjunction with subtyping rules for a
generalization of second-class values (i.e., a privilege lattice)
[23]. Another promising direction is static resource man-
agement using ownership tracking, which would give rise
to ScalaNative and Off-heap libraries, to avoid unnecessary
performance overhead and latencies due to JVM garbage
collection in the light of some previous approaches [31].
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