
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Gentrification Gone too Far?
Affordable 2nd-Class Values for Fun and (Co-)Effect

Leo Osvald Grégory Essertel Xilun Wu Lilliam I. González-Alayón Tiark Rompf
Purdue University, USA: {losvald,gesserte,wu636,gonza304,tiark}@purdue.edu

Abstract
First-class functions dramatically increase expressiveness, at
the expense of static guarantees. In ALGOL or PASCAL,
functions could be passed as arguments but never escape
their defining scope. Therefore, function arguments could
serve as temporary access tokens or capabilities, enabling
callees to perform some action, but only for the duration of
the call. In modern languages, such programming patterns
are no longer available.

The central thrust of this paper is to re-introduce second-
class functions and other values alongside first-class entities
in modern languages. We formalize second-class values with
stack-bounded lifetimes as an extension to simply-typed λ
calculus, and for richer type systems such as F<: and systems
with path-dependent types. We generalize the binary first- vs
second-class distinction to arbitrary privilege lattices, with
the underlying type lattice as a special case. In this setting,
abstract types naturally enable privilege parametricity. We
prove type soundness and lifetime properties in Coq.

We implement our system as an extension of Scala, and
present several case studies. First, we modify the Scala Col-
lections library and add privilege annotations to all higher-
order functions. Privilege parametricity is key to retain the
high degree of code-reuse between sequential and parallel
as well as lazy and eager collections. Second, we use scoped
capabilities to introduce a model of checked exceptions in
the Scala library, with only few changes to the code. Third,
we employ second-class capabilities for memory safety in a
region-based off-heap memory library.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords first-class, second-class, types, effects, capabil-
ities, object lifetimes

1. Introduction
Modern programming languages offer much greater expres-
siveness than their ancestors from the 1960s and ’70s. Many
of the advancements that directly translate to programmer
productivity are the result of removing restrictions on how
certain entities can be used, and granting “first-class” status
to more and more language constructs.
Strachey [57] gave a taxonomy of first- and second-class
objects in 1967:

First and second class objects. In ALGOL a real
number may appear in an expression or be assigned
to a variable, and either may appear as an actual pa-
rameter in a procedure call. A procedure, on the other
hand, may only appear in another procedure call ei-
ther as the operator (the most common case) or as one
of the actual parameters. There are no other expres-
sions involving procedures or whose results are pro-
cedures. Thus in a sense procedures in ALGOL are
second class citizens—they always have to appear in
person and can never be represented by a variable or
expression (except in the case of a formal parameter).

Most modern languages have abolished these restrictions
and admit functions (or objects with methods) as first-class
citizens alongside integers and real numbers. Even conserva-
tive languages, like Java and C++, have added closures, al-
beit with some limitations. But uniformly replacing second-
class with first-class constructs1 is a process not unlike gen-
trification in urban development, where inexpensive living
space is transformed into posh condos in an effort of mod-
ernization, but ultimately leading to an undesirable situation
where inexpensive and restricted “second-class” constructs
are no longer available.

Why would programmers care? Second-class values in
the sense of ALGOL have the benefit of following a strict
stack discipline (“downward funargs”), i.e., they cannot es-
cape their defining scope. This makes them cheaper to im-
plement, but more importantly, phasing out second-class en-

1 Technically, many languages still distinguish between, e.g., normal func-
tions and closures, but most allow converting second-class to first-class val-
ues via eta-expansion, which effectively removes the distinction.

tities has eliminated some useful programming patterns and
static guarantees. Since first-class objects may escape their
defining scope, they cannot be used to represent static capa-
bilities or access tokens – a task that second-class values are
ideally suited to because they have bounded lifetimes and
they have to “show up in person”.

The central thrust of this paper is to re-introduce second-
class values alongside first-class entities in modern lan-
guages, and to demonstrate that this combination leads to
novel and elegant implementation techniques for desirable
static guarantees. The two key ideas for this combination are
as follows:

1. First-class functions may not refer to second-class values
through free variables

2. All functions must return first-class values, and only first-
class values may be stored in object fields or mutable
variables

Together, these rules ensure that second-class values do not
escape their defining scope.

In contrast to systems that expose a distinct category of
second-class functions, reference cells, or other entities, our
system supports objects of any type as second-class values.
This allows library developers to build more specific systems
on top of it.

The restrictions imposed on second-class values in our
system are similar to those on borrowed references [19, 33]
in ownership type systems, e.g., as implemented in Rust
[29]. However, two things set our work apart. First, we
illustrate that such restrictions have important benefits as a
programming model, orthogonal to the goals of ownership
types (controlling aliasing, ensuring uniqueness, preventing
race conditions, etc). Second, our system is straightforward
to formalize and integrate with existing languages and other
advanced type system features, something that is not true for
sophisticated ownership type systems.

We make the following individual contributions:

• We present a simple type system extension for second-
class values with stack-bounded lifetimes, as an exten-
sion of simply-typed λ-calculus. We prove type sound-
ness and lifetime properties in Coq (Section 3).
• We generalize our model to polymorphic type systems

such as F<: and calculi with path-dependent types of
the DOT family. We further generalize the binary first-
vs second-class distinction to an arbitrary privilege lat-
tice, with the underlying type lattice as a special case.
In this setting, abstract types naturally enable privilege
parametricity (Section 4).
• We implement our system as an extension of the Scala

language. Based on this implementation we present sev-
eral case studies (Section 5).
• We modify the Scala Collections library to annotate all

higher-order functions with privilege annotations. Priv-

ilege parametricity is key to retain the high degree of
code-reuse between sequential and parallel as well as
lazy and eager collections (Section 6).
• We introduce a model of checked exceptions in the Scala

standard library, using scoped capabilities. This is signif-
icant, because Scala had not adopted a checked exception
model in the past, mainly due to the difficulty of support-
ing effect polymorphism in the presence of generics, as,
for example, in Java (Section 7).
• We employ second-class capabilities for memory safety

in a region-based off-heap memory library (Section 8).

We discuss related work in Section 10 and conclude in
Section 11. Our Coq proofs and Scala implementation are
available from:

github.com/tiarkrompf/scala-escape

github.com/losvald/scala/tree/esc

2. Motivating Examples
To demonstrate the versatility and usefulness of our pro-
gramming model, we discuss a series of motivating exam-
ples. These are presented in Scala but would directly map to
other modern call-by-value languages.

Scoped Capabilities Many entities come with a lifecycle
protocol that guards access. For example, when accessing
a file or network connection, a program needs to open it,
and close it when it is done. Accessing a file after closing
it or forgetting to close a file is an error. A common and
extremely useful pattern is to associate the dynamic lifetime
of the access window with a lexical scope. In C++ this can be
realized with constructors and destructors for stack-allocated
objects, Python has with, Go has defer, and in Scala we can
define a higher-order function withFile that takes care of
opening and closing the file, delegating to a handler fn for
the actual processing:

def withFile[U](n: String)(fn: File => U): U = {

val f = new File(n); try fn(f) finally f.close()

}

Client code can use withFile as follows:
withFile("out.txt") { file => file.print("Hello, World!") }

Thus, file can be seen as a capability: to write data to disk,
we need to be given access to a File object via withFile,
and when withFile exits, this capability is revoked.

Unfortunately, in Scala, or any other language where file
is a first-class value, this programming pattern is merely a
convention, but nothing actually prevents file from being
accessed outside its lifetime window. This can lead to subtle
errors, undesirable exceptions, or potential security vulner-
abilities. Here are two easy ways to thwart the pattern, by
assigning the file to a mutable variable or by returning it as
result from the withFile block:

var f1: File = null; withFile(n) { f => f1 = f }

val f1: File = withFile(n) { f => f }

The file may also escape indirectly, through a closure:
val print: Str=>Unit = withFile(n) { f => (s => f.print(s)) }

github.com/tiarkrompf/scala-escape
github.com/losvald/scala/tree/esc

In addition, a programmer might call other functions from
within withFile which are unaware of the protocol, and
might attempt to store the File for later use.

Our solution is a type system extension that lets us define
file as a second-class value, and that ensures that such
second-class values will not escape their defining scope. We
introduce an annotation @local to mark second-class values,
and change the signature of withFile as follows:

def withFile[U](n: String)(@local fn: (@local File) => U): U

Now whatever handler is passed as callback fn has to be
a function that expects a second-class, non-escaping, argu-
ment. Note that the callback function fn itself is also re-
quired to be second-class, so that it can close over other
second-class values. This enables, for example, nesting calls
to withFile.

Since function types like (@local File) => U are so
common, we provide a shorter notation: File -> U:

def withFile[U](n: String)(@local fn: File -> U): U

Second-class values cannot be stored in mutable variables,
they cannot be returned from functions, and they cannot
be accessed by first-class (named or anonymous) functions
through free variables. Therefore, our earlier problem cases,
instead of failing at runtime, now produce compile-time
errors:

var f1: File = null; withFile(n) { f => f1 = f } // error

val f1: File = withFile(n) { f => f } // error

val print = withFile(n) { f =>

(s => f.print(s)) } // error

Second-Class Composes Can we still do anything useful
with second-class values? Yes, we can pass them to other
functions or methods that expect second-class arguments.
For example:

val data = new Data { def dump(@local f: File): Unit = ... }

withFile("out.txt") { f => data.dump(f) }

Inside the dump method, the same second-class restrictions
apply to the argument f as directly in a withFile block: f
cannot be stored, captured, returned, or otherwise escape its
scope.

In addition, functions with second-class arguments re-
main first-class values. This means that we can freely use
patterns such as decorators, currying, or η-expansion, on
them, as long as we do not capture any second-class argu-
ments. For example, we can capture data.dump in a closure,
and wrap it in some code that prints additional text:

def prettify(wrapped: File -> Unit): (File -> Unit) = { f =>

f.print("BEGIN ["); wrapped(f); f.print("] END")

}

val pretty = prettify(data.dump)

Note that variable f will not be allowed to escape. The result
of this transformation, pretty, is again a first-class function
that expects a second-class File argument. We can safely
store it wherever we like and use it at our convenience:

withFile("out") { f => pretty(f) }

Thus, by cleverly combining first- and second-class values,
we obtain safety without giving up expressiveness.

Higher-Order Functions and Second-Class Closures We
have seen above how second-class values cannot be captured
by first-class closures. Does this rule out the following code,
where a closure closing over file is passed to map?

withFile("out.txt") { file =>

List("Hell", "o, ", "World!") map { x => file.print(x) }

}

Not necessarily. We can define map in class List[T] to take
a second-class closure argument as follows:

class List[T] {

def map[U](@local fn: T => U): List[U] =

if (isEmpty) Nil else fn(head) :: tail.map(fn)

...

}

The key observation here is that map itself treats fn in a
strictly second-class way. The above snippet type-checks be-
cause the closure closing over file type-checks as a second-
class value, and second-class functions are allowed to refer
to other second-class values through their free variables.

One might wonder: would the same work with a lazy
collection such as Stream or Iterator?

Suppose we would like to print in a fashion that allows
for truncation of long lines and counting printed characters.
For that purpose, we define a function that returns an iterator
whose next() method prints a chunk and return its length:

def printingIter(ss: String*)(@local f: File): Iterator[Int] =

ss.iterator.map(s => { f.print(s); s.length })

It seems as though the following code might leak a file:
val chunkPrinter = withFile("out.txt") { file =>

printingIter("Hell", "o, ", "World!")(file)

}

chunkPrinter.next() // prints to a file (?)

Fortunately, this is impossible. Closing over a File argument
in printingIter would require Iterator’s map parameter to
be second-class, i.e.:
class Iterator[A] { self => // self is alias for this

def next(): A = ...

def map[B](@local fn: A => B) = new Iterator[B] {

def next(): B = fn(self.next()) // error: 1st-class next()

... // refers to 2nd-class fn

}

}

Consequently, the next method which accesses the mapping
function fn and in fact the whole Iterator object that is
returned from map would also need to be second-class, which
our type system disallows.

We discuss our modifications to the Scala Collections
library to deal with second-class values in detail in Section 6.

Implicit Capabilities as (Co-)Effects In the code above,
we have already regarded File objects as capabilities, guard-
ing access to their associated functionality, including print.
We can extend this model to other kinds of capabilities.
Opening a file and creating a File object should perhaps be
guarded by a general CanIO capability. Likewise, a second-
class throw function or a CanThrow object can embody the
capability to throw an exception:

def withFile[U](...)(implicit @local c: CanIO): U

def throw(e: Exception)(implicit @local c: CanThrow)

Using Scala’s implicit parameters, such capabilities need
not be passed explicitly. For a call like throw(e) to type-
check, it suffices to have a CanThrow capability in scope.

More generally, second-class values as capabilities enable
a radical new take on static effect checking: instead of mak-
ing effects explicit in the type of an expression, the capabil-
ities available in scope characterize the effects an operation
can have. Thus, it is instructive to compare this approach
with other methods of statically checking side effect behav-
ior, such as monads or traditional type-effect systems [16].

Monads and effect systems encode computational proper-
ties in the type of an expression, on the right of the turnstile;

G ` e : CanIO[T] (monad)

G ` e : T @canIO (effect type),

whereas our @local annotations are co-effects [40, 41], en-
coded on the left of the turnstile:

G, (@local c : CanIO), G′ ` e : T.

This is a subtle but important detail. The major benefits are
that the type of an expression remains standard and that it
allows for easier encoding of fine-grained information. In
particular, different capabilities, such as multiple open files,
can be present in the environment without interference, and
without picking an ordering:

def copyFile(@local src: File, @local dst: File): Unit = {

dst.print(src.readAll())

}

In further comparison, monads offer additional power by
abstracting over sequential composition through the bind
operator. It is well known that monads essentially corre-
spond to delimited continuations, and therefore easily en-
code patterns like non-determinism, probabilistic evaluation,
and so on. Our second-class values, by contrast, use the nor-
mal control flow of the existing language. Thus, continu-
ations need to be provided as an additional language fea-
ture to achieve comparable functionality. Monads further
encapsulate computation as first-class values. A similar ef-
fect can be achieved with second-class capabilities, by η-
expanding expressions that require capabilities in the envi-
ronment. A function (@local CanIO) => T can be seen as
roughly equivalent to the monadic CanIO[T].

Effect Polymorphism Second-class capabilities also pro-
vide an elegant solution to the effect polymorphism prob-
lem for higher-order functions such as map. By taking a
second-class function argument, the given definition of map
in List[T] is oblivious to what effect capabilities an ac-
tual argument closure uses. The effect (as in: required ca-
pabilities) of an expression map(f => ...) is exactly the ef-
fect of the function (f => ...). By contrast, type-and-effect
systems, such as Java’s checked exceptions or monads in
Haskell, require two implementations of map, one for pure
and one for impure/monadic function arguments.

Syntax
n ::= 1 | 2 1st/2nd class
t ::= c | xn | λxn.t | t t Terms
v ::= c | 〈H,λxn.t〉 Values
T ::= B | Tn

1 → T2 Types

G ::= ∅ | G, xn : T Type Envs
H ::= ∅ | H,xn : v Value Envs

G/H [≤n] = {xm : _ ∈ G/H | m ≤ n}

Operational Semantics H ` t ⇓n v

H ` c ⇓n c (ECST)

xm : v ∈ H [≤n]

H ` x ⇓n v
(EVAR)

H ` λxm.t ⇓n
〈
H [≤n], λxm.t

〉
(EABS)

H ` t1 ⇓2 〈H ′, λxm.t3〉 H ` t2 ⇓m v2
H ′, xm : v2 ` t3 ⇓1 v3

H ` t1 t2 ⇓n v3
(EAPP)

Type System G ` t :n T

G ` c :n B (TCST)

xm : T ∈ G[≤n]

G ` x :n T
(TVAR)

G[≤n], xm : T1 ` t :1 T2

G ` λxm.t :n Tm
1 → T2

(TABS)

G ` t1 :2 Tm
1 → T2

G ` t2 :m T1

G ` t1 t2 :n T2

(TAPP)

Figure 1. λ1/2: Syntax, Operational Semantics, and
Type System

That it could be possible to build general-purpose effect
systems based on implicit capabilites has been suggested
previously by Odersky [36]. We present the first instantiation
of such a system, as a case-study on effect-tracking for
checked exceptions in Section 7.

3. Formal Development
We develop our theoretical foundation as an operational se-
mantics for a λ-calculus with first- and second-class bind-
ings and evaluation, along with a sound type system that en-
forces stack-based lifetimes for second-class bindings.

3.1 Dynamic Semantics

We formalize our model as an extended λ-calculus λ1/2,
where first-class and second-class identifiers use different
binding forms x1 and x2. These correspond to names with-
out and with @local annotations from Section 2. The syn-
tax, operational semantics, and type system for this λ1/2

calculus is shown in Figure 1. The semantics is defined in
big-step call-by-value style with explicit closures. We can
think of evaluation as being split between two judgements
H ` t ⇓1 v and H ` t ⇓2 v for first-class and second-
class evaluation, respectively, or as one parameterized judge-
ment H ` t ⇓n v. An auxiliary definition H [≤n] restricts
H to bindings of names xm with m ≤ n. For identifiers,
first-class evaluation requires a first-class identifier (Evar).
For abstractions, first-class evaluation removes all second-
class identifiers from the environment that is to be stored
in the closure, rendering them inaccessible (Eabs). For ap-
plications, the function itself is evaluated second-class, the
function body is always evaluated first-class, and for the ar-
gument, it depends on whether the formal parameter is a
first-class or second-class symbol (Eapp). These evaluation
rules formalize the key ideas stated earlier for combining
first-class and second-class values in the same language.

3.2 Mechanized Implementation

To prove various properties of our system, we have mech-
anized it in Coq. For this implementation, we had to pick
a representation of bindings and environments. We chose a
representation based on DeBrujin levels, where names are
numeric indexes into the environment, from outermost to in-
nermost. In this setting, we assume that all names x in the
program are annoted as x1 or x2. This structure is canonical
taking the environment bindings as a well-formedness con-
dition. To model the two kinds of bindings for x1 and x2, as
well as the restriction operator H [≤n], we found it useful to
implement environments as triple H = (H1, H2, k), where
H1 holds the x1 bindings, H2 holds the x2 bindings, and
k is a lower bound on the accessible bindings in H2. The
last bit deserves some further explanation. We can picture
an environment H as

H = {v11 , . . . , v1m}, {v21 , . . . , v2k−1︸ ︷︷ ︸
inaccessible

| v2k, . . . , v2n}

where the vertical bar | is at position k in the list of x2

bindings, denoting that only binding to the right of it, i.e., for
names represented by DeBrujin levels≥ k are valid indexes.
Restricting H to H [≤1] moves the bar k all the way to the
right, disabling all existing second-class bindings:

H [≤1] = {v11 , . . . , v1m}, {v21 , . . . , v2k−1, v2k, . . . , v2n︸ ︷︷ ︸
inaccessible

|}

However, new second-class bindings can be added to the
right. A restrictionH [≤2] leaves the environment unchanged.

This representation, which preserves the structure of en-
vironments, considerably simplifies the proofs, as we do not
need to worry about substitution or reasoning about sets of
names. A variation would be to use DeBrujin indexes, i.e.,
to index environments from the right instead of the left. This
removes the need for a numeric bound k at this point, at
the expense of complicating developments for type systems
with abstract types, which require shifting of indexes when
moving type variables across contexts.

To prove properties about evaluation, such as type sound-
ness, we follow the technique of Siek [55] and Ernst, Os-
termann and Cook [13], which consists in extending a big-
step operational semantics ⇓ to a total evaluation function
eval by adding a numeric fuel value and explicit Timeout
and Error results:

r ::= Timeout | Done (Error | Val v)

The fuel value can serve as induction measure.

3.3 Lifetime Properties

Based on this high-level semantics, which is just an anno-
tated simply-typed λ-calculus, we prove that second-class
values exhibit the expected second-class characteristics. In
particular, we show that the lifetimes of second-class values
follow a stack discipline. To do this, we define a lower-
level operational semantics H,S1..Sk ` t ⇓ns v, shown
in Figure 2, that again splits environments into first-class
and second-class parts, but in addition maintains a stack of
second-class environments through all function calls. Clo-
sures contain a first-class environment but only a stack
pointer to represent the second-class part. When invoking
a closure, the stack pointer will be used to find the cor-
rect caller environment Si in which to resolve the callee’s
free second-class variables. This Si will become the new
top stack frame. If the stack pointer is 0, as is the case for
first-class functions, the empty environment will be used.
Function arguments will be either added to the environment
(first-class) or to the top stack frame (second-class).

We define a predicate wfn to define well-formedness of
values v and classify them as first- or second-class value. An
environment can be first or second-class, only if all elements
are well-formed first- or second-class values, respectively.
Well-formed first-class values include exactly the constants
c and closures with no second-class references: wf 1 c and
if wf 1 H , then wf 1 〈H, 0, λxn.t〉. Well-formed second-class
values are all well-formed values, since first-class values are
also second-class. The abstractions need to have a first-class
environment heap reference: wf 1 H , then wf 2 〈H, i, λxn.t〉.
Lemma 3.1. Evaluation produces only well-formed values:

wf 1 H wf 2 S1..Sk H,S1..Sk ` t ⇓n v
wf n v

Proof. By induction on the derivation.

Syntax
n ::= 1 | 2 1st/2nd class
t ::= c | xn | λxn.t | t t Terms
v ::= c | 〈H, k, λxn.t〉 Values
H ::= ∅ | H,x1 : v Value Envs
S ::= ∅ | S, x2 : v Stack Frames

Operational Semantics H,S1..Sk ` t ⇓ns v

H, S1..Sk ` c ⇓ns c (ECST)

x1 : v ∈ H, ∅
H,S1..Sk ` x1 ⇓1s v

(EVAR1)

xm : v ∈ H,Sk

H,S1..Sk ` xm ⇓2s v
(EVAR2)

H,S1..Sk ` λxm.t ⇓1s 〈H, 0, λxm.t〉 (EABS1)

H,S1..Sk ` λxm.t ⇓2s 〈H, k, λxm.t〉 (EABS2)

H,S1..Si..Sk ` t1 ⇓2s
〈
H ′, i, λx1.t3

〉
H,S1..Si..Sk ` t2 ⇓1s v2

(H ′, x1 : v2), S1..Si..Sk, Si ` t3 ⇓1s v3
H,S1..Sk ` t1 t2 ⇓ns v3

(EAPP1)

H,S1..Si..Sk ` t1 ⇓2s
〈
H ′, i, λx2.t3

〉
H,S1..Si..Sk ` t2 ⇓2s v2

H ′, S1..Si..Sk, (Si, x
2 : v2) ` t3 ⇓1s v3

H,S1..Sk ` t1 t2 ⇓ns v3
(EAPP2)

Figure 2. λ
1/2
s : Syntax and Operational Semantics

This result establishes that first-class evaluation can only
yield values that contain no stack references. The interesting
case in the proof is in (Eapp1), when H is extended with
a new binding. We know by induction that the new value
is well-formed, too. Thus, we can establish the following
stronger result.

Theorem 3.2. Evaluation never leaks stack references: If
wf 1 H , then for all H ′ encountered in a derivation of
H,S1..Sk ` t ⇓n v, we have wf 1 H ′.

Proof. By induction on the derivation, and Lemma 3.1.

We now define equivalence relations ∼ between values
and environments from λ1/2 and λ1/2s , respectively. In order
to make the notation clearer, the environment of λ1/2 will
be explicitly (H1, H2) and the closures

〈
H1, H2, λxn.t

〉
.

For λ1/2s , closures take the shape 〈H, i, λxn.t〉. Equivalence
between values is with respect to a stack S1..Sk. The key

case for closures looks up the correct stack frame given the
stack pointer:

S1..Si..Sk ` (H1, H2) ∼ (H,Si)

S1..Si..Sk `
〈
H1, H2, λxn.t

〉
∼ 〈H, i, λxn.t〉

With these correspondences at hand, we can show that the
total formulations of the high-level semantics ⇓n and low-
level semantics ⇓ns , evaln and evalns , are equivalent.

Theorem 3.3. The fully environment-based and (second-
class) stack-based semantics are equivalent. For all k,

S1..Sk ` (H1, H2) ∼ (H,Sk)

S1..Sk ` eval nk (H1, H2) t ∼ eval n
s k (H,S1..Sk) t

Proof. By induction on the fuel value k.

Using evaln and evalns instead of ⇓n and ⇓ns in the
proofs yields a result that includes equivalent error and di-
vergence behavior. Importantly, the result holds for empty
environments, as (∅, ∅) ∼ (∅, ∅).

Corollary 3.4. The lifetimes of second-class bindings in
λ1/2 follow a stack discipline.

From this result follows that a realistic implementation
can use the more efficient stack-based semantics as a basis,
and also that second-class values can be used as temporary
access tokens.

3.4 Type System and Static Checking

Having defined the correct desired runtime behavior, we
would like to be able to rule out erroneous executions stati-
cally. To this end, we define a type system for λ1/2, shown
in Figure 1, and prove it sound with respect to the given op-
erational semantics. The syntax of types contains a function
type Tn

1 → T2 where n distinguishes second-class and first-
class parameters, respectively.

Type assignment aims to mirror the operational seman-
tics. Again the rules can be read as two judgements, G `
t :1 T and G ` t :2 T for first-class and second-class type
assignment, or as one parameterized judgementG ` t :n T .
For identifiers, first-class typing requires a first-class identi-
fier (Tvar). For abstractions, first-class typing removes all
second-class identifiers from the environment and all func-
tion bodies are treated as first-class (Tabs). For applications,
the function itself is second-class, and the formal parameter
type decides the type assignment of the argument (Tapp).

For the proof of type soundness, we follow the technique
of Siek [55]. We need straightforward auxiliary judgements
v :n T that assign types to runtime values and G � H
that establishes consistency between type and value environ-
ments.

Theorem 3.5. The type system is sound with respect to the
operational semantics: for all k, if eval does not time out,
its result is also not stuck, and the result is well typed.

G ` t :n T G � H eval nk H t = Done r
r = Val v v :n T

Proof. By induction on the fuel value k, and case analysis
on the term t, using helper lemmas to establish soundness of
environment lookup.

This result implies that “well-typed programs don’t go
wrong”, i.e., that all runtime failures are transformed into
compile errors. This includes failures caused by trying to
access second-class values that have been removed from an
environment via a H [≤n] operation.

Corollary 3.6. All well-typed programs are guaranteed to
respect stack-based lifetimes for second-class values.

This basic model based on simply-typed λ-calculus cap-
tures the essence of combining first- and second-class values
in a single language, and it already enables us to write inter-
esting programs with second-class capabilities. The motivat-
ing examples from Section 2 are almost entirely expressible
with just the λ-calculus fragment, except for some simple
uses of parametric types, and of course assuming that we
access to the filesystem. However, we can gain additional
expressiveness by moving to richer type systems, as we mo-
tivate and formalize next.

4. Extension to Richer Types
We now move beyond simply-typed λ-calculus as a base cal-
culus. Our motivation is twofold. First, we would like to gain
confidence that our model scales to realistic languages, in
particular Scala, since this is the testbed for our case studies.
Second, we show that specific features, such as subtyping
and path-dependent types, enable interesting programming
patterns with second-class capabiliites.

Parametric Polymorphism In a realistic language, we
clearly want some form of parametric polymorphism to sup-
port generic data structures, and we could base our model
on System F instead of λ-calculus without much difficulty.
For second-class capabilities, there are also many specific
use cases: for example, an exception throwing capability
CanThrow can be refined to designate specific kinds of excep-
tions it enables to throw by using CanThrow[IOException],
CanThrow[NullPointerException], and so on.

Subtyping Subtyping is specifically useful to create hier-
archies of capabilities, some more general than others. For
example, instead of a simple CanIO capability, we can envi-
sion a hierarchy as follows:

type CanIO // unspecific IO

type CanDisk <: CanIO // local filesystem

type CanNet <: CanIO // network send/receive

type CanHadoop <: CanNet // remote filesystem

Using advanced language features like mixin-composition,
reflected as intersection types on the type level, we can cre-
ate and request capabilities like CanDisk & CanHadoop that

enable sets of functionality as a whole, and specific capa-
bilities can be masked via up-casts; for example, treating a
CanDisk & CanHadoop capability as its supertype CanNet.

Path-Dependent Types In Section 2, we have used second-
class File objects directly as capabilities. Sometimes this is
undesireable, for example, when only parts of the function-
ality of File objects should be guarded by a capability. For
those cases, we can use path-dependent types to associate an
external capability with a specific file object, and require this
capability only for some of the operations:

class File(val path: String) {

type Cap

def read(implicit @local c: Cap): String = ...

}

Each File object now has an abstract type member Cap,
and reading the file requires a second-class capability of that
type. The File’s path, by contrast, can be used freely without
accessing the filesystem, and extracting it hence does not
require the file to be opened.

Method withFile now introduces both the file, which is
first-class, and the implicit capability c, which is second-
class and has type file.Cap, i.e., a path-dependent type
referencing a specific file object. Here is a possible usage
scenario:

val usedFiles = new ArrayBuffer[File]()

withFile("out.txt") { file => implicit c =>

usedFiles += file

... file.read() ... // ok, capability available

}

println("this program used the following files:")

for (f <- usedFiles)

println(f.path)

This means that we can freely let the file object escape,
knowing that we will not be able to read from it outside of a
withFile scope without the capability. We make key use of
a similar model in our case study on region-based memory
(Section 8) and for checked exceptions in the presence of
parallel collections (Section 7).

4.1 Formal Model

We have shown why we want richer type systems than λ-
calculus as our base. We could extend System F for para-
metric polymorphism alone, or F<: for parametric polymor-
phism plus subtyping. But in order to cover all the fea-
tures we want, including path-dependent types, we base our
exposition on the DOT (Dependent Object Types) calcu-
lus [2, 48, 49], that has been proposed as a foundation for
Scala’s type system. More precisely, we use a slightly re-
stricted variant of DOT called D<: [48], which encodes F<:

in a relatively straightforward way, and which we extend to
D1/2

<: .

System D<: is at its core a system of first-class type ob-
jects and path-dependent types. Type objects can be seen
as single-field records containing an abstract type member.
Type selections, or path-dependent types serve to access
these abstract type members.

Syntax

T ::= ⊥ | > | Type T..T | x.Type | (xn : T)→ T
t ::= x | Type T | λxn.t | t t
Γ ::= ∅ | Γ, xn : T

v ::= 〈H,λxn : T.t〉 | 〈H,Type T 〉

Subtyping Γ ` S <: U

Γ ` ⊥ <: T (SBOT)

Γ ` x : Type T..>
Γ ` T <: x.Type

(SSEL1)

Γ ` T <: > (STOP)

Γ ` x : Type ⊥..T
Γ ` x.Type <: T

(SSEL2)

Γ ` x.Type <: x.Type (SSELX)

Γ ` S2 <: S1 , U1 <: U2

Γ ` Type S1..U1 <: Type S2..U2

(SSELAX)

m2 ≤ m1

Γ ` S2 <: S1

Γ, x : S2 ` U1 <: U2

Γ ` (xm1 : S1)→ U1 <: (xm2 : S2)→ U2

(SALL)

Type assignment Γ ` t : T

xm : T ∈ Γ[≤n]

Γ ` x :n T
(TVAR)

Γ ` Type T :n Type T..T (TTYP)

Γ[≤n], xm : T1 ` t2 :1 T2

Γ ` λxm.t2 :n (xm : T1)→ T2

(TABS)

Γ ` t :2 (xm : T1)→ T2 , y :m T1

Γ ` t y :n T2[y/x]
(TDAPP)

Γ ` t :2 (xm : T1)→ T2 , t2 :m T1

Γ ` t t2 :n T2

(TAPP)

Γ ` t :n T1 , T1 <: T2

Γ ` t :n T2

(TSUB)

(runtime sybtyping and value type assignment not shown)

Figure 3. System D1/2
<: : a generalization of F<: with

value types and path-dependent types.

The syntax and typing rules are shown in Figure 3. The
type language includes ⊥ and >, as least and greatest el-
ement of the subtyping relation, first-class abstract types
(Type T1..T2), lower-bounded by T1 and upper bounded by
T2, type selections on a variable x.Type (i.e., path-dependent
types), where x is a term variable bound to a type object,
and finally dependent function types (xn : T) → T . The
term language includes variables x, creation of type objects
(Type T), λ-abstractions λxn.t, and applications t1 t2.

The subtyping relation can compare type selections with
the bounds of the underlying abstract types, and compare
type objects and dependent functions, respectively. Type as-
signment contains fairly standard cases for dependent ab-
straction and application.

To relate System D<: to Scala, let us take a step back and
consider two ways to define a standard List data type:

class List[E] // parametric, functional style

class List { type E } // modular style, with type member

The first one is the standard parametric version. The second
one defines the element type E as a type member, which
can be referenced using a path-dependent type. To see the
difference in use, here are the two respective signatures of a
standard map function:

def map[E,T](xs: List[E])(fn: E=>T): List[T] = ...

def map[T](xs: List)(fn: xs.E=>T): List & { type E=T } = ...

Again, the first one is the standard parametric version. The
second one uses the path-dependent type xs.E to denote the
element type of the particular list xs passed as argument,
and uses a refined type List & { type E=T } to define the
result of map.

It is easy to see how the modular surface syntax directly
maps to the formal D<: syntax, if we express fully ab-
stract types { type E } as (Type ⊥..>) and concrete type
aliases { type E=T } as (Type T..T). It is also important
to note that the modular style with first-class type objects
can directly encode the functional style, which corresponds
to bounded parametric polymorphism as in System F<:, but
with increased expressiveness due to the ⊥ type and poten-
tial lower bounds on type variables.

First-Class and Second-Class Values Since the stratifica-
tion between first- and second-class values happens on the
level of identifiers and bindings, not types, parametric poly-
morphism does not pose major difficulties. Still, moving to
a system based on subtyping requires an additional result:

Lemma 4.1. First-class values can be treated as second-
class values:

H ` t ⇓n v n ≤ m
H ` t ⇓m v

G ` t :n T n ≤ m
G ` t :m T

Proof. By induction over the respective derivations, showing
that the evaluation and type assignment rules for second-
class values subsume those for first-class values.

This result entails that one can admit coercions from first-
class to second-class values, and thus eta-expand t of type
T 2
1 → T2 to λx1.t x1 of type T 1

1 → T2. Thus, we can define
a subtyping relation that justifies T 2

1 → T2 <: T 1
1 → T2.

The operational semantics for D1/2
<: is the same as for

λ1/2, with an additional rule for construction of type values:

H ` Type T ⇓n 〈H,Type T 〉

We can prove type soundness using the same overall tech-
nique as for λ1/2. The proof follows the one given for D<:

by Rompf et al. [48].

Theorem 4.2. Type soundness for D1/2
<: . If eval does not

time out, it returns a well-typed value:

Γ ` t :n T Γ � H eval nk H t = Done r
r = Val v H ` v :n T

Proof. By induction on the fuel value k.

4.2 Arbitrary Privilege Lattice

The model presented so far enables us to control the lifetimes
of capabilities, but in many settings, not all capabilities have
the same status. What if we want to have a more control
over the relative visibilities of capabilities, while ensuring
their non-escaping status as non-first-class values? Suppose
we want to prevent race conditions or out-of-order writes
when a file is passed to a non-deterministic higher-order
function such as a parallel reduce operation, yet allow non-
deterministic reads, which are far less dangerous:

withFile("file.txt") { f =>

f.readCharAt(0) // ok

f.print(...) // ok: deterministic context

reduce(data) { (a,b) =>

f.readCharAt(a) // ok

f.print(...) // error: race condition

a+b

} }

To model such scenarios, we need to treat capabilities
for reading and writing differently. We informally intro-
duce a degree of “second classiness”, which we achieve
by parameterizing @local as @local[P], where P denotes a
privilege level and is in contravariant position. Implicitly,
a @local annotation denotes the most restricted privilege
level, while its absence denotes no restrictions (first class).
In general, annotating a function parameter with @local[P]

requires each free reference of a passed closure to be an-
notated with @local[T], for some T <: P. In Scala, we can
represent privileges directly as types, and their relationships
via subtyping: @local[Nothing] denotes first-class, equiv-
alent to no annotation, and @local[Any] denotes second-
class, equivalent to just @local, and any other type P defines
a level inbetween.

We now exploit this mechanics to implement the example
above. The key is that files themselves will live at a less
restricted (i.e. smaller) level than write capabilities:

trait R // privilege level >: Nothing (1st) and <: Any (2nd)

class File(val path: String) {

def print(s: String)(implicit @local w: CanWrite) { ... }

def readCharAt(i: Int) = { ... }

}

def withFile[U](...)(@local fn: (@local[R] File) => U): U

def reduce[U](...)(@local[R] fn: (U,U) => U)

We introduce a privilege level R inbetween first- and second-
class and implement withFile to make file objects available
at this new level. In the simplest model, files serve as their
own read capabilities, but the print method requires an
additional second-class CanWrite capability.

Method reduce takes its function argument as @local[R],
so files can be accessed from the closure, but truly second-
class objects and in particular write capabilites will be pre-
cluded. A single global CanWrite capability is all that is left
to complete the example.

As an alternative, we can model read and write capabili-
ties specific to a given file as path-dependent types, extend-
ing the example from the beginning of Section 4:

class File(val path: String) { // path-dependent

type CapW <: CanIO; type CapR <: CanIO // capabilities

def print(s: String)(implicit @local w: CapW) { ... }

def readCharAt(i: Int)(implicit @local[R] r: CapR) = ... }

}

In this model, the definition of withFile needs to introduce
both the CapR and the CapW objects as separate “fractional”
[7] capabilities, with different privilege levels:

withFile(path) { f => implicit cr => implicit cw => ... }

One could go further and require unequal privilege for
sequential reads or random-access writes, thus extending the
privilege lattice to more than three levels.

Formal Model We generalize the binary first- vs second-
class distinction to an arbitrary privilege lattice L. We re-
quire a Galois connection γ, α between L and the lattice
{1, 2}≤, which maps > to 2 and ⊥ to 1 via its concretiza-
tion function γ. All values except > and ⊥ can be mapped
to either 1 or 2. In the limit, where everything except ⊥ is
mapped to 2, the previous second-class lifetime guarantees
extend to all non-first-class bindings:

>

.

⊥

2

1

γ/α

While picking specific static lattices may be of interest,
the key application relies on a much more general insight:
in a system with subtyping, we can use the underlying type
lattice as privilege lattice.

In the case of D1/2
<: and similar systems, we can use the

types ⊥ and > to denote first- and second-class values, re-
spectively. Any desired privilege lattice can be built within
a program from phantom types that are in a correspond-
ing sybtyping relation. As already discussed, in Scala, we

achieve this by parameterizing @local as @local[P], where
@local[Nothing] denotes first-class, equivalent to no an-
notation, and @local[Any] denotes second-class, equivalent
to just @local. Any other Scala type P must be inbetween
Nothing = ⊥ and Any = >, and gives rise to a more fine-
grained lattice structure, subject to existing subtyping rela-
tions between T and other types.

To make this change explicit in the context of the formal
model in Figure 3, interpret all m as types and replace all
occurrences of m1 ≤ m2 with m1 <: m2.

Privilege Parametricity It is sometimes desirable to ab-
stract over the level of privilege in order to prevent code
duplication and keep an existing interface unmodified. If a
type system includes abstract types, as is the case in D1/2

<:

and in Scala, abstract types naturally enable such privilege
parametricity. This means that we can abstract over whether
a variable holds first-class or second-class values in a more
specific context. The main motivation here is code reuse: we
need to write a function or class only once, and we can use
it with both first-class and second-class instantiations.

A key use case comes from our handling of the Scala
collection library in Section 6. We have already mentioned
that method map should behave differently for eager and lazy
collections:

@local def println(x: Any): Unit = ...

list.map(x => println(x)) // ok

stream.map(x => println(x)) // error

Thus, these collection implementations need to have differ-
ent signatures for map:

def map[B](@local fn: A => B) = ... // eager

def map[B](fn: A => B) = ... // lazy

Lazy collections like Stream[A] may leak the closure argu-
ment to map, and therefore it needs to be first-class. Con-
versely, for eager collections like List[A], we would like a
second-class closure argument.

How can we achieve that List[A] and Stream[A] can
be derived from a common superclass? We use @local[LT]

in the generic map signature, where LT is an abstract type
parameter defined in base class Iterable[A], and refined
to Nothing or Any (first- or second-class) for specific sub-
classes:

// Abstract base class:

trait Iterable[A] {

type LT

type plocal = local[LT]

def map[B](@plocal fn: A => B)

}

// Implementation classes:

class List[A] extends Iterable[A] {

type LT = Any

def map[B](@local fn: A => B) = {

// implement eager version here

} }

class Stream[A] extends MySeq[A] {

type LT = Nothing

def map[B](fn: A => B) = {

// implement lazy version here

} }

This design enables the desired usage patterns shown above.
As we can see, abstract base classes can have abstract

privileges that are instantiated to second- or first-class in im-
plementation subclasses. In Section 6, we will discuss code
sharing between collections further and demonstrate that we
can indeed share large pieces of the internal implementation
in our modified version of the Scala library.

4.3 Recursive Functions

Our development so far did not consider recursive func-
tions. Adding recursion does not pose particular difficulties.
The simplest and most practical implementation of recursive
functions extends rule (Eapp) from Figure 1 to pass the clo-
sure object itself as argument to the function. The λ syntax
is extended to include the self identifier fk where k denotes
first- or second-class binding as usual:

H ` t1 ⇓k v1
v1 =

〈
H ′, λfk(xm).t3

〉
H ` t2 ⇓m v2

H ′, fk : v1, x
m : v2 ` t3 ⇓1 v3

H ` t1 t2 ⇓n v3
(EAPP)

Note that this modified (Eapp) rule is no longer determin-
istic, as the evaluation rule for the function needs to match
the class of the closure type. A simple way to make the
rule deterministic in the formalism is to extend the syntax
of function application to determine if the function is first-
or second-class: tk1 t2.

For a realistic implementation, this piece of information
can easily be extracted from the type assigned to expression
t1. In this setting, recursive functions are also related to the
treatment of objects and this pointers, as we will discuss.

5. Implementation in Scala
We have implemented a plug-in for the Scala compiler that
closely implements the formal system described in Section 3
and Section 4. Given the nature of the Scala language, and
the structure of the Scala compiler, a number of aspects
needed additional work. First, Scala is a large language with
many constructs in addition to λ-calculus and D<:. In partic-
ular, objects, classes, traits, and separate compilation posed
some challenges. Second, the Scala compiler is structured
around a global, hierarchical symbol table as opposed to
flat environments, so the formal model of removing certain
bindings required different implementation techniques, e.g.,
traversing scope chains to find common ancestors.

To implement the API introduced in Section 2, we define
a class local as a piece of library code, which the compiler
plug-in knows about:

package scala.util

class local[-T] extends StaticAnnotation

This class can be used as annotation on declarations:
@local val log = new File("out.txt")

Since the type parameter T is contravariant, writing @local

is equivalent to @local[Any], which denotes a second-class

binding. By contrast @local[Nothing] denotes a first-class
binding, equivalent to no annotation at all. Any type between
Nothing and Any can be used for finer-grained control, and
an abstract type can be used to abstract over the class of
binding (Section 4.2).

Scala’s first-class functions map to anonymous classes
that implement a given base trait Function1, with the usual
A=>B notation as type alias:

trait Function1[-A,+B] {

def apply(x:A): B

}

type ’=>’[-A,+B] = Function1[A,B]

To model functions with second-class arguments, we pro-
vide a subtrait FunctionEsc1:

trait FunctionEsc1[-A,+B,-LA,+LS] extends Function1[A,B] {

@local[LS] def apply(@local[LA] x:A): B

}

type ’->’[-A,+B] = FunctionEsc1[A,B,Any,Nothing]

If A->B is the expected type for some closure expression
(x => ...), the Scala compiler will automatically synthe-
size a corresponding object creation with the right signature.

Compared to the theoretical model, we need to worry
about objects, traits, and classes in addition to lexical func-
tions. These object-oriented constructs have a more compli-
cated scope structure due to inheritance. Our current imple-
mentation is conservative and focuses primarily on the lex-
ical level. Class definitions are treated like first-class func-
tions and cannot access second-class values from their defin-
ing scope. The following code is thus illegal,

@local val log = ...

class Handler {

def func() = log.println("A") // error

}

val a = new Handler; a.func()

but the same functionality can be implemented like this:
@local val log = ...

class Handler {

def func(@local val log: File) = log.println("A")

}

val a = new Handler; a.func(log)

We plan to extend our implementation with a notion of
@local classes, once all the implications are worked out.
This would enable writing the same code snippet above as
@local class Handler. In practice, we have not found the
absence of such a facility limiting.

A key goal of this implementation was to investigate how
well second-class values map to real world Scala code. To
this end we conducted several case studies, described next.

6. Case Study: Scala Collections
The cornerstone of the Scala standard library is its set of col-
lection classes, supporting a variety of sequence data struc-
tures (List, Array, ...), as well as Sets, Maps and so on.
Methods to traverse and transform collections use higher-
order and first-class functions pervasively, making Scala
Collections an excellent testbed to evaluate the expressive-
ness of our implementation of second-class values. The goal
of this experiment is to assess how precisely we can model

second-class behavior for functions passed as arguments. As
described in Section 2, we would like a standard List.map

call to treat its argument function in a second-class way,
whereas a distributed or lazy collection would demand a
true first-class function.

The key problem is that, for example, List is eager but
Stream is lazy, and Array is sequential but ParArray is par-
allel. Yet, all the classes share the same base class hier-
archy [44]. Most functionality is implemented only once,
and reused among leaf classes. The Scala Collections li-
brary already has a large number of classes and traits
(GenTraversableOnce, IterableLike, ...), so that adding
another dimension to distinguish eager and lazy collections
would not work well.

The solution we found makes crucial use of privilege
parametricity. To handle lazy and eager collections in a uni-
form way, we use @local[LT], where LT is an abstract type
parameter defined in a base class, that can be instantiated
to Nothing or Any (first- or second-class) depending on the
collection type. The corresponding code has been shown al-
ready in Section 4.2.

Note that method foreach, in contrast to map is eager for
all collections. It uses @local directly instead of @plocal.
Note further that we have omitted the return type of map

above. In practice the situation is slightly more complicated,
as transformer methods on collections use F-bounded poly-
morphism to return an instance of the same class (or a com-
patible one) as the object itself.

Evaluation We have achieved the abovementioned behav-
ior without any code duplication or addition of new types,
by changing <1%2 of SLOC in the Scala Collections API,
comprising 29310 SLOC total. Out of the 277 lines changed,
over 75% are global search-replace that inserts @local an-
notations. The main challenge was to propagate the type-
dependant type LT and deal with *Proxy[Like] traits (which
we eventually removed as they are deprecated anyway).

7. Case Study: Checked Exceptions
Given our modified version of the Scala Collections library,
whose higher-order traversal and transformer methods cor-
rectly track first-class and second-class arguments, we would
like to put these facilites to some good use. We have already
seen how we can model operations, like println, as second-
class functions. These serve as capabilities and control when
and where the associated operation and its side effect can
happen. Thus, the question bears asking whether we can use
the same model for more general classes of side effects.

We have extended the Scala Library further, with a notion
of checked exceptions. Checked exceptions can be seen as an
instance of a type-and-effect system [16], and in fact, Java’s
support for checked exceptions is probably the only type-
and-effect system in practical use today. The key idea is to
include the side effects of an expression in its type. However,

2 Only meaningful lines of code, i.e., not Scala docs, were counted.

a fundamental trade-off between usefulness (larger, more
precise types) and usability (smaller, more comprehensible
types) makes such effect systems hard to use in practice.

In our case, exceptions might only be allowed to be
thrown if an appropriate throw function is available, and
we would like to enforce that this can only happen within
a try/catch block. With our support for second-class values,
we can define try blocks as follows:

def try[T](fn: (@local Exception => Nothing) => T): Option[T]

A realistic implementation would also contain a catch

block, but here we content ourselves with returning Option[T]

values. Given the definition of fn’s parameter as local,
client code may use try as follows,

try { throw =>

throw(new Exception) // ok: throw cannot escape

}

but the function passed as argument to try cannot leak the
value of throw. Inside such a try block we can use throw

in other safe (i.e., second-class) positions but not in unsafe
ones, where it could escape:

def safe(@local fn: () => Any): Int = ...

def unsafe(fn: () => Any): Int = ...

try { throw =>

safe { () => throw(new Exception) } // ok: safe

unsafe { () => throw(new Exception) } // not ok

}

Effect Polymorphism It is easy to see that we have utilized
the same pattern in safe as in the previous definition of map
on Lists. In fact, the following code is perfectly legal:

try { throw =>

map(xs) { x =>

if (x > 0) x else throw(new Exception)

}

}

As we would expect, we can use throw in nested second-
class functions within the dynamic scope of try but not as a
first-class value that might escape.

It is important to note that we are using the same map

implementation independently of whether the function we
are passing as argument may throw an exception or not.
This would not be the case with monads or with Java’s
checked exceptions, where the following two different map
declarations would be needed (example from Rytz [54]):

public <U> List<U> map(Function <T, U> f);

public <U, E extends Exception> List<U>

mapE(FunctionE<T, U, E> f) throws E;

Similar effect polymorphism can also be achieved in the
context of type-and-effect systems but with significant effort
[54, 53].

Implicit Capabilities It is also worth noting that we do not
have to use the object throw itself as a capability. We might
as well define the throw method globally and have it require
an additional argument of a designated capability type.

def throw(e: Exception)(implicit cap: CanThrow): Unit = ...

In fact, it has been proposed to use such a pattern for more
flexible handling of side effects in general [36], for example:

def println(s: String)(implicit @local cap: CanIO): Unit = ...

As we will see below, this pattern is especially useful when
the main object in question needs to be first-class for some
other reason. In Scala, parameters declared as implicit will
have the arguments resolved and inserted automatically by
the compiler, so one can write

throw(new Exception)

and the Scala compiler would automatically insert cap as the
missing capability argument for throw from the context.

In summary, scoping rules for second-class values ensure
that such objects cannot be copied, stored, or escape by other
means, which makes them ideally suited to serve as access
tokens or capabilities. With effect capabilities as regular
program values, specifying new classes of effects becomes
almost trivial, an important benefit for expressive libraries
and embedded DSLs (domain-specific languages).

Parallel Collections A subtlety that arises from the in-
herently blocking nature of parallel operations has a rather
unexpected implication with respect to effects. Since a
blocking thread may be interrupted, it needs to handle an
InterruptedException, which means that all parallel col-
lection operations need the exception-throwing capability
CanThrow. There are two choices: a pragmatic one, merely
converting InterruptedException to RuntimeException;
or the rigorous one, requiring a proper capability. We went
with the latter, to investigate the effort of propagating ex-
ception capabilities, thus stress-testing our type system. To
accommodate this without breaking the API, we exploit ab-
stract types, type bounds and implicit default arguments:

type CanSeq // non-parallel dummy capability

type CanPar <: CanSeq with CanThrow

trait GenIterable[A] { // common super-trait

type Cap >: CanPar

def foreach[U](@local fn: A => U)(

implicit @local cap: Cap)

}

trait Iterable[+A] extends GenIterable[A] {

type Cap = CanSeq

implicit val capDummy = new CanSeq {}

override def foreach[U](@local fn: A => U)(

implicit @local cap: CanSeq = capDummy) { ... }

}

trait ParIterable[+A] extends GenIterable[A] {

type Cap = CanPar

override def foreach[U](@local fn: A => U)(

implicit @local cap: CanPar) { // note CanPar <: CanThrow

...

doInterruptible(...) // using cap as CanThrow

}

}

The above implementation ensures that a (potentially) paral-
lel method can only be called if the corresponding implicit
CanPar capability is in scope, e.g.:
val coll: Iterable[Int] = ...

val collPar: ParIterable[Int] = ...

val collGen: GenIterable[Int] = collPar // common base type

coll foreach { x => ... } // ok (using default capDummy)

collPar foreach { x => ... } // error: missing capability

collGen foreach { x => ... } // error: could be parallel

Annotation overhead The default implicit arguments are
essential, since they allow the compiler to insert capDummys
based on a scope of callee’s (super)type rather than leaving
this burden at the call site. In the above case, putting capabil-
ity arguments was the responsibility of non-parallel collec-
tions, rather than relying on callers to have them availiable in
their scopes, which is fragile (prone to shadowing or ambi-
guity, and not resistant to passing other implicit arguments).
For user functions we can alleviate this burden by provid-
ing an implicit dummy capability that can be imported as a
first-class from a module. To show this eliminates overhead
in dispatching capabilities, consider the following example:

def process[A](coll: GenIterable[A])(

implicit @local cap: coll.Cap)

Note a path-dependent capability argument. It enables reuse
of a single implementation for subtypes that require different
levels of capabilities (forming a lattice), and subsumes op-
tional capabilities. Our function works with both parallel and
sequential collections, as the following snippet illustrates:
import CapDummy._

process(Range(0, 9)) // ok (using imported capDummy)

process(ParRange(0, 9)) // error (missing CanPar cap.)

...

def parallelContext(implicit @local canPar: CanPar) {

process(ParRange(0, 9)) // ok

}

Evaluation We modified the Scala compiler to signal all
uses of checked exceptions according to the Java definition
(excluding Errors and RuntimeExceptions) as compile er-
rors, thus requiring the use of our try facility above. Ad-
ditionally, throw markers were required for interfacing with
Java methods, and finally the no unsafe hooks were used to
comply to signatures of inherited Java methods.

We have evaluated the effort of using the above three fa-
cilities, as well as propagating our CanThrow (and CanPar)
capabilities required for throwing exceptions, on the entire
Scala standard library, comprising 43040 SLOC. Manual ef-
fort was due to the former and placing Cap type definitions
in: a few Collection types (deep hierarchy) and many sub-
types of mixins (shallow hierarchy). Adding capability pa-
rameters was largely automated (using a PERL-based reg-
ular expression engine), guided by compile errors. In total,
∼3% SLOC is affected, and the breakdown is as follows:

try throw no types CanThrow Cap

54 75 38 26 264 971
In the above effort breakdown, most throws and nos come

from code related to IO and processes (which exploits JVM).
A high number of trys is due to a trade-off we needed to
make to keep compatibility with user code; we could not
require a capability in an Any’s core method such as == just
because it might be comparable with a parallel collection.

8. Case Study: Region-Based Memory
Most modern high-level languages run on managed run-
times such as the JVM, .NET CLR, or JavaScript VMs. All
these platforms come with automatic memory management,

garbage collection, and built-in memory safety. Sometimes
it is, however, desirable to allocate memory outside the man-
aged heap: to reduce garbage collection overhead, to address
larger amounts of memory, or just to have more control over
memory layout. Unfortunately, then the safety guarantees of
the platform are invalidated and segfaults bound to happen.

We present a small off-heap memory library based on
scoped capabilities that preserves memory safety by impos-
ing a region-based object lifetime policy. Our implementa-
tion is inspired by a recent Scala library3 by Shabalin et al.
with much larger functionality, but without such guarantees.

Our implementation is based on two interfaces: Data,
corresponding to an off-heap chunk of memory, and Region,
from which such chunks can be allocated. We will discuss
the role of the type parameter and the implicit arguments.

trait Data[T] {

def size: Long

def apply(i: Long)(implicit @local cc: T): Long

def update(i: Long, x:Long)(implicit @local cc: T): Unit

}

trait Region {

type Cap

def alloc(n: Long)(implicit @local c: Cap): Data[Cap]

}

The interface further provides a scoped method withRegion

that can be used as follows:
withRegion[Long](1000) { region => implicit c =>

val arr = region.alloc(300) // type: Data[r.Cap]

arr(0) = 1; println(arr(0))

...

}

The types ensure statically that data object arr cannot be
used outside the scope of the withRegion call. Here is the
implementation of withRegion:

abstract class F[B] { def apply(r: Region): r.Cap -> B }

def withRegion[T](n: Long)(f: F[T]): T = {

object cap

val r = new Region {

type Cap = cap.type

var data = malloc(n)

var p = 0L

def alloc(n: Long)(@local c: Cap) = new Data[Cap] {

def size = n

val addr = p

p += n

def apply(i: Long)(implicit @local c: Cap) =

data((addr+i).toInt)

def update(i: Long, x:Long)(implicit @local cc: Cap) =

data((addr+i).toInt) = x

}

}

try f(r)(cap) finally free(r.data)

}

For safety, all Data objects need to be guarded by their
Region. On the other hand, we cannot mark the Region

@local, because data objects actually need to store a ref-
erence to the region. The solution is to introduce external
capabilities. The way withRegion is implemented, a region
and its capability always obey the same scope.

3 https://github.com/densh/scala-offheap

https://github.com/densh/scala-offheap

As an extension, we might add bounds checking with the
checked exceptions implementation from Section 7. Now,
we need to use two scoped introduction forms:

withRegion[Long](1000) { r => c => try { throw => ... } }

Instead, we can just as well use the alternative form:
try { throw => withRegion[Long](1000) { r => c => ... } }

Region-based memory systems have also been proposed
based on monads, phantom types, and rank-2 polymorphism
[22]. These and other approaches based on (layered) mon-
ads offer comparable guarantees, but they require users to
rewrite their code in monadic style throughout, which has
well-established shortcomings.

Systems that enforce a non-escaping property using rank-
2 polymorphism do so by introducing additional type con-
straints, requiring the function passed to the withRegion

equivalent to return a monad instance which is parameter-
ized with the phantom type. By contrast, our withRegion

blocks can return any type, and we just require capabilities
to be present in the context.

Since types are flexible, we can independently define
“checked” features like regions, exceptions, and IO, and use
them together, whereas composition is more complicated
even with monad transformers and has to be planned ahead.
We have also no issues changing the order of our scoped
constructs, which would lead to different monadic types.

9. Case Study: Program Generation
Multi-stage programming [63, 52], a form of runtime code
generation, is a popular way to implement high-performance
DSLs [10, 11, 9, 59, 23, 60, 58] and specialized numeric
kernels [45, 38]. In Scala, we can provide a shallow DSL
interface on top of low-level code generation facilities, so
that users can write, for example,

genloop(200) { x => ... }

to emit corresponding C code:
for (int x37 = 0; x37 < 200; x37++) { ... }

This can be achieved by implementatng genloop as follows:
case class Code[T](s: String)

def genloop[T](size: Code[Int])

(@local body: (@local Code[Int]) => Code[T]) = {

@local val x = Code(freshVar[Int])

emit(s"for (int $x = 0; $x < $size; $x++) { ${body(x)} }")

}

Inside the body of genloop(200) { x => ... }, the vari-
able x is a regular program value of type Code[Int], rep-
resenting the auto-generated identifier x37. Without the
@local annotations, it could be stored into a variable and
used to construct another piece of code that refers to x37,
but where x37 is not in scope. This situation is known as
scope extrusion in the literature on program generation, and
elaborate type systems have been proposed to prohibit such
pitfalls [62, 61]. Here, we prevent scope extrusion using just
three local annotations in the definition of genloop.

Note that there is a problem: we could not write
genloop(200) { x => ... genloop(x) { y => ... }}

because genloop requires a first-class size value. We cannot
easily change the definition of genloop, either, because size
actually escapes through code generation. In fact, we will
encounter this issue anywhere we want to use x.

The solution is to leverage a split between interface and
implementation traits, which already exists in popular code
generation frameworks [52]:
trait Interface {

type LT; type clocal = local[LT]

def genloop[T](@clocal size: Code[Int])

(@local body: (@clocal Code[Int]) => Code[T])

}

trait Impl extends Interface {

type LT = Nothing

def genloop[T](size: Code[Int])

(@local body: (Code[Int]) => Code[T]) = {

... emit ...

} }

Now the argument to genloop can be second-class in the
user-visible code (as abstract type LT is unknown to be dif-
ferent from Any), but first-class on the implementation side.

Another potential downside is that we cannot store local
Code objects in a data structure, even temporary, or return
them from functions. Thus, we would rule out many useful
generative programming patterns [50].

We can solve this final issue in a similar way to the
region-based memory system in Section 8, by not making
the code object itself @local, but instead adding a capability
token. All operations on Code types require such a capability,
which is specific to the enclosing region.
def genloop[T,L0](size: Code[Int,L0])(@local Cap[L0]): {

type L1 >: L0

def apply(body:Code[Int,L1]=>(@local Cap[L1] => Code[T,L1]))

}

The type bound L1 >: L0 provides us with a notion of
nested regions, ensuring that inner capabilities are more spe-
cific subtypes of outer capabilities.

10. Related Work
Strachey [57] publicized the terminology of first-class and
second-class entities. The issues around stack-implementa-
bility of functions in LISP is also known as the funarg
problem [32, 74], and conditions for stack implementation
of the simply-typed call-by-value lambda calculus have been
given by Banerjee and Schmidt [4]. Hannan presented a
type-based escape analysis [18], to infer when variables can
be allocated on the stack. The type systems in this paper are
similar to Hannan’s internal formulation. Taha and Nielson
have proposed environment classifiers [62] to ensure non-
escaping behavior in the context of program generation.
Tanter has proposed notions of scope more fine grained than
the usual notions of lexical vs dynamic scope [66].

Capabilities Capabilities as a programming model in dy-
namic languages were made popular by Miller’s E language
[30]. The capabilities we study take a similar approach to
static checking as recent work on co-effects [41]. The idea is
to view program behavior such as side effects not as part of

the program term, but as part of the context, where an appro-
priate license or capability must be present. Recent proposals
call for their use in more general effect systems [36].

Types, Regions and Effect Systems Early work on mem-
ory regions based on RC, a dialect of C proposed by David E.
Gay [14] that guarantees temporal safety. Effect and region
polymorphism [27], for example in the FX programming
language [15]. Talpin and Jouvelot [65, 64] introduce subef-
fecting and present the first effect and region inference al-
gorithm. Lippmeier [26] extends Haskell with mutable state
and call-by-value semantics for effectful parts of programs.
Tofte and Talpin [70] show how type, region and effect infer-
ence can lead to a stack based implementation for languages
with reference allocations and updates, as implemented in
MLKit [69]. Siek, Vitousek, and Turner present a type and
effect system focused on supporting both stack-allocation
and expressive higher-order programming patterns (e.g. cur-
rying) [56].

Ownership type systems [35, 75, 12] were devised to
protect against unintentional aliasing and unexpected side
effects in object-oriented programs. The notion of borrow-
ing [19, 33], denoting a temporary transfer of ownership for
the duration of a method call, greatly improves the usability
of such systems. Borrowed references are subject to similar
constraints as our @local values. Our contribution is to show
that such second-class constraints are useful as a program-
ming model independent of ownership, aliasing, and even
of mutable state and a store abstraction altogether. We are
also not aware of any ownership type system that provides
facilities like our privilege lattice and privilege parametric-
ity (Section 4.2), leveraging host language features such as
abstract type members and path-dependent types.

Rust [29] is a recent language by Mozilla that incorpo-
rates region-like memory handling based on ownership and
borrowing of references. Formalizing Rust’s type system is
an active area of research, with ongoing efforts [46]. Cyclone
[20] is an earlier approach to build a safe dialect of C based
on similar ideas.

Type-and-effect systems were proposed by Gifford [16].
Particular systems have been designed for exceptions [17],
purity [39], and atomicity [1], among others. Work by
Marino and Millstein [28] and by Rytz [53, 54] abstracts
such individual systems into generic frameworks for larger
classes of effect domains. Nielson and Nielson [34] go from
flow-insensitive to flow-sensitive effects.

In the presence of global type inference as in Haskell or
ML, it is natural to look for similar procedures for global
effect inference. This paper, however, has a different focus,
and seeks to provide programming abstractions for describ-
ing and checking effects. It aims at languages like Scala that
combine object-oriented and functional programming with
subtyping, parametric polymorphism, and that in general do
not support global type inference [37]. In this setting, small
and comprehensible type annotations are of key importance.

Monads Monads [31] are a popular approach to encap-
sulate side effects in pure functional languages, especially
Haskell [72, 42]. Despite their great success, they are not
without issues. First, programs that use more than one kind
of side effect has to combine multiple monads, which is
not straightforward [8]. Monad transformers [25] help, but
they often require programmers to explicitly lift operations.
Second, introducing side effects into existing code requires
refactoring that code into monadic style, and also any other
code that uses it. The fact that monadic and pure code have
incompatible types leads to code duplication, as evidenced
by functions map and mapM in Haskell [26]. Monads have
been linked to type-and-effect systems [73] and generalized
in a variety of ways, e.g., as parameterized monads [3]. Tate
formalized the sequential semantics of “producer” effects
using indexed monads [67].

Kiselyov and Shan [21, 22] introduced an SIO monad
for lightweight monadic regions, based on phantom types
and rank-2 polymorphism, that can also manage file han-
dlers safely and efficiently. Their approach ensures that all
resources used are deallocated exactly once, and they sup-
port improperly nested lifetimes using explicit lifting opera-
tions.

Alternative Systems for Controlling Effects Algebraic ef-
fects have gained attention recently [6, 43]. Unlike mon-
ads, combining effects is straightforward, but most systems
do not check effects statically. Potentially, a program might
evaluate to an undefined state where an effect operation ap-
pears outside a handler. The situation is different in lan-
guages with dependent types [8]. Other lines of work worth
noting are linear types [71], uniqueness types [5], witnesses
for side effects [68]. Koka [24] is a programming language
that can express effect-polymorphism and also constructs
like exception handlers that mask effects. In the context of
Scala, simple type-and-effect systems have been used to im-
plement Delimited continuations, based on a type-directed
selective CPS transform [51]. Effects and static checking are
particularly important in the context of domain-specific lan-
guages [9, 59, 23, 60, 58]. Applications such as prevent-
ing scope extrusion are important in the context of gen-
erative programming using Lightweight Modular Staging
[50, 52, 47]

11. Conclusions
In this paper, we have studied the interplay of modern first-
class values with second-class values, as they were com-
monplace in the days of ALGOL. While second-class values
have largely disappeared from modern languages, a process
not unlike gentrification in urban development, we find that
second-class values can provide important and practically
relevant static guarantees, due to their statically bounded
lifetimes. We have formalized type systems containing both
first-class and second-class values, proving type soundness
and lifetime properties with mechanized proofs in Coq. We

have also implemented our system as an extension of the
Scala language, and conducted several case studies. These
demonstrate that ideas from the days of ALGOL comple-
ment and play well with cutting edge functional and object-
oriented programming facilities such as path-dependent
types. Our case studies underline the usefulness and prac-
ticality of our system and of second-class values as a pro-
gramming model.

Acknowledgments
We thank Martin Odersky and members of LAMP at EPFL
for insightful discussions around effects as capabilities,
and for comments on draft versions of this paper. We
thank Jeremy Siek, Chung-chieh Shan, Stefan Marr, and
the anonymous reviewers for helpful pointers. This research
was supported through NSF CAREER award 1553471, a
PRF Research Grant, and a faculty startup package from
Purdue University.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics

of transactional memory and automatic mutual exclusion.
In Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’08, pages 63–74, New York, NY, USA, 2008. ACM.

[2] N. Amin, A. Moors, and M. Odersky. Dependent object types.
In FOOL, 2012.

[3] R. Atkey. Parameterised notions of computation. J. Funct.
Program., 19(3-4):335–376, 2009.

[4] A. Banerjee and D. A. Schmidt. Stackability in the simply-
typed call-by-value lambda calculus. Sci. Comput. Program.,
31(1):47–73, 1998.

[5] E. Barendsen and S. Smetsers. Conventional and uniqueness
typing in graph rewrite systems. In R. Shyamasundar, editor,
Foundations of Software Technology and Theoretical Com-
puter Science, volume 761 of Lecture Notes in Computer Sci-
ence, pages 41–51. Springer Berlin Heidelberg, 1993.

[6] A. Bauer and M. Pretnar. Programming with algebraic effects
and handlers. J. Log. Algebr. Meth. Program., 84(1):108–123,
2015.

[7] J. Boyland. Checking interference with fractional permis-
sions. In SAS, volume 2694 of Lecture Notes in Computer
Science, pages 55–72. Springer, 2003.

[8] E. Brady. Programming and reasoning with algebraic effects
and dependent types. To Appear in Proceedings of the ACM
SIGPLAN international conference on Functional program-
ming, 2013.

[9] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun. A heterogeneous parallel
framework for domain-specific languages. In PACT, 2011.

[10] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun. Language Vir-
tualization for Heterogeneous Parallel Computing. Onward!,
2010.

[11] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun. A domain-specific approach to heteroge-
neous parallelism. In Proceedings of the 16th ACM sym-
posium on Principles and practice of parallel programming,
PPoPP, 2011.

[12] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad. Ownership
types: A survey. In Aliasing in Object-Oriented Program-
ming, volume 7850 of Lecture Notes in Computer Science,
pages 15–58. Springer, 2013.

[13] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class
calculus. In POPL, 2006.

[14] D. Gay. Memory management with explicit regions. PhD
thesis, 1997.

[15] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole.
Report on the FX programming language. Technical report,
MIT/LCS/TR-531, 1992.

[16] D. K. Gifford and J. M. Lucassen. Integrating functional and
imperative programming. In Proceedings of the 1986 ACM
conference on LISP and functional programming, LFP ’86,
pages 28–38, New York, NY, USA, 1986. ACM.

[17] J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, and A. Buck-
ley. The Java Language Specification, Java SE 7 Edition.
Addison-Wesley Professional, 2013.

[18] J. Hannan. A type-based escape analysis for functional lan-
guages. J. Funct. Program., 8(3):239–273, 1998.

[19] J. Hogg. Islands: Aliasing protection in object-oriented lan-
guages. In OOPSLA, pages 271–285. ACM, 1991.

[20] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In C. S. Ellis, edi-
tor, Proceedings of the General Track: 2002 USENIX Annual
Technical Conference, June 10-15, 2002, Monterey, Califor-
nia, USA, pages 275–288. USENIX, 2002.

[21] O. Kiselyov and C. Shan. Lightweight static capabilities.
Electr. Notes Theor. Comput. Sci., 174(7):79–104, 2007.

[22] O. Kiselyov and C. Shan. Lightweight monadic regions. In
Haskell, pages 1–12. ACM, 2008.

[23] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf,
M. Odersky, and K. Olukotun. Implementing domain-specific
languages for heterogeneous parallel computing. IEEE Mi-
cro, 31(5):42–53, 2011.

[24] D. Leijen. Koka: A language with effect inference. http:

//research.microsoft.com/en-us/projects/koka/2012-

overviewkoka.pdf, April 2012.

[25] S. Liang, P. Hudak, and M. Jones. Monad transformers
and modular interpreters. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’95, pages 333–343, New York, NY, USA,
1995. ACM.

[26] B. Lippmeier. Type Inference and Optimisation for an Impure
World. PhD thesis, Australian National University, 2010.

[27] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL

http://research.microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf
http://research.microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf
http://research.microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf

’88, pages 47–57, New York, NY, USA, 1988. ACM.

[28] D. Marino and T. Millstein. A generic type-and-effect system.
In Proceedings of the 4th international workshop on Types in
language design and implementation, TLDI ’09, pages 39–
50, New York, NY, USA, 2009. ACM.

[29] N. D. Matsakis and F. S. Klock, II. The Rust language. Ada
Lett., 34(3):103–104, Oct. 2014.

[30] M. S. Miller. The E language. http://erights.org/elang/
index.html, 1998.

[31] E. Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, July 1991.

[32] J. Moses. The function of function in lisp or why the funarg
problem should be called the environment problem. ACM
Sigsam Bulletin, (15):13–27, 1970.

[33] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type
system for borrowing permissions. In POPL, pages 557–570.
ACM, 2012.

[34] F. Nielson and H. Nielson. Type and effect systems. In E.-
R. Olderog and B. Steffen, editors, Correct System Design,
volume 1710 of Lecture Notes in Computer Science, pages
114–136. Springer Berlin Heidelberg, 1999.

[35] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOP, volume 1445 of Lecture Notes in Computer Science,
pages 158–185. Springer, 1998.

[36] M. Odersky. Scala - where it came from, where it is go-
ing. http://www.slideshare.net/Odersky/scala-days-

san-francisco-45917092, 2015.

[37] M. Odersky and T. Rompf. Unifying functional and object-
oriented programming with scala. Commun. ACM, 57(4):76–
86, 2014.

[38] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and
M. Püschel. Spiral in scala: towards the systematic con-
struction of generators for performance libraries. In J. Järvi
and C. Kästner, editors, Generative Programming: Concepts
and Experiences, GPCE’13, Indianapolis, IN, USA - October
27 - 28, 2013, pages 125–134. ACM, 2013.

[39] D. J. Pearce. JPure: A modular purity system for Java. In
J. Knoop, editor, Compiler Construction, volume 6601 of
Lecture Notes in Computer Science, pages 104–123. Springer
Berlin Heidelberg, 2011.

[40] T. Petricek, D. A. Orchard, and A. Mycroft. Coeffects: Uni-
fied static analysis of context-dependence. In Automata, Lan-
guages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, pages 385–397, 2013.

[41] T. Petricek, D. A. Orchard, and A. Mycroft. Coeffects: a cal-
culus of context-dependent computation. In J. Jeuring and
M. M. T. Chakravarty, editors, Proceedings of the 19th ACM
SIGPLAN international conference on Functional program-
ming, Gothenburg, Sweden, September 1-3, 2014, pages 123–
135. ACM, 2014.

[42] S. L. Peyton Jones and P. Wadler. Imperative functional
programming. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-

guages, POPL ’93, pages 71–84, New York, NY, USA, 1993.
ACM.

[43] G. D. Plotkin and M. Pretnar. Handling algebraic effects.
Logical Methods in Computer Science, 9(4), 2013.

[44] A. Prokopec, P. Bagwell, and T. R. abd Martin Odersky. A
generic parallel collection framework. Euro-Par, 2010.

[45] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. Johnson, and N. Rizzolo. Spiral: Code genera-
tion for dsp transforms. Proceedings of the IEEE, 93(2):232
–275, feb. 2005.

[46] E. Reed. Patina : A Formalization of the Rust Programming
Language. (February):1–37, 2015.

[47] T. Rompf. Lightweight Modular Staging and Embedded
Compilers: Abstraction Without Regret for High-Level High-
Performance Programming. PhD thesis, EPFL, 2012.

[48] T. Rompf and N. Amin. From F to DOT: Type soundness
proofs with definitional interpreters. Technical report, Purdue
University, July 2015.
http://arxiv.org/abs/1510.05216.

[49] T. Rompf and N. Amin. Type soundness for dependent object
types (dot). In OOPSLA, 2016.

[50] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jon-
nalagedda, N. Amin, G. Ofenbeck, A. Stojanov, Y. Klonatos,
M. Dashti, C. Koch, M. Püschel, and K. Olukotun. Go meta!
A case for generative programming and dsls in performance
critical systems. In T. Ball, R. Bodík, S. Krishnamurthi, B. S.
Lerner, and G. Morrisett, editors, 1st Summit on Advances
in Programming Languages, SNAPL 2015, May 3-6, 2015,
Asilomar, California, USA, volume 32 of LIPIcs, pages 238–
261. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[51] T. Rompf, I. Maier, and M. Odersky. Implementing first-class
polymorphic delimited continuations by a type-directed se-
lective cps-transform. In Proceedings of the 14th ACM SIG-
PLAN international conference on Functional programming,
ICFP ’09, pages 317–328, New York, NY, USA, 2009. ACM.

[52] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
dsls. Commun. ACM, 55(6):121–130, 2012.

[53] L. Rytz, N. Amin, and M. Odersky. A flow-insensitive, modu-
lar effect system for purity. In W. Dietl, editor, Proceedings of
the 15th Workshop on Formal Techniques for Java-like Pro-
grams, FTfJP 2013, Montpellier, France, July 1, 2013, pages
4:1–4:7. ACM, 2013.

[54] L. Rytz, M. Odersky, and P. Haller. Lightweight polymor-
phic effects. In J. Noble, editor, ECOOP 2012 - Object-
Oriented Programming - 26th European Conference, Beijing,
China, June 11-16, 2012. Proceedings, volume 7313 of Lec-
ture Notes in Computer Science, pages 258–282. Springer,
2012.

[55] J. Siek. Type safety in three easy lemmas.
http://siek.blogspot.ch/2013/05/type-safety-in-three-

easy-lemmas.html, 2013.

http://erights.org/elang/index.html
http://erights.org/elang/index.html
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://arxiv.org/abs/1510.05216
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html

[56] J. G. Siek, M. M. Vitousek, and J. D. Turner. Effects for
funargs. CoRR, abs/1201.0023, 2012.

[57] C. Strachey. Fundamental concepts in programming lan-
guages. Higher-Order and Symbolic Computation, 13(1/2):11–
49, 2000.

[58] A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf,
M. Odersky, and K. Olukotun. Forge: Generating a high per-
formance dsl implementation from a declarative specification.
In Proceedings of the 12th International Conference on Gen-
erative Programming: Concepts & Experiences, GPCE,
2013.

[59] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu, A. R.
Atreya, M. Odersky, and K. Olukotun. OptiML: an implicitly
parallel domain-specific language for machine learning. In
Proceedings of the 28th International Conference on Machine
Learning, ICML, 2011.

[60] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi,
V. Popic, M. Wu, A. Prokopec, V. Jovanovic, M. Odersky, and
K. Olukotun. Composition and reuse with compiled domain-
specific languages. In European Conference on Object Ori-
ented Programming, ECOOP, 2013.

[61] K. N. Swadi, W. Taha, O. Kiselyov, and E. Pasalic. A monadic
approach for avoiding code duplication when staging memo-
ized functions. In J. Hatcliff and F. Tip, editors, Proceed-
ings of the 2006 ACM SIGPLAN Workshop on Partial Eval-
uation and Semantics-based Program Manipulation, 2006,
Charleston, South Carolina, USA, January 9-10, 2006, pages
160–169. ACM, 2006.

[62] W. Taha and M. F. Nielsen. Environment classifiers. In
A. Aiken and G. Morrisett, editors, Conference Record of
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New Orleans, Loui-
sisana, USA, January 15-17, 2003, pages 26–37. ACM, 2003.

[63] W. Taha and T. Sheard. Metaml and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211–
242, 2000.

[64] J. Talpin and P. Jouvelot. The type and effect discipline. In
Logic in Computer Science, 1992. LICS ’92., Proceedings
of the Seventh Annual IEEE Symposium on, pages 162–173,
1992.

[65] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and

effect inference. Journal of Functional Programming, 2:245–
271, 6 1992.

[66] É. Tanter. Beyond static and dynamic scope. In J. Noble,
editor, Proceedings of the 5th Symposium on Dynamic Lan-
guages, DLS 2009, October 26, 2010, Orlando, Florida, USA,
pages 3–14. ACM, 2009.

[67] R. Tate. The sequential semantics of producer effect systems.
In Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’13, pages 15–26, New York, NY, USA, 2013. ACM.

[68] T. Terauchi and A. Aiken. Witnessing side-effects. In Pro-
ceedings of the tenth ACM SIGPLAN international confer-
ence on Functional programming, ICFP ’05, pages 105–115,
New York, NY, USA, 2005. ACM.

[69] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. Højfeld,
and O. P. Sestoft. Programming with regions in the MLKit
(revised for version 4.3.0). Technical report, IT University of
Copenhagen, January 2006.

[70] M. Tofte and J.-P. Talpin. Implementation of the typed call-
by-value λ-calculus using a stack of regions. In Proceedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’94, pages 188–201, New
York, NY, USA, 1994. ACM.

[71] P. Wadler. Linear types can change the world! In C. Jones, ed-
itor, Proceedings of the IFIP Working Group 2.2/2.3 Working
Conference on Programming Concepts and Methods. North-
Holland, 1990.

[72] P. Wadler. The essence of functional programming. In
R. Sethi, editor, Conference Record of the Nineteenth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, USA,
January 19-22, 1992, pages 1–14. ACM Press, 1992.

[73] P. Wadler. The marriage of effects and monads. In Proceed-
ings of the third ACM SIGPLAN international conference on
Functional programming, ICFP ’98, pages 63–74, New York,
NY, USA, 1998. ACM.

[74] J. Weizenbaum. The funarg problem explained. Technical
report, MIT, Cambridge, Massachusetts, 1968.

[75] T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek. Implicit
ownership types for memory management. Sci. Comput.
Program., 71(3):213–241, 2008.

	Introduction
	Motivating Examples
	Formal Development
	Dynamic Semantics
	Mechanized Implementation
	Lifetime Properties
	Type System and Static Checking

	Extension to Richer Types
	Formal Model
	Arbitrary Privilege Lattice
	Recursive Functions

	Implementation in Scala
	Case Study: Scala Collections
	Case Study: Checked Exceptions
	Case Study: Region-Based Memory
	Case Study: Program Generation
	Related Work
	Conclusions

