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Abstract
This paper describes RandIR, a tool for differential test-
ing of compilers using random instances of a given inter-
mediate representation (IR). RandIR assumes no fixed tar-
get language but instead supports extensible IR-definitions
through an internal IR-independent representation of opera-
tions. This makes it particularly well suited to test embedded
compilers for multi-stage programming, which is our main
use case. The ideas underlying our work, however, are more
generally applicable. RandIR is able to automatically sim-
plify failing instances of a test, a technique commonly re-
ferred to as shrinking. This enables testing with large random
IR samples, thus increasing the odds of detecting a buggy be-
havior, while still being able to simplify failing instances to
human-readable code.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Code generation, Optimization,
Run-time environments; D.2.5 [Testing and Debugging]:
Testing tools

General Terms Languages, Reliability

Keywords embedded compilers, compiler testing, com-
piler defect, automated random testing, bug reporting, test-
case minimization

1. Introduction
Program generators and domain-specific languages (DSLs)
have become valuable tools for achieving top performance
on today’s diverse hardware platforms. But what about cor-
rectness? As more and more software contains generative
components, and systems running on managed language
runtimes generate low-level C or CUDA code for acceler-
ation, built-in safety guarantees of high-level languages are
lost, and the potential consequences of errors are amplified.

Correctness of code generators is especially important, as
bugs in a generator may not manifest during generation, but
lead to subtly incorrect generated code, which may exhibit
wrong behavior in hard to observe but potentially disastrous
ways. On the surface, the situation appears similar to tra-
ditional compilers. Even in established industrial-strength
compilers, major bugs are discovered, sometimes years af-
ter the release of a stable version [19]. One key reason is
the large transformation space a compiler covers, which
may cause traditional testing approaches such as unit testing
to fail to catch corner cases. Unit tests have the additional
downside that they increase the size of the code-base, hinder-
ing refactoring of code and increasing maintenance effort. A
more desirable alternative would be full static verification of
the compiler, which covers the whole transformation space
instead of only isolated points. A breakthrough result in this
area was the fully verified CompCert compiler for C [9].
Unfortunately the effort of verification is still magnitudes
larger than testing and therefore only feasible for languages
as stable and as widely used as C.

Unlike traditional compilers, DSL compilers are by def-
inition off the path of mainstream languages, and the rapid
development nature of such projects, as well as potential in-
teraction with the host language in the case of embedded
DSLs, makes the effort of verification even less feasible. A
potential sweet spot in the trade-off-space between the ef-
fort to implement testing and verification and their respective
coverage is random testing [5] or differential testing [12].
Random testing gains increasing popularity in testing of reg-
ular programs [13][7] , and there are successful applications
to the world of compilers as well [19, 10, 15, 6].

RandIR. In this paper, we present RandIR, a tool for dif-
ferential testing on compilers using random instances of an
intermediate representation (IR) as input. RandIR testing fo-
cuses only on compiler phases that happen after, and includ-
ing, the construction of a valid IR. Randomly composed IR
instances are used to exercise the pipeline of the to-be-tested
compiler. The programs yielded in the process are used for
differential testing against an oracle. Differential testing is
done by comparing the program input/output behavior to an
equivalent program given by the oracle. The user of RandIR
has to provide the grammar of the code represented by the



IR, encoded as a set of typed functions, which we will re-
fer to as operations in the rest of this paper. Each opera-
tion represents a front-end operation together with the ex-
pected input and output pairs and a mechanism to create
an according IR node. For a simple integer plus operation
it could e.g. contain the information that the operation con-
sumes two integers and produces one and include the mech-
anism for the creation of an according AST node. In each
testing cycle RandIR composes the operations randomly and
creates a representation which is independent of the to-be-
tested IR. This decoupling enables us to aim the random op-
eration composition at more than one target. In our use-case,
we target vanilla Scala code, but we can also compare differ-
ent compiler pipelines using various types of IR, e.g, com-
paring the implementations of an abstract syntax tree repre-
sentation against a sea of nodes representation. Mismatches
found during testing are automatically simplified by RandIR,
a process usually referred to as shrinking. RandIR uses the
internal IR-independent representation to generate smaller
variants of the failing IR, where smaller is strictly defined
as fewer operations used during construction. The smallest
failing IR is finally reported to the user.

Our own use case targets multi-stage programming im-
plemented through lightweight modular staging (LMS) [17],
an embedded compiler framework. Multi-stage program-
ming enables us to easily target languages outside the JVM
world such as e.g, C++. Furthermore it already defines a du-
ality between Scala operations and equivalent IR generating
operations usually referred to as staged operations. We use
this equivalence relation within the differential testing.

Contributions. To the best of our knowledge, this paper
is the first to address the problem of correctness for embed-
ded DSL compilers. Our approach is heavily inspired by pre-
vious work on randomized testing for compilers. But unlike
previous work, we do not assume a fixed language, and in-
stead support extensible IR-definitions through an internal
IR-independent representation of operations.

We review necessary background in Section 2, and go on
to present our contributions in detail:

• We propose a methodology for differential testing tar-
geting compilers utilizing random IR instances. The ap-
proach uses user-defined typed functions as grammar for
the code represented in the IR. The methodology decou-
ples the random composition from the concrete IR imple-
mentation of the to-be-tested compiler, enabling trans-
lation into multiple targets. The methodology includes
an automatic simplification of failing test cases which is
aided by the former decoupling (Section 3).

• We discuss the implementation of this methodology in
our tool called RandIR (Section 4).

• We showcase the benefits of this approach in the setting
of multi-stage programming by examining examples of
bugs found (Section 5).

We discuss related work in Section 6 and offer parting
thoughts in Section 7.

2. Background
RandIR is heavily based on ScalaCheck [13], a property-
based testing framework. We utilize the framework in the
context of testing compilers, more concretly in the field
of multi-stage programming. In this section we give brief
introductions to each of these fields.

2.1 Property based testing

Property based testing is an alternative to the mainstream
unit testing. Unit tests traditionally test the correct handling
of a substructure, typically a class, of a program given a pre-
defined specific input. Tests inherently can only do point-
wise checks for a given specification and inputs of a pro-
gram. In Dijkstra’s words, they can only show the presence
of bugs but not their absence. Hence, it is the responsibil-
ity of the test author to include enough such tests to achieve
sufficient coverage of the specification to be tested. Supply-
ing sufficient tests such that all corner cases are also covered
is a non trivial task. Instead of providing input/output pairs
to test a given functionality, property based testing tries to
define the behavior of a functionality in an abstract way as
properties. To achieve this, the input of a to-be-tested func-
tionality is parametrized, and the user has to provide the test-
ing logic which should be applied to the output. Random
valid inputs are applied to the parametrized functionality and
tested by applying the validation logic on the according out-
put. The random inputs are created by a generating function
which has to be defined for each parametrized parameter.
In libraries such as the popular QuickCheck [5] in Haskell,
or its Scala adaptation ScalaCheck [13], there is a default
implementation for standard data types. For custom types,
the user of the library needs to provide generators for ran-
dom values of the targeted types used in the property test.
The following example from [13] illustrates a unit test and a
property-based test for the same target; a mathematical max
function:
//unit test
class MathTest extends TestCase {
def testMax2() {
val z = Math.max(1,0)
assertEquals(1, z) }

def testMax3() {
val z = Math.max(10,10)
assertEquals(10, z) }

def testMax4() {
val z = Math.max(2,0)
assertEquals(0, z) }}

//property-based test
object MathProps extends Properties("Math") {
property("max") = forAll { (x: Int, y: Int) =>
val z = Math.max(x, y)
(z == x || z == y) && (z >= x && z >= y) }}



The property-based testing variant is closer to an actual
specification than the unit tests. However, property-based
testing is still point-wise, and therefore weaker than static
verification. Our implementation uses ScalaCheck [13], a
port and extension of the original QuickCheck library.

Test case simplification. A powerful feature that comes
with property based testing is test case simplification, com-
monly referred to as shrinking. Shrinking describes the pro-
cess of trying to simplify a failed test input into a smaller
variant of itself until a smallest failing sub-variant is found.
In the case of ScalaCheck the definition of what counts as a
smaller variant is up to the user of the library. One simply has
to provide a function which, given the failing test inputs as
an argument, returns a stream of smaller variants of that orig-
inal input. The testing will iteratively proceed on the smaller
variants as long as new failures are encountered, and recurse
on those. Finally, the last, smallest failure is returned.

We sum up the benefits of property-based testing:

• Test coverage: Unlike in unit tests the test coverage is
controlled by the testing framework. The test size can
be adjusted dynamically at later stages of product testing
and the coverage mainly depends on the utilized genera-
tors for the input.

• Specification completeness: Defining properties, rather
then input/output pairs makes it easier to discover corner
cases.

• Maintenance: Running the same code with different in-
puts often results in code duplication which in turn in-
creases the cost of re-factoring. Property-based tests tend
to be more concise than their unit test equivalents. Chang-
ing the input/output format of the code only affects the
properties and the generators, which can be adopted with
little effort.

• Finding minimal failing test inputs: Shrinking reduces
the burden on the user to understand a bug.

2.2 Random Code Generation

Traditionally, compilers are tested using a large suite of
known, well-behaving programs. These are then compiled,
and the compiler in test needs to pass the same tests as a
trusted reference compiler (e.g., an older stable version or
an alternative compiler). In the case of Scala, the so called
Community-Build is used for such a test. It includes various
popular libraries from the Scala software eco-system com-
prising over a million lines of Scala code. Unfortunately, for
compilers of research languages, a large code base is usually
not available. Random test input can resolve this problem,
by creating a large set of artificial random input programs.
Even for established, well-tested compilers it was shown that
applying additional random testing can detect so far hid-
den errors. An early prominent example was done by ran-
dom testing implementations of C calling conventions [10].
CSmith[19] extended this approach further with the genera-

tion of random valid C++ code. It uses a differential testing
approach, feeding the generated program to multiple compil-
ers and comparing the resulting programs. In case of differ-
ences it uses a majority vote as an oracle to pinpoint which
of the compilers might have a potential bug. CSmith found
major bugs in industry-strength compilers, even though each
already utilized strong unit testing. Fuzzing [6], a technique
of randomly altering existing code, is an alternative approach
for random code generation. Fuzzing is heavily utilized in
testing of interpreters used in browsers such as Mozilla Fire-
fox or the Google Chrome browser.

2.3 Lightweight Modular Staging

A key motivation for this work was to strengthen the testing
harness for users of the lightweight modular staging frame-
work (LMS) [17], a multi-stage programming approach im-
plemented in Scala. LMS allows a programmer to specify
parts of the program to be delayed to a later stage of execu-
tion. Compared to related approaches based on syntactic dis-
tinctions like quasiquotes [11], LMS uses only types to dis-
tinguish between present-stage operations and future-stage
operations. For example, the operation
val a: Int = 3
val b: Int = 4
val c: Int = a + b

will simply execute the arithmetic operation, while the
staged equivalent
val a: Rep[Int] = 3
val b: Rep[Int] = 4
val c: Rep[Int] = a + b

uses the higher-kinded type Rep[ ] to redirect the Scala com-
piler to use an alternative plus implementation
def infix_+(lhs: Rep[Int], rhs: Rep[Int]): Rep[Int]

Instead of executing the arithmetic operation in a straight-
forward way, the staged variant will create a symbolic repre-
sentation of the plus operation. This representation uses the
two arguments, which carry an identifier to their respective
symbolic representations, and creates a symbolic representa-
tion of the output. The identifier of the output is returned as
result. The data structure constructed this way is effectively
an intermediate representation that can later be unparsed in
the next execution stage. In the case of standard LMS, a sea
of nodes representation is used, as this allows for easy dead
code elimination and code motion.

For our work we also used the type-based approach to
create the IR, but any method to create IR nodes can be
substituted. We benefit from the duality that the staging
framework provides between standard Scala operations and
their staged counterpart, which we use to leverage the Scala
compiler as an oracle in testing.

3. RandIR
In this section and the next we describe RandIR and its
implementation in detail. We start with an overview.

https://github.com/scala/community-builds


3.1 Overview

Fig. 1 gives a high level overview of the most important
components of RandIR, including simplified examples for
each. The implementation details of each component will be
discussed in Section 4. To execute RandIR the user has to
provide two types of input, a set of operations describing the
grammar used for the code represented by the IR and general
settings that steer the random construction. Given the two
input sets, RandIR proceeds fully automatically, testing the
handling of random IR instances against an oracle. Finally,
it presents the user with either a simplified version of a
failing randomly generated IR instance or an empty set in
case no error was detected. Internally, RandIR starts off
with a component that randomly composes the user-defined
operations and stores the composition information. Note that
this information is stored independently of the to-be-tested
IR in the form of a typed dependency graph. This allows
us to target different IR implementations and the according
pipelines build on top of them. Furthermore it enables us
to translate the randomly composed operations directly to
regular vanilla Scala functions. It also makes the process of
simplifying failing inputs easier, since it is independent of
the IR. This is due to the fact that a user provided operation
might yield more then one IR node representing it, making it
harder to relate IR nodes and their unparsed results back to
operations. The typed dependency graph is used as the input
to at least three components:

• A test subject composed of a compiler pipeline handling
an IR and transforming it to a Scala function.

• An oracle represented either by a regular Scala program
constructed from the dependency graph or another com-
piler pipeline transforming IRs to Scala functions.

• A random input generator that is able to produce random
instances of the types used as initial nodes in the typed
dependency graph. This random input generator is later
used to exercise the program output of the oracle and test
subject.

These three components are used to perform differential test-
ing. Both the oracle and the test subject yield a callable Scala
function which are supposed to show the same input/output
behavior. To check for this equality, RandIR executes both
functions with the same sets of random inputs provided by
the random input generator. This is performed multiple times
with varying random input instances according to bounds
defined in the test settings. Each iteration the equality of
the outputs is checked. If a discrepancy is detected the it-
erations stop and RandIR returns to the typed dependency
graph, repeating the procedure with a simplified version of
the graph that triggered the failure. If no discrepancy is de-
tected the last failing IR is returned, or, if no failing IR was
encountered, the empty set is returned. Note that the place of
the test subject can be occupied by any compiler pipeline of
which we can trigger the IR construction through Scala func-

tions and that finally emits a callable Scala function. In our
own use case we randomly compose IR instances that get un-
parsed to C++ code and compiled by an external C++ com-
piler. The resulting binary executable is exposed to RandIR
by putting it within a Scala wrapper function calling the bi-
nary and gathering its results.

3.2 RandIR Use Cases and Motivation

The tool is developed in the context of our own research
utilizing and extending LMS. We had three major use cases
in mind:

• testing the mid and back-end of an embedded compiler;
• supplying input for compiler benchmarking;
• testing front-end to IR translation for an embedded com-

piler.

Testing the mid and back-end of a compiler. Proto-
typing new transformation phases within a compiler proved
to be a tedious task in our own research effort. A recur-
ring pattern we experienced while implementing was faulty
behavior in corner cases we missed to test, and which ap-
peared in late stages of the development. This occasionally
imposed major refactoring of already sizable implementa-
tions. While explicit careful testing of each transformation
could have solved the issue, investing the effort seemed un-
justified within the prototyping nature of the project. Given
the existence of a trusted oracle carrying the same input/out-
put behavior, a possible solution to our problem was to do
differential testing. As this only considers the input/output
behavior as an invariant, it allows us to test any present or
future transformation without having to worry about its con-
crete implementation. As mentioned earlier, LMS provides
a front-end that by design tries to mirror vanilla Scala oper-
ations, making it straightforward for an user to stage simple
Scala programs. The duality by design between regular Scala
code and its staged counterpart fits perfectly with the oracle
approach.

Supplying input for compiler benchmarking. In the
process of tuning a compiler for performance, having test
inputs exhibiting a wide range of code properties is in-
valuable. Unfortunately, in research compilers a pre-existing
code base usable for this purpose might not be readily avail-
able. In addition, for both mainstream and research com-
pilers, generating valid input code that pushes a compiler
beyond the limits of its common use case helps to make it
future-proof. In our own use case a majority of the exten-
sions to LMS where motivated due to performance issues
arising in our specific application. Random code generation
allows us to quickly exercise the infrastructure with input
code of varying size and properties, thus also providing an
excellent benchmarking tool.

Testing front-end to IR translation for an embedded
compiler. As motivated earlier, we are only interested in
testing compiler phases that happen after and including the
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Figure 1. High level view of RandIR with simplified example



construction of a valid IR. The related work of this tool
also focuses only on these phases mainly because parsing
and lexing is considered to be less problematic in terms of
testing. Our use case is set in the world of embedded com-
pilers, which are hijacking the established lexing and pars-
ing infrastructure of the host language, therefore outsourc-
ing this problem in the first place. However, errors can still
occur when constructing IR nodes through the front-end of
the embedded compiler. In the context of LMS an interface
of the front-end, able to generate IR nodes, is viewed as a
domain specific language (DSL). The user defines his own
custom operations on staged types, which in turn call the
creation of IR nodes. When specifying this interface, it is
the responsibility of the DSL author to correctly implement
the IR node creation. This includes annotating effects explic-
itly and putting transformation infrastructures in place. This
process unfortunately can be error prone, which motivated
major users of LMS, the developers behind Delite [3], to
implement a tool called Forge [18]. Forge aims to increase
the level of abstraction for creating DSL specifications by
including them in the DSL itself. Our approach is comple-
mentary, enhancing DSL construction by adding specifica-
tions for testing random instances of it. One possible future
work direction would be to generate test directives directly
out of the Forge specifications. So far we manually define the
properties on how to generate a random IR node, as the ef-
fort of implementation for the core LMS DSLs is reasonable
and or own DSLs are typically rather small.

3.3 Design Limitations

The focus of our random code generation is to test transfor-
mation phases of the compiler framework; therefore we did
not consider the following aspects:

• issues that arise due to runtime exceptions;
• issues due to non-terminating code.

Runtime exceptions. Our target, LMS, does not include
the handling of exceptions (structures such as throw/catch
pairs). Without a control structure handling exceptions, it
will skip the majority of the code execution that we try
to test. We thus try to only produce code that does not
exhibit undefined runtime behavior or triggers exceptions.
Exception behavior is tested through classical unit tests and
not discussed in this paper.

Non-terminating code. Non-terminating code is not suit-
able for our oracle approach. To avoid the construction of
such code, while still being able to use structures such as
loops and recursive functions, we insert counters into those
structures such that they always terminate. Furthermore we
limit repetitions to small numbers to make run-times feasi-
ble. Finding a suitable solution to tackle the non-terminating
code problem is an open issue for this work.

4. RandIR implementation
This section provides an in-depth description of each com-
ponent shown in Fig. 1 including concrete implementation
details. The discussion will use the simplified running ex-
ample sketched in each component in Fig. 1. We explain the
general workflow with this simple example, but will con-
clude the section with pointers on how we support more
complex code.

4.1 User Input

The user of RandIR has to specify properties on a per IR
node generating function basis. In our use case an IR gen-
erating function is a language element of a domain specific
language (e.g., the plus operation used in Section 2.3). For
each operation the following properties need to be specified:

• a string identifier for debugging and printing;
• argument and return types of the operation, each in the

proper order;
• a function defined on the regular version of the types,

calling the Scala version of the operation and returning
the according results;

• a function defined on the staged version of the types,
creating the according IR node and returning the staged
results (Rep types).

For a simple integer plus operation the implementation takes
the following form:
val int_plus: Op = {
val f: (Vector[_] => Vector[_]) =
{ (x: Vector[_]) =>// regular scala version of the op
val l = x.head.asInstanceOf[Int]
val r = x.tail.head.asInstanceOf[Int]
Vector(l+r)

}
val sf: (Vector[Rep[_]] => Vector[Rep[_]]) =
{ (x: Vector[Rep[_]]) => // staged version of the op
val l = x.head.asInstanceOf[Rep[Int]]
val r = x.tail.head.asInstanceOf[Rep[Int]]
Vector(int_plus(l,r))

} // int_plus is the IR node gen. function inside LMS
Op("int_plus",

Vector(Tag(manifest[Int]),Tag(manifest[Int])),
Vector(Tag(manifest[Int])),f,sf) }

The function f carries the regular Scala operation and sf car-
ries the IR node generating function. The typecasts are not
pretty, but correct typing is achieved through the dependency
graph described in the next subsection. Operation specifica-
tions are collected inside traits that expose them for RandIR:
// example trait
trait GenRandomPrimitiveOps extends GenRandomOps {
this: PurePrimitiveOpsExp =>
val int_plus: Op = { ... } //see above
override def suptypes(aTypes: ATypes): ATypes = {
super.suptypes(aTypes + (Set(Tag(manifest[Int]))) }



Figure 2. a simple dependency graph

override def ops(map: AvailOps) =
registerOp(int_plus, map) }

We override two methods of a base trait registering the types
supported by the operations within our trait and registering
the operations themselves. This implementation was chosen
to allow the user of the tool to easily combine sets of op-
erations. The set of all operations provided is used in the
construction of the dependency graph described in the next
subsection. In addition to the set of operations we pass a set
of global settings that control the random process allowing
to steer the IR creation. These settings include minimum and
maximum values for controlling parameters such as nesting
depth, maximum usage per operation, number of nodes per
block, number of function calls allowed etc. We omit the
discussion of these settings as they are all straightforward.

4.2 Dependency Graph

At the start of execution RandIR collects all operations
mixed in through the traits discussed in the previous sec-
tion and collects them into two data structures. The first is
a collection of all operation specifications, while the second
is the set of unique types used as input in these specifica-
tions. When generating the dependency graph, RandIR first
selects a random amount of randomly picked types from this
data structure (with duplicates). The selection prefers sets of
types that match the full list of arguments of any given oper-
ation specification. In the example in Fig. 2 we picked two
types for our initial three arguments. We save each of them
with an unique numeric identifier. Afterwards we randomly
select an operation that can be applied given the current set
of types available in the graph. In the running example a
plus node was randomly selected first. Randomly selected
inputs for the operation are chosen from the set of all current
type instances in the graph. Additionally we create a new
type instance with identifier according to the return value
type specification in the operation. The operation instance
of the plus stores the information that it takes the integer
types with the identifiers zero and one and that it stores its
result of type integer with the identifier four. Whenever an
operation yields a new type or operation in its result we add

the set of possible operations and types for the next iteration.
We repeat picking operations and creating instances of them
with assigned arguments until the graph reached the size
picked randomly within the global specified bounds. Note
that we do not perform any kind of optimization passes on
the computation encoded in this representation. Potential op-
timizations happen during IR construction and processing,
given that they are part of the pipeline we want to test.

4.3 Translation of the Dependency Graph

// pseudo code for the translation
val args = first layer of types in dep. graph
val wrapper = { ( args ) =>
put args into map
for( opnode <- dependency graph) {
argids = opnode.argids
returnids = opnode.returnids
val vector_inputs = select from map with argid
val returnvector = opnode.f(vector_inputs) //or sf
assign returnvector into map via returnids }

val wrapreturn = select from map according to setting
wrapreturn }

After the construction of the dependency graph RandIR pro-
ceeds by executing the operations carried within the graph.
The process is sketched in the pseudo code above and de-
scribed in this paragraph. RandIR executes the respective f
and sf function each operation holds. Both functions require
the inputs to be passed as a vector and to be returned as a
vector. RandIR creates a wrapping function that has an argu-
ment signature according to the first level of the dependency
graph. It then keeps each value within a map that allows to
refer to variables by their id from the graph. As every opera-
tion in the graph carries the info which id’s it consumes and
produces we are able to traverse the operations of the graph
downstream from the arguments filling the map in the pro-
cess. Once the graph is fully traversed it contains a variable
per type node in the dependency graph.

Selecting random return statements. One the map is
fully filled, we decide on which map entires (which corre-
spond to the type with id nodes in the dependency graph) we
use as return values. Our default choice is to simply return
each entry of the map as a large nested tuple allowing to re-
turn all graph nodes. This enables the very efficient detection
of failing operations and shrinking, which will be explained
in more detail later. The downside of this approach is the
large amount of data that is returned, potentially crossing the
limits of what the JVM supports. In addition we miss bugs
that are related to dead-code elimination and optimizations
over intermediate results. For this purpose we can alterna-
tively choose to return a random number of return values
that can be limited by a user-defined maximum. In this case
the algorithm selects random nodes either from the whole
graph or only among the leaf nodes. Selecting from the leafs
has the benefit of having a higher chance to preserve a large
portion of the graph after dead-code elimination.



Figure 3. ideal case of a shrink on the example IR with the
orange operation failing

Unparsing / wrapping. After the return values are cho-
sen we obtain the full function. In the case of chaining the
f functions from the operation specification the result is a
regular Scala function that can be directly used as the oracle
in differential testing. If, on the other hand, we used the sf
variant, the created function is building an IR. To exercise
this IR for testing we need to transform it also into a regu-
lar Scala function. If we unparse our IR to Scala we simply
compile the resulting code. If we chose a foreign language
as unparsing target, we need to invoke an external compiler
and wrap the result in order to call it from Scala.

4.4 Testing the IR

The translation phase yield two Scala function with the same
signature. Comparing them is done by creating random val-
ues for the input arguments and executing both functions
with the same set of inputs. We perform an equality check
between the outputs to test for behavioral equality of the
programs. This step is repeated multiple times, using new
random input values for each iteration. The iterations termi-
nate if either a user-defined maximum repeat limit is reached
or if a difference is detected. In the later case test case sim-
plification, described in the next section, is triggered looping
back to the dependency graph.

4.5 Shrinking

For cases where RandIR finds two functions that behave
differently, the IR instance causing the bug is usually of
very large size making it hard for the user to determine the
origin of failure. To address this problem, we try to shrink
the IR to automatically find a smaller failing example. Note
that unlike some of the related work on shrinking we do
not distinguish if the smaller failing IR fails for a different
reason than the original. For shrinking we distinguish two
scenarios discussed next.

The IR yields a compile error. In our use case this kind
of error usually happens while implementing a new unpars-
ing for an IR node. As the process fails already before ex-
ecuting and comparing the functions we cannot rely on the

input/output pair to pinpoint a failure. We instead halve the
dependency graph. If the smaller version also fails we con-
tinue halving or otherwise, if the smaller version succeeds,
we test a three quarter part of the previous step. This method
effectively does a binary search on the graph size finding
a smaller failing graph in logarithmic steps. Note that this
search will not yield the smallest failing graph as, e.g., the
failing node could be a node that does not share dependen-
cies with other nodes on its depth within the graph. One
could in theory purge the IR more in those cases. We de-
cided to not invest in this direction, as in our experience,
compile errors are usually pointing out the cause of the error
very accurately and a sub-optimal shrinking is good enough.

The outputs differ. Assuming the scenario where we are
returning every single IR node, we potentially can actually
pinpoint the failing node exactly due to the fact that the
results are in ascending order of their ids and therefore we
can link the position of the failing node to a position in
the result vector. This in turn we can relate to an operation
producing it. Tracing back the dependencies of the failing
operation instance within the dependency graph yields us
the smallest failing graph. In Fig. 3 we depict this for the
case that the node with id 6 is failing. Since the right hand
side of the graph is no dependency of the Op yielding node 6
it can be removed. This approach is very efficient for purely
functional code. Unfortunately in the case of operations with
side effects it might fail. In these cases we fall back to the
logarithmic cutting of the graph explained above.

4.6 Supporting more Operations

Everything explained so far is sufficient to create simple
functions. To construct all types of operations used in vanilla
LMS we implemented several features as part of the de-
scribed algorithm.

Dealing with generics. The DSL code we deal with po-
tentially also features IR generating function calls that use
generics for code reuse. To support this we allow the random
operation specification to also be generic. We implemented
this in a pragmatic way by defining a reserved type Wild-
card that we use to signal to our tool that a generic is used at
this position. When filtering for matching operations during
the dependency graph creation phase, wild-card types can
be matched with any existing type. Once a type is randomly
chosen a version of the op with the fixed type is used in the
pipeline. At the current state of the tool we do not support
type bounds or type classes for the generics. They are used
rarely within the LMS DSLs and simply enumerating the
possible options was a sufficient solution for our purpose.

Local functions. We added support for functions as first
order objects in our IR. To create a local function we use the
same algorithm as in creating the main function, creating a
random dependency graph from a set of initial random argu-
ments. The creation differs from that of the main function in
that we do not choose randomly among all possible types,
but rather choose among those that already exist in the graph



under construction so far. This is done to increase the like-
lihood of the function to be actually applied in the process.
If the algorithm creates a local function it adds an operation
instance to the graph corresponding to a function definition
in the target code. In addition the algorithm adds a new op-
eration to the pool of possible operations corresponding to
the application of the just created function.

Avoiding exceptions. We try to avoid undefined behav-
ior and the occurrence of exceptions. It is the task of the
user to manually make them safe by e.g. introduce modulo
operations before indexing into an array. This of course is
a workaround to avoid dealing with undefined behavior that
would make creating well behaving code much harder. As
our main interest for testing focuses on the internal phases
of the compiler framework, rather than any kind of runtime
behavior, we considered it to be sufficient. Similar steps have
been a taken in related projects such as CSmith.

5. Examples of Bugs Found
As motivated earlier we developed the presented tool to as-
sist our own development effort. As such it is not yet ma-
ture for broad application, but proved invaluable for our own
work. In our development cycle its was used to test inter-
nal compiler phases we modified. Whenever a first draft of
a particular compiler transformation was implemented we
utilized RandIR to generate test input and check the correct-
ness. Iteratively extending the input grammar of RandIR al-
lowed us to increase the complexity of the test input incre-
mentally and co-develop the transformation with each itera-
tion. To give an idea about concrete applications, we show-
case two examples of our use.

5.1 Different Code Behavior between C++ and Scala

In our main line of research [14] we generate C++ code
from Scala. We typically prototype the generated code first
in Scala, as this allows us to use the same debugging facili-
ties as we already utilize for the generator. Our final gener-
ated code only uses a very simple subset of C++ such that
one could expect that a near one-to-one translation between
the languages can be applied. Nonetheless we frequently
encountered unexpected bugs due to minor differences be-
tween the languages even in our simple subset. RandIR helps
us to trace down diverging behavior efficiently, as in the fol-
lowing example. Given a test cycle using staged Scala as the
oracle and C++ as the test subject and given that the opera-
tion for concatenating strings is passed to RandIR it might
return (minimized) code as shown below as faulty:
class staged0 extends (((Int,String)) => String) {
def apply(helper: (Int,String)): String = {
val x1: Int = helper._1
val x2: String = helper._2
val x3 = x2 + x2
x3 }}

The code is detected as faulty because the value of the
returned string differs between C++ and Scala. Looking at

the unparsing of the concatenation, we are quickly able to
spot the reason:
int l1 = strlen(s1);int l2 = strlen(s2);
char* r = (char*)malloc(l1+l2);
memcpy(r, s1, l1);
memcpy(r+l1, s2, l2);
r;

We forgot to terminate the string with null, a task that is not
required in Scala. Of course this is a careless mistake that
could also be spotted with other means, but with random
testing we can detect it efficiently.

5.2 Code Motion Bugs

The idea of creating RandIR was triggered when we at-
tempted to re-factor the code motion of the LMS framework.
The re-factor solved performance issues in our use case of
LMS which appeared due to the huge size of code we tend
to generate. While we were able to resolve the performance
issues, we introduced new bugs in our implementation that
given our code target would manifest in errors such as:
forward reference extends over definition of value x1620
[error] val x1343 = x1232(x1123, x1124, x1180, x1181,
x1223, x1224, x1223, x1229, x1216, x1120, x1122, x1121)

Note that variables are indexed in ascending order starting at
zero, meaning that a large piece of code is processed before
we hit this error. The root cause of bugs such as this one often
proved to be very simple but heavily obfuscated in the code
it manifested in. The concrete example was triggered by the
code motion hoisting a function out of the block defining
it but failing to correctly maintain the dependency order.
Manual inspection was still required to trace down this bug,
but the smallest failing code yielded by RandIR of the form:
class staged extends (((Boolean,Boolean)) => ... {
def apply(helper: (Boolean,Boolean)): ... = {
val x1: Boolean = helper._1
val x2: Boolean = helper._2
val x3 = x2 || x2
val x5: ((Boolean,Boolean,Boolean)) =>

((Boolean,Boolean) => Boolean) =
{ (helper: (Boolean,Boolean,Boolean)) =>
val x7: Boolean = helper._2
val x22 = x10(x7)
(x10,x22) }

val x10: Boolean => Boolean =
{ (helper: Boolean) =>
val x11: Boolean = helper
val x12 = x11 || x11
x12 }

val x52 = x5(x3, x2, x1)
val x53 = x52._1
val x54 = x52._2
(x3,x5,x53,x54) }}

made this task significantly easier, as its more feasible to
spot that the local function x5 apparently expected to contain
the creation of x10.



6. Related Work
Testing compilers with random inputs is an old idea, as can
be seen in the survey [1]. In the years after, random testing
for compilers was used in multiple notable efforts. Lindig
[10] was able to detect major bugs in industry strength com-
pilers such as GCC and ICC targeting only the correctness of
C calling conventions. The work generates random parame-
ter lists and instances, checking the simple invariant that pa-
rameter instances need to be identical before and after pass-
ing them through a C function call. CSmith [19] also targets
C compilers, but performs differential testing, a term coined
by McKeeman [12]. CSmith is closely related to our own
work, as it also targets the correctness of compiler transfor-
mations after lexing and parsing. They use a majority vote
of multiple compilers as an oracle. They target multiple in-
dustry strength compilers, which led to the successfully de-
tection of major bugs. As C++ code tends to heavily rely on
side effects, test case simplification is more complex then in
our use case. Some follow up work tries to deal with this
problem [16]. Also closely related is the work by Palka [15],
which also compose lambdas in a random fashion to yield
functions and propose a shrinking methodology. Our work
differs in that its not purely functional and extends over sim-
ple typed λ calculus. Furthermore they fix both the input and
output type before randomly composing, making the compo-
sition type target driven, possibly backtracking or even not
terminating successful. Fuzzing [6] provides random input
by mutating existing example input instead of composing
it from scratch. This approach is heavily used in testing of
JavaScript interpreters. Random testing on compilers even
led to the problem of detecting so many bugs that automatic
pruning and prioritizing of the found bugs became an issue,
which is addressed in work such as [4]. ArtiCheck[2] is a li-
brary for fuzzing utilizing QuickCheck. ArtiCheck performs
automatic random testing of a data-structure by only exercis-
ing a given API that manipulates the data structure in ques-
tion. Composition of operations in our work is closely re-
lated to chaining of API calls in ArtiCheck. PLT Redex[8]
targets the formal models of languages, their semantics and
type systems. It mechanizes the semantics life cycle, which
includes random testing on conjectures.

7. Conclusion
In this paper we presented RandIR, a toolkit for perform-
ing random testing on compilers using random IR instances
as input. We presented the methodology used and showed
details of the implementation. In our own research on re-
factoring LMS, RandIR proved to be invaluable to quickly
trace down bugs. It provides large coverage for little effort
and in addition the random IR instances can be utilized in
performance benchmarking. We show how RandIR, with its
decoupling of random operation composition from IR con-
struction, naturally fits into the setting of multi-stage pro-
gramming and embedded compilers. Future work could take

RandIR outside of our own use-case, such as doing a large
scale comparison of Scala and C++, finding subtle, non-
obvious differences in an automated fashion.
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