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Abstract
In recent years, Apache Spark has become the de facto
standard for big data processing. Spark has enabled a
wide audience of users to process petabyte-scale work-
loads due to its flexibility and ease of use: users are able
to mix SQL-style relational queries with Scala or Python
code, and have the resultant programs distributed across
an entire cluster, all without having to work with low-
level parallelization or network primitives.

However, many workloads of practical importance are
not large enough to justify distributed, scale-out execu-
tion, as the data may reside entirely in main memory of
a single powerful server. Still, users want to use Spark
for its familiar interface and tooling. In such scale-up
scenarios, Spark’s performance is suboptimal, as Spark
prioritizes handling data size over optimizing the com-
putations on that data. For such medium-size workloads,
performance may still be of critical importance if jobs
are computationally heavy, need to be run frequently on
changing data, or interface with external libraries and
systems (e.g., TensorFlow for machine learning).

We present Flare, an accelerator module for Spark
that delivers order of magnitude speedups on scale-up
architectures for a large class of applications. Inspired
by query compilation techniques from main-memory
database systems, Flare incorporates a code genera-
tion strategy designed to match the unique aspects of
Spark and the characteristics of scale-up architectures,
in particular processing data directly from optimized file
formats and combining SQL-style relational processing
with external frameworks such as TensorFlow.

1 Introduction
Modern data analytics applications require a combina-
tion of different programming paradigms, spanning rela-
tional, procedural, and map-reduce-style functional pro-

cessing. Systems like Apache Spark [8] have gained
enormous traction thanks to their intuitive APIs and abil-
ity to scale to very large data sizes, thereby commoditiz-
ing petabyte-scale (PB) data processing for large num-
bers of users. But thanks to its attractive programming
interface and tooling, people are also increasingly using
Spark for smaller workloads. Even for companies that
also have PB-scale data, there is typically a long tail of
tasks of much smaller size, which make up a very impor-
tant class of workloads [17, 44]. In such cases, Spark’s
performance is suboptimal. For such medium-size work-
loads, performance may still be of critical importance
if there are many such jobs, individual jobs are compu-
tationally heavy, or need to be run very frequently on
changing data. This is the problem we address in this pa-
per. We present Flare, an accelerator module for Spark
that delivers order of magnitude speedups on scale-up ar-
chitectures for a large class of applications. A high-level
view of Flare’s architecture can be seen in Figure 1b.

Inspiration from In-Memory Databases Flare is
based on native code generation techniques that have
been pioneered by in-memory databases (e.g., Hy-
Per [35]). Given the multitude of front-end program-
ming paradigms, it is not immediately clear that look-
ing at relational databases is the right idea. However, we
argue that this is indeed the right strategy: Despite the
variety of front-end interfaces, contemporary Spark is, at
its core, an SQL engine and query optimizer [8]. Rich
front-end APIs are increasingly based on DataFrames,
which are internally represented very much like SQL
query plans. Data frames provide a deferred API, i.e.,
calls only construct a query plan, but do not execute it
immediately. Thus, front-end abstractions do not inter-
fere with query optimization. Previous generations of
Spark relied critically on arbitrary UDFs, but this is be-
coming less and less of a concern as more and more func-
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Figure 1: Flare system overview: (a) architecture of
Spark adapted from [8]; (b) Flare generates code for en-
tire queries, eliminating the RDD layer, and orchestrat-
ing parallel execution optimized for shared memory ar-
chitectures. Flare also integrates with TensorFlow.

tionality is implemented on top of DataFrames.
With main-memory databases in mind, it follows that

one may look to existing databases for answers on im-
proving Spark’s performance. A piece of low-hanging
fruit seems to be simply translating all DataFrame query
plans to an existing best-of-breed main-memory database
(e.g., HyPer [35]). However, such systems are full
database systems, not just query engines, and would re-
quire data to be stored in a separate, internal format spe-
cific to the external system. As data may be changing
rapidly, loading this data into an external system is un-
desirable, for reasons of both storage size and due to the
inherent overhead associated with data loading. More-
over, retaining the ability to interact with other systems
(e.g., TensorFlow [3] for machine learning) is unclear.

Another logical alternative would be to build a new
system which is overall better optimized than Spark for
the particular use case of medium-size workloads and
scale-up architectures. While some effort has been done
in this vein (e.g., Tupleware [17]), such systems for-
feit the ability to leverage existing libraries and frame-
works built on top of Spark, including the associated
tooling. Whereas a system that competes with Spark
must replicate all of this functionality, our goal instead
was to build a drop-in module capable of handling work-
loads for which Spark is not optimized, preferably using
methodologies seen in these best-of-breed, external sys-
tems (e.g., HyPer).

Native Query Compilation Indeed, the need to accel-
erate CPU computation prompted the development of a
code generation engine that ships with Spark since ver-
sion 1.4, called Tungsten [8]. However, despite follow-
ing some of the methodology set forth by HyPer, there
are a number of challenges facing such a system, which
causes Tungsten to yield suboptimal results by compar-
ison. First, due to the fact that Spark resides in a Java-
based ecosystem, Tungsten generates Java code. This

(somewhat obviously) yields inferior performance to na-
tive execution as seen in HyPer. However, generating
native code within Spark poses a challenge of interfac-
ing with the JVM when dealing with e.g., data load-
ing. Another challenge comes from Spark’s reliance
on resilient distributed datasets (RDDs) as its main in-
ternal execution abstraction. Mapping query operators
to RDDs imposes boundaries between code generation
regions, which incurs nontrivial runtime overhead. Fi-
nally, having a code generation engine capable of inter-
facing with external frameworks and libraries, particu-
larly machine-learning oriented frameworks like Tensor-
Flow and PyTorch, is also challenging due to the wide
variety of data representations which may be used.

End-to-End Datapath Optimization In solving the
problem of generating native code and working within
the Java environment, we focus specifically on the is-
sue of data processing. When working with data di-
rectly from memory, it is possible to use the Java Native
Interface (JNI) and operate on raw pointers. However,
when processing data directly from files, fine-grained
interaction between decoding logic in Java and native
code would be required, which is both cumbersome and
presents high overhead. To resolve this problem, we elect
to reimplement file processing for common formats in
native code as well. This provides a fully compiled data
path, which in turn provides significant performance ben-
efits. While this does present a problem in calling Java
UDFs (user-defined functions) at runtime, we can sim-
ply fall back to Spark’s existing execution in such a case,
as these instances appear rare in most use cases consid-
ered. We note in passing that existing work (e.g., Tuple-
ware [17], Froid [40]) has presented other solutions for
this problem which could be adopted within our method,
as well.

Fault Tolerance on Scale-Up Architectures In addi-
tion, we must overcome the challenge of working with
Spark’s reliance on RDDs. For this, we propose a simple
solution: when working in a scale-up, shared memory
environment, remove RDDs and bypass all fault toler-
ance mechanisms, as they are not needed in such archi-
tectures (seen in Figure 1b). The presence of RDDs fun-
damentally limits the scope of query compilation to in-
dividual query stages, which prevents optimization at the
granularity of full queries. Without RDDs, we compile
whole queries and eliminate the preexisting boundaries
across query stages. This also enables the removal of ar-
tifacts of distributed architectures, such as Spark’s use of
HashJoinExchange operators even if the query is run on
a single core.



Interfacing with External Code Looking now to the
issue of having a robust code generation engine capa-
ble of interfacing with external libraries and frameworks
within Spark, we note that most performance-critical ex-
ternal frameworks are also embracing deferred APIs.
This is particularly true for machine learning frame-
works, which are based on a notion of execution graphs.
This includes popular frameworks like TensorFlow [3],
Caffe [24], and ONNX [1], though this list is far from
exhaustive. As such, we focus on frameworks with APIs
that follow this pattern. Importantly, many of these sys-
tems already have a native execution backend, which al-
lows for speedups by generating all required glue code
and keeping the entire data path within native code.

Contributions The main intellectual contribution of
this paper is to demonstrate and analyze some of the
underlying issues contained in the Spark runtime, and
to show that the HyPer query compilation model must
be adapted in certain ways to achieve good results in
Spark (and, most likely, systems with a similar archi-
tecture like Flink [16]), most importantly to eliminate
codegen boundaries as much as possible. For Spark, this
means generating code not at the granularity of operator
pipelines but compiling whole Catalyst operator trees at
once (which may include multiple SQL-queries and sub-
queries), generating specialized code for data structures,
for file loading, etc.

We present Flare, an accelerator module for Spark
that solves these (and other) challenges which currently
prevent Spark from achieving optimal performance on
scale-up architectures for a large class of applications.
Building on query compilation techniques from main-
memory database systems, Flare incorporates a code
generation strategy designed to match the unique aspects
of Spark and the characteristics of scale-up architectures,
in particular processing data directly from optimized file
formats and combining SQL-style relational processing
with external libraries such as TensorFlow.

This paper makes the following specific contributions:

• We identify key impediments to performance for
medium-sized workloads running on Spark on a single
machine in a shared memory environment and present
a novel code generation strategy able to overcome
these impediments, including the overhead inherent in
boundaries between compilation regions. (Section 2).

• We present Flare’s architecture and discuss some im-
plementation choices. We show how Flare is capable
of optimizing data loading, dealing with parallel exe-
cution, as well as efficiently working on NUMA sys-
tems. This is a result of Flare compiling whole queries,

as opposed to individual query stages, which results in
an end-to-end optimized data path (Section 3).

• We show how Flare’s compilation model efficiently
extends to external user-defined functions. Specifi-
cally, we discuss Flare’s ability to integrate with other
frameworks and domain-specific languages, including
in particular machine learning frameworks like Tensor-
Flow that provide compilation facilities of their own
(Section 4).

• We evaluate Flare in comparison to Spark on TPC-H,
reducing the gap to best-of-breed relational query en-
gine, and on benchmarks involving external libraries.
In both settings, Flare exhibits order-of-magnitude
speedups. Our evaluation spans single-core, multi-
core, and NUMA targets (Section 5).

Finally, we survey related work in Section 6, and draw
conclusions in Section 7.

2 Background
Apache Spark [55, 56] is today’s most widely-used big
data framework. The core programming abstraction
comes in the form of an immutable, implicitly distributed
collection called a resilient distributed dataset (RDD).
RDDs serve as high-level programming interfaces, while
also transparently managing fault-tolerance.

We present a short example using RDDs (from [8]),
which counts the number of errors in a (potentially dis-
tributed) log file:
val lines = spark.sparkContext.textFile("...")
val errors = lines.filter(s => s.startsWith("ERROR"))
println("Total errors: " + errors.count())

Spark’s RDD abstraction provides a deferred API: in
the above example, the calls to textFile and filter

merely construct a computation graph. In fact, no actual
computation occurs until errors.count is invoked.

The directed, acyclic computation graph represented
by an RDD describes the distributed operations in a
rather coarse-grained fashion: at the granularity of map,
filter, etc. While this level of detail is enough to en-
able demand-driven computation, scheduling, and fault-
tolerance via selective recomputation along the “lineage”
of a result [55], it does not provide a full view of the com-
putation applied to each element of a dataset. For exam-
ple, in the code snippet shown above, the argument to
lines.filter is a normal Scala closure. This makes in-
tegration between RDDs and arbitrary external libraries
much easier, but it also means that the given closure must
be invoked as-is for every element in the dataset.

As such, the performance of RDDs suffers from two
limitations: first, limited visibility for analysis and op-
timization (especially standard optimizations, e.g., join



reordering for relational workloads); and second, sub-
stantial interpretive overhead, i.e., function calls for each
processed tuple. Both issues have been ameliorated with
the introduction of the Spark SQL subsystem [8].

2.1 The Power of Multi-Stage APIs
The chief addition of Spark SQL is an alternative API
based on DataFrames. A DataFrame is conceptually
equivalent to a table in a relational database; i.e., a collec-
tion of rows with named columns. However, like RDDs,
the DataFrame API records operations, rather than com-
puting the result.

Therefore, we can write the same example as before:
val lines = spark.read.textFile("...")
val errors = lines.filter($"value".startsWith("ERROR"))
println("Total errors: " + errors.count())

Indeed, this is quite similar to the RDD API in that
only the call to errors.count will trigger actual execu-
tion. Unlike RDDs, however, DataFrames capture the
full computation/query to be executed. We can obtain the
internal representation using errors.explain(), which
produces the following output:
== Physical Plan ==
*Filter StartsWith(value#894, ERROR)
+- *Scan text [value#894]

Format: ...TextFileFormat@18edbdbb,
InputPaths: ...,
ReadSchema: struct<value:string>

From the high-level DataFrame operations, Spark
SQL computes a query plan, much like a relational
DBMS. Spark SQL optimizes query plans using its re-
lational query optimizer, called Catalyst, and may even
generate Java code at runtime to accelerate parts of the
query plan using a component named Tungsten (see Sec-
tion 2.2).

It is hard to overstate the benefits of this kind of de-
ferred API, which generates a complete program (i.e.,
query) representation at runtime. First, it enables vari-
ous kinds of optimizations, including classic relational
query optimizations. Second, one can use this API from
multiple front-ends, which exposes Spark to non-JVM
languages such as Python and R, and the API can also
serve as a translation target from literal SQL:
lines.createOrReplaceTempView("lines")
val errors = spark.sql("select * from lines

where value like ’ERROR%’")
println("Total errors: " + errors.count())

Third, one can use the full host language to structure
code, and use small functions that pass DataFrames be-
tween them to build up a logical plan that is then opti-
mized as a whole.

However, this is only true as long as one stays in the
relational world, and, notably, avoids using any exter-
nal libraries (e.g., TensorFlow). This is a nontrivial re-
striction; to resolve this, we show in Section 4 how the
DataFrame model extends to such library calls in Flare.

select *
from lineitem, orders
where l_orderkey = o_orderkey

Spark
Sort-merge join 14,937 ms
Broadcast-hash join 4,775 ms

of which in exchange 2,232 ms
Flare
In-memory hash join 136 ms

Stage 0

Stage 1

scan

Filter

BroadcastExchange

Project

scan

Filter

Broadcast
HashJoin...

CollectLimit

Project

(a) (b)

Figure 2: (a) The cost of Join lineitem ./ orders with
different operators (b) Spark’s hash join plan shows two
separate code generation regions, which communicate
through Spark’s runtime system.

2.2 Catalyst and Tungsten
With the addition of Spark SQL, Spark also introduced
a query optimizer known as Catalyst [8]. We elide the
details of Catalyst’s optimization strategy, as they are
largely irrelevant here. After Catalyst has finished op-
timizing a query plan, Spark’s execution backend known
as Tungsten takes over. Tungsten aims to improve
Spark’s performance by reducing the allocation of ob-
jects on the Java Virtual Machine (JVM) heap, control-
ling off-heap memory management, employing cache-
aware data structures, and generating Java code which
is then compiled to JVM bytecode at runtime [28]. No-
tably, these optimizations are able to simultaneously im-
prove the performance of all Spark SQL libraries and
DataFrame operations [56].

Following the design described by Neumann, and im-
plemented in HyPer [35], Tungsten’s code generation
engine implements what is known as a “data-centric”
model. In this type of model, operator interfaces consist
of two methods: produce, and consume. The produce

method on an operator signals all child operators to be-
gin producing data in the order defined by the parent op-
erator’s semantics. The consume method waits to receive
and process this data, again in accordance with the parent
operator’s semantics.

In HyPer (and Tungsten), operators that materialize
data (e.g., aggregate, hash join, etc.) are called “pipeline
breakers”. Where possible, pipelines of operators (e.g.,
scan, aggregate) are fused to eliminate unnecessary func-
tion calls which would otherwise move data between op-
erators. A consequence of this is that all code generated
is at the granularity of query stage, rather than generat-
ing code for the query as a whole. This requires some
amount of “glue code” to also be generated, in order to
pipeline these generated stages together. The directed
graph of the physical plan for a simple join query can be
seen in Figure 2b. In this figure, we can see that the first
stage generates code for scanning and filtering the first



val tpchq6 = spark.sql("""
select
sum(l_extendedprice*l_discount) as

revenue
from
lineitem

where
l_shipdate >= to_date(’1994-01-01’)
and l_shipdate < to_date(’1995-01-01’)
and l_discount between 0.05 and 0.07
and l_quantity < 24

""")

// data loading elided ...
for (i = 0; i < size; i++) {
double l_quantity = l_quantity_col[i];
double l_extendedprice = l_extendedprice_col[i];
double l_discount = l_discount_col[i];
long l_shipdate = l_shipdate_col[i];
if (l_shipdate >= 19940101L && l_shipdate <

19950101L &&
l_discount >= 0.05 && l_discount <= 0.07 &&
l_quantity < 24.0) {

revenue += l_extendedprice * l_discount;
}

} ...

Spark SQL Preload ms Query ms
Direct CSV - 24,400
Preload CSV 118,062 1,418

Hand-Written C / Flare
Preload CSV 2,847 45

(a) (b) (c)

Figure 3: (a) Query 6 from the TPC-H benchmark in Spark (b) Q6 hand-written C code (c) Running times for Q6 in
Spark, with and without pre-loading, and compared to hand-written code and Flare.

table and the second stage generates code for the pipeline
of the scan, join, and project operators. In Section 2.4 we
discuss the impact of the granularity of code generation
and the choice of join algorithm on Spark’s performance.

2.3 Spark Performance Analysis
Spark performance studies primarily focus on the
scale-out performance, e.g., running big data bench-
marks [55] on high-end clusters, performing terabyte
sorting [56], etc. However, when considering the class
of computationally-heavy workloads that can fit in main-
memory, requires multiple iterations, or integrates with
external libraries (e.g., training a machine learning clas-
sifier), the performance of Spark becomes suboptimal.

On a similar note, McSherry, Isard, and Murray have
eloquently argued in their 2015 HotOS paper [30] and
accompanying blog post [29] that big data systems such
as Spark tend to scale well, but often this is because there
is a lot of internal overhead. In particular, McSherry et
al. demonstrate that a straightforward native implemen-
tation of the PageRank algorithm [37] running on a sin-
gle laptop can outperform a Spark cluster with 128 cores,
using the then-current version.

Laptop vs. Cluster Inspired by this setup and the fol-
lowing quote, we are interested in gauging the inherent
overheads of Spark and Spark SQL in absolute terms:

“You can have a second computer once you’ve
shown you know how to use the first one.”

— Paul Barham, via [30]

For our benchmark, we pick the simplest query
from the industry-standard TPC-H benchmark: Query
6 (shown in Figure 3a). We define the schema of ta-
ble lineitem, provide the source file, and finally reg-
ister it as a temporary table for Spark SQL (steps not
shown). For our experiments, we use scale factor 2 (SF2)
of the TPC-H data set, which means that table lineitem

is stored in a CSV file of about 1.4 GB. Following the
setup by McSherry et al., we run our tests on a fairly stan-
dard laptop.1 All times referenced below may be found

1MacBook Pro Retina 2012, 2.6 GHz Intel Core i7, 16 GB 1600

in Figure 3c.

We first do a naive run of our query, Q6. As reported
in Figure 3, we achieve a result of 24 seconds, which
is clearly suboptimal. In aiming to boost performance,
one option at this is to convert our data to the columnar
Parquet format [7] for increased performance. Alterna-
tively, we can preload the data so that subsequent runs
are purely in-memory. As we are mainly interested in
the computational part, we opt to preload.

We note in passing that preloading is quite slow (al-
most 2 min), which may be due to a variety of factors.
With things preloaded, however, we can now execute
our query in-memory, and we get a much better result of
around 1.4 seconds. Running the query a few more times
yields further speedups, but timings stagnate at around 1
second (timing from subsequent runs elided). Using 1s
as our baseline, we must now qualify this result.

Hand-Written C Due to the simplicity of Q6, we elect
to write a program in C which performs precisely the
same computation: mapping the input file into memory
using the mmap system call, loading the data into an in-
memory columnar representation, and then executing the
main query loop (see Figure 3b).

Compiling this C program via gcc -O3 Q6.c and run-
ning the resultant output file yields a time of 2.8 seconds
(including data loading), only 45ms of which is perform-
ing the actual query computation. Note that in compar-
ison to Spark 2.0, this is a striking 20× speedup. Per-
forming the same query in HyPer, however, takes only
46.58ms, well within the margin of error of the hand-
written C code. This disparity in performance shows that
although Tungsten is written with the methodologies pre-
scribed by HyPer in mind, there exist some impediments
either in the implementation of these methodologies or
in the Spark runtime itself which prevent Spark from
achieving optimal performance for these cases.

MHz DDR3, 500 GB SSD, Spark 2.0, Java HotSpot VM 1.8.0_112-
b16



case class BroadcastHashJoinExec(/* ... inputs elided ... */)
extends BinaryExecNode with HashJoin with CodegenSupport {
// ... fields elided ...
override def doProduce(ctx: CodegenContext): String =
streamedPlan.asInstanceOf[CodegenSupport].produce(ctx, this)

override def doConsume(ctx: CodegenContext, input:
Seq[ExprCode], row: ExprCode): String = {

val (broadcastRelation, relationTerm) = prepareBroadcast(ctx)
val (keyEv, anyNull) = genStreamSideJoinKey(ctx, input)
val (matched, checkCondition, buildVars) =

getJoinCondition(ctx, input)
val numOutput = metricTerm(ctx, "numOutputRows")

val resultVars = ...
ctx.copyResult = true
val matches = ctx.freshName("matches")
val iteratorCls = classOf[Iterator[UnsafeRow]].getName
s"""
|// generate join key for stream side
|${keyEv.code}
|// find matches from HashRelation
|$iteratorCls $matches = $anyNull ? null :

($iteratorCls)$relationTerm.get(${keyEv.value});
|if ($matches == null) continue;
|while ($matches.hasNext()) {
| UnsafeRow $matched = (UnsafeRow) $matches.next();
| $checkCondition
| $numOutput.add(1);
| ${consume(ctx, resultVars)}
|}

""".stripMargin
}

}

Figure 4: Spark implementation of inner HashJoin.

2.4 Major Bottlenecks
By profiling Spark SQL during a run of Q6, we are able
to determine two key reasons for the large gap in per-
formance between Spark and HyPer. Note that while we
focus our discussion mainly on Q6, which requires low
computational power and uses only trivial query opera-
tors, these bottlenecks appear in nearly every query in the
TPC-H benchmark.

Data Exchange Between Code Boundaries We first
observe that Tungsten must generate multiple pieces of
code: one for the main query loop, the other an iterator
to traverse the in-memory data structure.

Consider the HashJoin code in Figure 4. We can see
that Tungsten’s produce/consume interface generates a
loop which iterates over data through an iterator inter-
face, then invokes the consume method at the end of
the loop in order to perform evaluation. HyPer’s orig-
inal codegen model is centrally designed around data-
centric pipelines within a given query, the notion of
“pipeline-breakers” as coarse-grained boundaries of data
flow, and the combination of pre-written code at the
boundary between pipelines with generated code within
each pipeline. While the particular implementation of
this design in HyPer leads to good results in HyPer itself,
the direct implementation of HyPer’s pipeline-focused
approach in Spark and similar systems falls short because
the overhead of traversing pipeline boundaries is much
higher (Java vs C++, RDD overhead, ecosystem integra-
tion, etc).

The CPU profile (Figure 5) shows that 80% of the ex-
ecution time is spent in one of two ways: accessing and

BasicColumnAccessor.extractTo(…)/…/DOUBLE$extract(…)	
  

GeneratedIterator.processNext()	
  

computa(on	
   overhead	
  

Figure 5: CPU profile of TPC-H Q6 in Spark SQL, after
preloading the lineitem table. 80% of time is spent ac-
cessing and decoding the in-memory data representation.

decoding the in-memory data representation, or moving
between the two pieces of generated code through code
paths which are part of the precompiled Spark runtime.
In order to avoid this overhead, then, we must replace
the runtime altogether with one able to reason about the
entire query, rather than just the stages.

JVM Overhead Even if the previous indirection is re-
moved and replaced with a unified piece of Java code,
the performance remains approximately 30% lower than
our hand-written C code. This difference becomes more
pronounced in other TPC-H queries which require both
memory management and tighter low-level control over
data structures. This bottleneck is certainly expected,
and choosing a lower level language does alleviate this
performance loss greatly.

Other Bottlenecks As shown, even fixing these bottle-
necks is not enough. This becomes even more apparent
when moving away from Q6. In dealing with more com-
plex queries, concerns regarding granularity of code gen-
eration and the necessity to interface with the Spark run-
time system become more pronounced than with TPC-H
Q6. In fact, queries which require join operations ex-
hibit some unfortunate consequences for main-memory
execution due to Spark’s design as primarily a cluster-
computing framework. Figure 2a shows timings for a
simple join query that joins the lineitem and orders ta-
bles of the TPC-H benchmark. Spark’s query optimizer
picks an expensive sort-merge join by default. Note that
this may be the correct choice for distributed or out-of-
core execution, but is suboptimal for main memory. With
some tuning, it is possible to force Spark’s query planner
to opt for a hash join instead, which is more efficient for
our architecture. However, even this follows a broadcast
model with high overhead for the internal exchange op-
erator (2.2s of 4.7s) which is present in the physical plan
even when running on a single core.

3 Flare: Adding Fuel to the Fire
Based on the observations made in Sections 2.3 and 2.4,
we formally present Flare: a new backend which acts
as an accelerator for Spark for medium-sized workloads



on scale-up architectures. Flare eliminates all previously
identified bottlenecks without removing the expressive-
ness and power of its front-ends. At its core, Flare
efficiently generates code, and brings Spark’s perfor-
mance closer to HyPer and hand-written C. Flare com-
piles whole queries instead of only query stages, effec-
tively bypassing Spark’s RDD layer and runtime for op-
erations like hash joins in shared-memory environments.
Flare also goes beyond purely relational workloads by
adding another intermediate layer between query plans
and generated code.

As previously identified, this need to build a new run-
time, rather than selecting an existing system as an alter-
nate backend for Spark, is founded on a number of justi-
fications. In particular, we focus on the deferred API pro-
vided by Spark SQL which builds computation graphs to
perform the necessary queries as given by users. Access
to this graph structure allows for cross-optimization with
external libraries also using deferred APIs (e.g., Tensor-
Flow) through the use of robust code generation tech-
niques. In order to gain access to the necessary data
at the appropriate time without incurring the overhead
of passing (potentially large amounts of) data between
external programs, a new runtime capable of interfacing
with Spark’s existing front-end is required.

3.1 Interface between Spark and Flare
Flare supports most available Spark SQL DataFrame or
DataSet operations (i.e., all operations which can be ap-
plied to a DataFrame and have a representation as Cat-
alyst operators), though any operators currently missing
could be added without compatibility constraints. In the
event that a Spark job contains operations that are not
part of the SQL frontend, Flare can still be used to ac-
celerate SQL operations and then return the result to the
Spark runtime, which will then use the result for the rest
of the computation. However, the benefit of doing this
may be negated by the communication overhead between
the two systems.

Flare can operate in one of two modes. Either users
must invoke a function to convert the DataFrame they
wish to compute into a Flare DataFrame (a conversion
that may fail with a descriptive error), to that end Flare
exposes a dedicated API to allow users to pick which
DataFrames to evaluate through Flare:
val df = spark.sql("...") // create DataFrame (SQL or direct)
val fd = flare(df) // turn it into a FlareDataFrame
fd.show() // execute query plan with Flare

Or one can set a configuration item in Spark to use
Flare on all queries where possible, and only fall back
to the default Spark execution when necessary (option-
ally emitting a warning when doing so). When Flare is

analysis
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Libraries
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Graph

Native
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Figure 6: Query compilation in Flare

invoked, it first generates C code as explained in the fol-
lowing section, then invokes a C compiler, and finally
launches the resulting binary either inside the JVM, or
as a separate process. This bypasses Spark’s runtime en-
tirely, relying solely on Flare’s runtime to trigger execu-
tion of the generated code.

3.2 Flare: Architecture
A high-level view of Flare’s architecture is illustrated in
Figure 1b. Spark SQL’s front-end, the DataFrame API,
and the Catalyst optimizer all remain the same. When
dealing with relational workloads, the optimized query
plan is exported without modification from Catalyst to
Flare, upon which Flare performs a compilation pass and
creates a code generation object for each of the nodes.

At a closer look, Figure 6 illustrates an end-to-end ex-
ecution path in Flare. Flare analyzes Spark’s optimized
plan (which possibly embeds external libraries as UDFs)
and constructs a computation graph that encodes rela-
tional operators, data structures, UDFs, data layout, and
any needed configurations.

Generative Programming and Lightweight Modular
Staging (LMS) Flare uses Lightweight Modular Stag-
ing (LMS) for code generation due to its multi-staging
capabilities. In LMS, a special type constructor Rep[T] is
used to denote a staged expression, which will cause an
expression of type T to be emitted in the generated code.
The example in Figure 7a shows a code snippet that gen-
erates a for loop (notice the loop counter is specialized
with Rep). At evaluation time, the for loop iteration will
be generated. On the other hand, the if condition is com-
posed of a regular Boolean type, so this code is executed
at code generation time as shown in Figure 7b.

val squared: Boolean = true
val arr = NewArray[Int](5)

for (i <- 0 until 5: Rep[Range]) {
if (squared)
arr(i) = i * i

else
arr(i) = i

}

int* x1 = malloc(5 *
sizeof(int));

int x2;
for (x2 = 0; x2 < 5; x2++) {

int x3 = x2 * x2;
x1[x2] = x3;

}

(a) (b)

Figure 7: (a) Generic LMS code example (only used for
Flare internals) (b) LMS generated C code.

The essence of multi-stage programming is to generate
efficient programs using high-level constructs without in-
curring runtime overheads [47]. In the late 1990s, it was
realized that multi-stage languages (i.e., languages used



to express multi-stage programs) are useful not only as
intermediate formal description, but also directly as pro-
gramming tools, giving rise to the field of programmable
specialization or generative programming, embodied by
languages like MetaML [48] and MetaOCaml [15]. Even
more recently, library-based approaches have become
popular that implement generative programming abstrac-
tions using operator overloading and other features in
regular general-purpose languages. One instance of such
a system is LMS [43], implemented in Scala. LMS
maintains a graph-like intermediate representation (IR)
to encode constructs and operations. LMS introduces a
type constructor called Rep[T] (where T is a type, e.g.,
String) to denote expressions that will generate code.
For example, given two Rep[Int] values a and b, eval-
uating the expression a+b will generate the following
code: int x1 = a + b and return a reference to x1 as
new Rep[Int] result in the meta language. This value
can then be used in other computations.

Staging and code generation in Flare In the context
of query compilation, LMS is used to specialize a query
evaluator with respect to a query plan [42, 25]. Based on
partial evaluation results (the first Futamura projection
[21]), the outcome of programmatic specialization is a
compiled target of the query. Figure 8 shows an example
of compiling a join query in Flare, in which the special-
ization logic (i.e., staging code using Rep) is placed at
the granularity of low-level control flow constructs and
primitive operators.

case class DataLoop(foreach: (Rep[Record] => Unit) => Unit)
type ThreadCallback = Rep[Int] => DataLoop => Unit
case class CodeGen(gen: ThreadCallback => Unit)

// extract the join hash key functions
def compileCond(cond: Option[Expression]): (Rep[Record] =>

Rep[Record], Rep[Record] => Rep[Record]) = ...
def compile(plan: LogicalPlan): CodeGen = plan match {
case HashJoin(left, right, Inner, cond) =>
val lGen = compile(left); val rGen = compile(right)
val (lkey, rkey) = compileCond(cond)

val hmap = new ParHashMap[Record,Record]()
CodeGen(threadCallback =>
lGen.gen { tId => dataloop => // start section for left child
val lhmap = hmap.partition(tId) // Thread local data
for (ltuple <- dataloop) lhmap += (lkey(ltuple), ltuple)

}
rGen.gen { tId => dataloop => // start section for right

child
threadCallback(tId) { callback => // invoke downstream op
for (rtuple <- dataloop)
for (ltuple <- hmap(rkey(rtuple)))
callback(merge(ltuple, rtuple)) // feed downstream op

} } )
case ...

}

Figure 8: Internal Flare operator that generates code for
HashJoin (LogicalPlan and HashJoin are Spark classes).

Following the InnerJoin code generation example in
Figure 8, a CodeGen object is generated from each of
the two children, after which the logic of the Join op-
erator is implemented: the left child’s code generator is
invoked and the tuples produced populate a hash map.

The right child’s code generator is then invoked, and for
each of the tuples produced, the matching lines from the
left table are extracted from the map, merged, and finally
become the produced value of the Join operator. LMS
performs some lightweight optimizations (e.g., common
subexpression elimination, dead code elimination), and
generates C code that can be compiled and executed by
the Flare runtime.

Interestingly, this implementation looks exactly like
the implementation of an interpreter. Indeed, this is
no coincidence: much like Spark uses multi-stage APIs
(Section 2.1) at the operational level, Flare uses the LMS
compiler framework, which implements the same con-
cept, but at a lower level. In the same way that Scala
(or Python) is used to build DataFrames in Spark, we use
Scala to build a graph which represents the computations
needing to be generated. We qualify the code generation
of Spark as coarse-grain. The BroadcastHashJoinExec

operator in Figure 4 generates a string that corresponds to
the full join computation. This String is generated with
regard to some placeholders for the inputs/outputs and
join conditons that are specific to the given query. How-
ever, what is hardcoded in the template string will be
generated in the same way for every join. Contrast this
with Flare’s fine-grained code generation: The code in
Figure 8 also generates code for the Join operator. How-
ever, it does not generate one big string; rather, it invokes
functions that express the logic of the operator using the
full power of the Scala language. The use of Rep[T]

expressions in judicious places triggers code generation
and produces only low-level operations.

With the goal of removing the tightest bottlenecks
first, the implementation of Flare has focused on maxi-
mizing performance within a single machine. Therefore,
Flare does not implement any specific optimizations for
distributed execution. Furthermore, Flare is also unable
to handle any workloads which require more memory
than the machine has available. In either of these cases,
we fall back to the Spark runtime.

3.3 Optimizing Data Loading
Data loading is an often overlooked factor data process-
ing, and is seldom reported in benchmarks. However,
we recognize that data loading from CSV can often be
the dominant performance factor for Spark SQL queries.
The Apache Parquet [7] format is an attractive alterna-
tive, modeled after Dremel [31]. As a binary colum-
nar format, it offers opportunities for compression, and
queries can load only required columns.

While Parquet allows for irrelevant data to be ignored
almost entirely, Spark’s code to read Parquet files is very
generic, resulting in undue overhead. This generality is



primarily due to supporting multiple compression and
encoding techniques, but there also exists overhead in
determining which column iterators are needed. While
these sources of overhead seem somewhat unavoidable,
in reality they can be resolved by generating specialized
code. In Flare, we implement compiled CSV and Par-
quet readers that generate native code specialized to a
given schema. As a result, Flare can compile data paths
end-to-end. We evaluate these readers in Section 5.

3.4 Indexing Structures
Query engines build indexing structures to minimize
time spent in table lookups to speed-up query execution.
Small-size data processing is performed efficiently using
table scans, whereas very large datasets are executed in
latency-insensitive contexts. On the other hand, medium-
size workloads can profit from indexes, as these datasets
are often processed under tight latency constraints where
performing full table scans is infeasible. On that basis,
Flare supports indexing structures on primary and for-
eign keys. At the time of writing, Spark SQL does not
support index-based plans. Thus, Flare adds metadata to
the table schema that describes index type and key at-
tributes. At loading time, Flare builds indexes as spec-
ified in the table definition. Furthermore, Flare imple-
ments a set of index-based operators, e.g., scan and join
following the methodology described in [49]. Finally, at
compilation time, Flare maps Spark’s operators to use the
index-based operators if such an index is present. The
index-based operators are implemented with the same
technique described for the basic operators, but shortcut
some computation by using the index rather than request-
ing data from its children.

3.5 Parallel and NUMA Execution
Query engines can implement parallelism either explic-
itly through special split and merge operators, or inter-
nally by modifying the operator’s internal logic to or-
chestrate parallel execution. Flare does the latter, and
currently realizes parallelism using OpenMP [2] anno-
tations within the generated C code, although alterna-
tives are possible. On the architectural level, Flare han-
dles splitting the computation internally across multiple
threads, accumulating final results, etc. For instance,
the parallel scan starts a parallel section, which sets the
number of threads and invokes the downstream opera-
tors in parallel through a ThreadCallback (see Figure 8).
join and aggregate operators, in turn, which implement
materialization points, implement their ThreadCallback
method in such a way that parallel invocations are pos-
sible without conflict. This is typically accomplished
through either per-thread data structures that are merged

after the parallel section or lock-free data structures.
Flare also contains specific optimizations for environ-

ments with non-uniform memory access (NUMA), in-
cluding pinning threads to specific cores and optimiz-
ing the memory layout of various data structures to re-
duce the need for accessing non-local memory. For in-
stance, memory-bound workloads (e.g., TPC-H Q6) per-
form small amounts of computation, and do not scale up
given a large number of threads on a single CPU socket.
Flare’s code generation supports such workloads through
various data partitioning strategies in order to maximize
local processing and to reduce the need for threads to ac-
cess non-local memory as illustrated Section 5.1.

4 Heterogeneous Workloads
Many data analytics applications require a combina-
tion of different programming paradigms, e.g., rela-
tional, procedural, and map-reduce-style functional pro-
cessing. For example, a machine learning (ML) appli-
cation might use relational APIs for the extract, trans-
form, load phase (ETL), and dedicated ML libraries
for computations. Spark provides specialized libraries
(e.g., ML pipelines), and supports user-defined func-
tions to support domain-specific applications. Unfortu-
nately, Spark’s performance is greatly diminished once
DataFrame operations are interleaved with calls to ex-
ternal libraries. Currently, Spark SQL optimization and
code generation treat calls to such libraries as calls to
black boxes. Hence, Flare focuses on generating effi-
cient code for heterogeneous workloads including exter-
nal systems e.g., TensorFlow [4].

4.1 User Defined Functions (UDF)
Spark SQL uses Scala functions, which appear as a black
box to the optimizer. As mentioned in Section 3.2,
Flare’s internal code generation logic is based on LMS,
which allows for multi-stage programming using Rep

types. Extending UDF support to Flare is achieved by in-
jecting Rep[A] => Rep[B] functions into DataFrames in
the same way that normal A => B functions are injected
in plain Spark. As an example, here is a UDF sqr that
squares a given number:
// define and register UDF
def sqr(fc: FlareUDFContext) = { import fc._;

(y: Rep[Int]) => y * y }
flare.udf.register("sqr", sqr)
// use UDF in query
val df = spark.sql("select ps_availqty from partsupp where

sqr(ps_availqty) > 100")
flare(df).show()

Notice that the definition of sqr uses an additional ar-
gument of type FlareUDFContext, from which we im-
port overloaded operators such as +, -, *, etc., to work
on Rep[Int] and other Rep[T] types. The staged func-
tion will become part of the code as well, and will be



# Define linear classifier using TensorFlow
import tensorflow as tf
# weights from pre-trained model elided
mat = tf.constant([[...]])
bias = tf.constant([...])
def classifier(c1,c2,c3,c4):
# compute distance
x = tf.constant([[c1,c2,c3,c4]])
y = tf.matmul(x, mat) + bias
y1 = tf.session.run(y1)[0]
return max(y1)

# Register classifier as UDF: dumps TensorFlow graph to
# a .pbtxt file, runs tf_compile to obtain .o binary file
flare.udf.register_tfcompile("classifier", classifier)
# Use compiled classifer in PySpark query with Flare:
q = spark.sql("
select real_class,
sum(case when class = 0 then 1 else 0 end) as class1,
sum(case when class = 1 then 1 else 0 end) as class2,
... until 4 ...

from (select real_class,
classifier(c1,c2,c3,c4) as class from data)

group by real_class order by real_class")
flare(q).show()

Figure 9: Spark query using TensorFlow classifier as a
UDF in Python.

optimized along with the relational operations. This pro-
vides benefits for UDFs (general purpose code embedded
in queries), and enables queries to be be optimized with
respect to their surrounding code (e.g., queries run within
a loop).

4.2 Native UDF Example: TensorFlow
Flare has the potential to provide significant performance
gains with other machine learning frameworks that gen-
erate native code. Figure 9 shows a PySpark SQL query
which uses a UDF implemented in TensorFlow [3, 4].
This UDF performs classification via machine learning
over the data, based on a pretrained model. It is impor-
tant to reiterate that this UDF is seen as a black box by
Spark, though in this case, it is also opaque to Flare.

Calling TensorFlow code from Spark hits a number
of bottlenecks, resulting in poor performance (see Sec-
tion 5). This is in large part due to the separate nature
of the two programs; there is no inherent way to “share”
data without copying back and forth. A somewhat imme-
diate solution is to use the JNI, which enables the use of
TensorFlow’s ahead-of-time (AOT) compiler, XLA [50].
This already improves performance by over 100×, but
even here there is room for improvement.

Using Flare in conjunction with TensorFlow provides
speedups of over 1,000,000× when compared with Spark
(for concrete numbers, see Section 5). These gains come
primarily as a result of Flare’s ability to link with external
C libraries. As mentioned previously, in this example,
Flare is able to take advantage of XLA, whereas Spark
is relegated to using TensorFlow’s less efficient dy-
namic runtime (which executes a TensorFlow computa-
tion graph with only limited knowledge). Flare provides
a function flare.udf.register_tfcompile, which in-
ternally creates a TensorFlow subgraph representing the
UDF, saves it to a file, and then invokes TensorFlow’s

AOT compiler tool tfcompile to obtain a compiled ob-
ject file, which can then be linked against the query code
generated by Flare.

Finally, the TensorFlow UDF generated by XLA is
pure code, i.e., it does not allocate its own memory. In-
stead, the caller needs to preallocate all memory which
will be used by the UDF. Due to its ability to generate
native code, Flare can organize its own data structures to
meet TensorFlow’s data requirements, and thus does not
require data layout modification or extraneous copies.

5 Experimental Evaluation
To assess the performance and acceleration potential of
Flare in comparison to Spark, we present two sets of
experiments. The first set focuses on a standard re-
lational benchmark; the second set evaluates hetero-
geneous workloads, consisting of relational process-
ing combined with a TensorFlow machine learning ker-
nel. Our experiments span single-core, multi-core, and
NUMA targets.

5.1 Bare-Metal Relational Workloads
The first set of experiments focuses on a standard re-
lational workload, and demonstrates that the inherent
overheads of Spark SQL cause a slowdown of at least
10× compared to the best available query engines for
in-memory execution on a single core. Our experiments
show that Flare is able to bridge this gap, accelerating
Spark SQL to the same level of performance as state-of-
the-art query compiler systems, while retaining the flexi-
bility of Spark’s DataFrame API. We also compare paral-
lel speedups, the effect of NUMA optimization, and eval-
uate the performance benefits of optimized data loading.

Environment We conducted our experiments on a sin-
gle NUMA machine with 4 sockets, 24 Xeon(R) Plat-
inum 8168 cores per socket, and 750GB RAM per socket
(3 TB total). The operating system is Ubuntu 16.04.4
LTS. We use Spark 2.3, Scala 2.11, Postgres 10.2, Hy-
Per v0.5-222-g04766a1, and GCC 5.4 with optimization
flags -O3.

Dataset We use the standard TPC-H [51] benchmark
with scale factor SF10 for sequential, and SF20 and
SF100 for parallel execution.

Single-Core Running Time In this experiment, we
compare the single-core, absolute running time of Flare
with Postgres, HyPer, and Spark using the TPC-H bench-
mark with scale factor SF10. In the case of Spark, we
use a single executor thread, though the JVM may spawn
auxiliary threads to handle GC or the just-in-time com-
pilation. Postgres and HyPer implement cost-based op-
timizers that can avoid inefficient query plans, in partic-
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Figure 10: Performance comparison of Postgres, HyPer, Spark SQL, Flare in SF10

ular by reordering joins. While Spark’s Catalyst opti-
mizer [8] is also cost-based, the default configurations
do not perform any kind of join re-ordering. Hence, we
match the join ordering of the query plan in Spark SQL
and Flare with HyPer’s, with a small number of excep-
tions: in Spark SQL, the original join ordering given in
the TPC-H reference outperformed the HyPer plans for
Q5, Q9, Q10, and Q11 in Spark SQL, and for Q10 in
Flare. For these queries, we kept the original join order-
ing as is. For Spark SQL, this difference is mainly due
to Catalyst picking sort-merge joins over hash joins. It is
worth pointing out that HyPer and Postgres plans can use
indexes on primary keys, which may give an additional
advantage.

Figure 10 gives the absolute execution time of Post-
gres, HyPer, Spark SQL, and Flare for all TPC-H queries.
For all systems, data loading time is excluded, i.e., only
execution time is reported. In Spark and Flare, we use
persist to ensure that the data is loaded from mem-
ory. At first glance, the performance of Flare and Hy-
Per lie within the same range, and notably outperform
Postgres and Spark in all queries. Similarly, Spark’s
performance is comparable to Postgres’s in most of the
queries. Unlike the other systems, Postgres does not
compile queries at runtime, and relies on the Volcano
model [23] for query evaluation, which incurs significant
overhead. Hence, we can see that Spark’s query com-
pilation does not provide a significant advantage over a
standard interpreted query engines on most queries.

At a closer look, Flare outperforms Spark SQL in ag-
gregate queries Q1 and Q6 by 32× and 13× respectively.
We observe that Spark is 200× slower than Flare in
nested queries (e.g., Q2) After examining the execution
plans of Q2, we found that Catalyst’s plan does not de-
tect all patterns that help with avoiding re-computations,
e.g., a table which has been previously scanned or sorted.
In join queries, e.g., Q5, Q10, Q14, etc., Flare is faster
than Spark SQL by 19×-76×. Likewise, in join variants
outer join Q13, semi-join Q21, and anti-join Q22, Flare
is faster by 7×, 51× and 36× respectively.

The single-core performance gap between Spark SQL
and Flare is attributed to the bottlenecks identified in
Sections 2.3 and 2.4. First, overhead associated with
low-level data access on the JVM. Second, Spark SQL’s
distributed-first strategy that employs costly distributed
operators, e.g., sort-merge join and broadcast hash join,
even when running on a single core. Third, internal bot-
tlenecks in in-memory processing, the overhead of RDD
operations, and communication through Spark’s runtime
system. By compiling entire queries, instead of isolated
query stages, Flare effectively avoids these bottlenecks.

HyPer [35] is a state-of-the-art compiled relational
query engine. A precursory look shows that Flare is
faster than HyPer by 10%-60% in Q4-Q5,Q7, and Q14-
Q16. Moreover, Flare is faster by 2× in Q3, Q11, and
Q18. On the other hand, HyPer is faster than Flare by
20%-60% in Q9, Q10, Q12, and Q21. Moreover, Hy-
Per is faster by 2×-4× in Q2, Q8, Q17, and Q20. This
performance gap is, in part, attributed to (1) HyPer’s use
of specialized operators like GroupJoin [32], and (2) em-
ploying indexes on primary keys as seen in Q2, Q8, etc.,
whereas Flare (and Spark SQL) currently does not sup-
port indexes.

In summary, while both Flare and HyPer generate na-
tive code at runtime, subtle implementation differences
in query evaluation and code generation can result in
faster code. For instance, HyPer uses proper decimal
precision numbers, whereas Flare follows Spark in using
double precision floating point values which are native to
the architecture. Furthermore, HyPer generates LLVM
code, whereas Flare generates C code which is compiled
with GCC.

Compilation Time We compared the compilation time
for each TPC-H query on Spark and Flare (results omit-
ted). For Spark, we measured the time to generate the
physical plan, which includes Java code generation and
compilation. We do not quantify JVM-internal JIT com-
pilation, as this is hard to measure, and code may be
recompiled multiple times. For Flare, we measured C
code generation and compilation with GCC. Both sys-



tems spend a similar amount of time on code generation
and compilation. Compilation time depends on the com-
plexity of the query, but is less than 1s for all queries,
i.e., well in line with interactive, exploratory, usage.
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Figure 11: Scaling up Flare and Spark SQL in SF20,
without NUMA optimizations: Spark has good nominal
speedups (top), but Flare has better absolute running time
in all configurations (bottom). For both systems, NUMA
effects for 32 cores are clearly visible (Benchmark ma-
chine: 96 cores, 3 TB RAM across 4 CPU sockets, i.e.,
24 cores, 750 GB each).

Parallel Scaling In this experiment, we compare the
scalability of Spark SQL and Flare. The experiment fo-
cuses on the absolute performance and the Configuration
that Outperforms a Single Thread (COST) metric pro-
posed by McSherry et al. [30]. We pick four queries that
represent aggregate and join variants.

Figure 11 presents speedup numbers for Q6, Q13,
Q14, and Q22 when scaled up to 32 cores. At first glance,
Spark appears to have good speedups in Q6 and Q13
whereas Flare’s Q6 speedup drops for high core counts.
However, examining the absolute running times, Flare
is faster than Spark SQL by 14×. Furthermore, it takes
Spark SQL estimated 16 cores in Q6 to match the perfor-
mance of Flare’s single core. In scaling up Q13, Flare is
consistently faster by 6×-7× up to 16 cores. Similarly,
Flare continues to outperform Spark by 12×-23× in Q14
and by 13×-22× in Q22.

What appears to be good scaling for Spark actually re-
veals that the runtime incurs significant overhead. In par-
ticular, we would expect Q6 to become memory-bound
as we increase the level of parallelism. In Flare we can
directly observe this effect as a sharp drop from 16 to 32
cores. Since our machine has 18 cores per socket, for 32

cores, we start accessing non-local memory (NUMA).
The reason Spark scales better is because the internal
overhead, which does not contribute anything to query
evaluation, is trivially parallelizable and hides the mem-
ory bandwidth effects. In summary, Flare scales as ex-
pected for both of memory and CPU-bound workloads,
and reflects the hardware characteristics of the workload,
which means that query execution takes good advantage
of the available resources – with the exception of multi-
ple CPU sockets, a problem we address next.
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Figure 12: Scaling up Flare for SF100 with NUMA op-
timizations on different configurations: threads pinned
to one, two, or four sockets. The speedups relative to a
single thread are shown on top of the bars (Benchmark
machine: 72 cores, 1 TB RAM across 4 CPU sockets,
i.e., 18 cores, 250 GB each).

As a next step, we evaluate NUMA optimizations in
Flare and show that these enable us to scale queries like
Q6 to higher core numbers. In particular, we pin threads
to individual cores and lay out memory such that most
accesses are to the local memory region attached to each
socket (Figure 12). Q6 performs better when the threads
are dispatched on different sockets. This is due to the
computation being bounded by the memory bandwidth.
As such, when dividing the threads on multiple sock-
ets, we multiply the available bandwidth proportionally.
However, as Q1 is more computation bound, dispatch-
ing the threads on different sockets has little effect. For
both Q1 and Q6, we see scaling up to the capacity of the
machine (up to 72 cores). This is seen in a maximum
speedup of 46× and 58× for Q1 and Q6, respectively.

Optimized Data Loading An often overlooked part of
data processing is data loading. Flare contains an opti-
mized implementation for both CSV files and the colum-
nar Apache Parquet format.2 We show loading times for
each of the TPC-H tables in Table 1.

Full table read From the data in Table 1, we see that
in both Spark and Flare, the Parquet file readers outper-
form the CSV file readers in most scenarios, despite this
being a worst-case scenario for Parquet. Spark’s CSV

2All Parquet files tested were uncompressed and encoded using
PLAIN encoding.



Table #Tuples Postgres HyPer Spark Spark Flare Flare
CSV CSV CSV Parquet CSV Parquet

CUSTOMER 1500000 7067 1102 11664 9730 329 266

LINEITEM 59986052 377765 49408 471207 257898 11167 10668

NATION 25 1 8 106 110 < 1 < 1

ORDERS 15000000 60214 33195 85985 54124 2028 1786

PART 2000000 8807 1393 11154 7601 351 340

PARTSUPP 8000000 37408 5265 28748 17731 1164 1010

REGION 5 1 8 102 90 < 1 < 1

SUPPLIER 100000 478 66 616 522 28 16

Table 1: Loading time in ms for TPC-H SF10 in Post-
gres, HyPer, Flare, and SparkSQL.

reader was faster in only one case: reading nation, a
table with only 25 rows. In all other cases, Spark’s Par-
quet reader was 1.33×-1.81× faster. However, Flare’s
highly optimized CSV reader operates at a closer level of
performance to the Parquet reader, with all tables except
supplier having a benefit of less than a 1.25× speedup
by using Parquet.

Performing queries Figure 13 shows speedups gained
from executing queries without preloading data for both
systems. Whereas reading an entire table gives Spark and
Flare marginal speedups, reading just the required data
gives speedups in the range of 2×-144× (Q16 remained
the same) for Spark and 60%-14× for Flare. Across
systems, Flare’s Parquet reader demonstrated between
a 2.5×-617× speedup over Spark’s, and between 34×-
101× over Spark’s CSV reader. While the speedup over
Spark lessens slightly in higher scale factors, we found
that Flare’s Parquet reader consistently performed on av-
erage at least one order of magnitude faster across each
query, regardless of scale factor.

In nearly every case, reading from a Parquet file in
Flare is approximately 2×-4× slower than in-memory
processing. However, reading from a Parquet file in
Spark is rarely significantly slower than in-memory pro-
cessing. These results show that while reading from
Parquet certainly provides performance gains for Spark
when compared to reading from CSV, the overall per-
formance bottleneck of Spark does not lie in the cost of
reading from SSD compared to in-memory processing.

TensorFlow We evaluate the performance of Flare and
TensorFlow integration with Spark. We run the query
shown in Figure 9, which embeds a UDF that performs
classification via machine learning over the data (based
on a pre-trained model). As shown in Figure 14, using
Flare in conjunction with TensorFlow provides speedups
of over 1,000,000× when compared to PySpark, and
60× when Spark calls the TensorFlow UDF through JNI.
Thus, while we can see that interfacing with an object
file gives an important speed-up to Spark, the data load-
ing ultimately becomes the bottleneck for the system.

Flare, however, can optimize the data layout to reduce the
amount of data copied to the bare minimum, and elimi-
nate essentially all of the inefficiencies on the boundary
between Spark and TensorFlow.

6 Related Work
Cluster Computing Frameworks Such frameworks
typically implement a combination of parallel, dis-
tributed, relational, procedural, and MapReduce compu-
tations. The MapReduce model [18] realized in Hadoop
[6] performs big data analysis on shared-nothing, po-
tentially unreliable, machines. Twister [20] and Haloop
[14] support iterative MapReduce workloads by avoiding
reading unnecessary data and keeping invariant data be-
tween iterations. Likewise, Spark [55, 56] tackles the is-
sue of data reuse among MapReduce jobs or applications
by explicitly persisting intermediate results in memory.
Along the same lines, the need for an expressive pro-
gramming model to perform analytics on structured and
semistructured data motivated Hive [52], Dremel [31],
Impala [26], Shark [53] and Spark SQL [8] and many
others. SnappyData [41] integrates Spark with a trans-
actional main-memory database to realize a unified en-
gine that supports streaming, analytics and transactions.
Asterix [10], Stratosphere / Apache Flink [5], and Tuple-
ware [17] are other systems that improve over Spark in
various dimensions, including UDFs and performance,
and which inspired the design of Flare. While these sys-
tems are impressive, Flare sets itself apart by accelerat-
ing actual Spark workloads instead of proposing a com-
peting system, and by demonstrating relational perfor-
mance on par with HyPer [35] on the full set of TPC-H
queries. Moreover, in contrast to systems like Tuple-
ware that mainly integrate UDFs on the LLVM level,
Flare uses higher-level knowledge about specific exter-
nal systems, such as TensorFlow. Similar to Tupleware,
Flare’s main target are small clusters of powerful ma-
chines where faults are statistically improbable.

Query Compilation Recently, code generation for
SQL queries has regained momentum. Historic efforts
go back all the way to System R [9]. Query compila-
tion can be realized using code templates e.g., Spade[22]
or HIQUE [27], general purpose compilers, e.g., HyPer
[35] and Hekaton [19], or DSL compiler frameworks,
e.g., Legobase [25], DryadLINQ [54], DBLAB [45], and
LB2 [49].

Embedded DSL Frameworks and Intermediate Lan-
guages These address the compromise between pro-
ductivity and performance in writing programs that can
run under diverse programming models. Voodoo [39]
addresses compiling portable query plans that can run
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Figure 13: Speedup for TPC-H SF1 when streaming data from SSD on a single thread.

#Data
Points

Spark Spark +
JNI

Flare

200 11909 990 0.064

2000 522471 3178 0.503

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

200 2000
# Data Points

Spark SQL
Spark JNI

Flare

Figure 14: Running time (ms) of query in Figure 9 using
TensorFlow in Spark and Flare.

on CPUs and GPUs. Voodoo’s intermediate algebra
is expressive and captures hardware optimizations, e.g.,
multicores, SIMD, etc. Furthermore, Voodoo is used
as an alternative back-end for MonetDB [12]. Delite
[46], a general purpose compiler framework, implements
high-performance DSLs (e.g., SQL, Machine Learning,
graphs and matrices), provides parallel patterns and gen-
erates code for heterogeneous targets. The Distributed
Multiloop Language (DMLL) [13] provides rich col-
lections and parallel patterns and supports big-memory
NUMA machines. Weld [38] is another recent system
that aims to provide a common runtime for diverse li-
braries e.g., SQL and machine learning. Steno [33] per-
forms optimizations similar to DMLL to compile LINQ
queries. Furthermore, Steno uses DryadLINQ [54] run-
time for distributed execution. Nagel et. al. [34] gener-
ates efficient code for LINQ queries. Weld is similar to
DMLL in supporting nested parallel structures.

Performance evaluation In data analytics frame-
works, performance evaluation aims to identify bottle-
necks and study the parameters that impact performance
the most, e.g., workload, scale-up/scale-out resources,
probability of faults, etc. A recent study [36] on a single
Spark cluster revealed that CPU, not I/O, is the source
of bottlenecks. McSherry et al. [30] proposed the COST
(Configuration that Outperforms a Single Thread) met-
ric, and showed that in many cases, single-threaded pro-
grams can outperform big data processing frameworks
running on large clusters. TPC-H [51] is a decision sup-
port benchmark that consists of 22 analytical queries that
address several “choke points,” e.g., aggregates, large
joins, arithmetic computations, etc. [11].

7 Conclusions
Modern data analytics need to combine multiple pro-
gramming models and make efficient use of modern
hardware with large memory, many cores, and NUMA
capabilities. We introduce Flare: a new backend for
Spark that brings relational performance on par with the
best SQL engines, and also enables highly optimized het-
erogeneous workloads with external ML systems. Most
importantly, all of this comes without giving up the ex-
pressiveness of Spark’s high-level APIs. We believe that
multi-stage APIs, in the spirit of DataFrames, and com-
piler systems like Flare, will play an increasingly impor-
tant role in the future to satisfy the increasing demand for
flexible and unified analytics with high efficiency.
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