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Abstract
On-stack replacement (OSR) describes the ability to replace
currently executing code with a different version, either a
more optimized one (tiered execution) or a more general one
(deoptimization to undo speculative optimization). While
OSR is a key component in all modern VMs for languages
like Java or JavaScript, OSR has only recently been studied
as a more abstract program transformation, independent of
language VMs. Still, previous work has only considered OSR
in the context of low-level execution models based on stack
frames, labels, and jumps.

With the goal of making OSRmore broadly applicable, this
paper presents a surprisingly simple pattern for implement-
ing OSR in source-to-source compilers or explicit program
generators that target languages with structured control flow
(loops and conditionals). We evaluate our approach through
experiments demonstrating both tiered execution and specu-
lative optimization, based on representative code patterns in
the context of a state-of-the-art in-memory database system
that compiles SQL queries to C at runtime. We further show
that casting OSR as a high-level transformation enables new
speculative optimization patterns beyond what is commonly
implemented in language VMs.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: OSR, on-stack replacement, metaprogramming,
code generation
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1 Introduction
The idea of on-stack replacement (OSR) is to replace code
while it is running with a different version. The two main
motivations are tiered execution and speculative optimization.

Tiered Execution. OSR was pioneered in just-in-time
(JIT) compilers, concretely in the SELF VM [23] in the early
1990s. Various forms of dynamic compilation were known be-
fore. JIT compilers of the zeroth generation compiled whole
programs during loading, or individual methods the first
time they were called. For large programs, this leads to high
overheads in compilation time. Many methods are used only
rarely, so compilation does not pay off. First-generation JIT
compilers improved on this model by splitting execution into
two tiers: code starts out running in an interpreter, which
counts invocations per method and triggers compilation only
after a threshold of 𝑛 calls. While this refined model is ef-
fective in focusing compiling efforts on “hot” methods, it
can only switch from interpreted mode to compiled mode
on method calls or returns but not in the middle of long-
running methods, i.e., methods that contain loops. As an
extreme case, a program consisting of a single main method
that runs a billion loop iterations will never be able to profit
from compilation. With OSR, however, one can count loop
iterations, trigger background compilation once the loop be-
comes hot, and switch from interpreted to compiled code
within a running loop, while the method is still executing.

Taking a more general view, code can be executed using a
range of interpreters or compilers that make different trade-
offs in the spectrum of compilation time vs. running time, i.e.,
optimization effort vs optimization quality. A typical set up is
a low-level interpreter for fast startup, then a simple compiler,
then a compiler with more aggressive optimizations.

SpeculativeOptimization andDeoptimization. A com-
piler can more aggressively optimize code if it is allowed
to make optimistic assumptions, for example, that a certain
guard condition is always true. However, if any such assump-
tion is violated at runtime, there needs to be a fail-safe mech-
anism that allows the system to deoptimize. The premise for
this technique is that deoptimization cases are infrequent
enough so that the incurred overhead is outweighed by the
performance gained on the fast path. As a concrete exam-
ple, Java JIT compilers typically make speculative decisions
based on the currently loaded class hierarchy. In particular,
if a method defined in a certain class is never overridden in
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a subclass, all calls to this method can be devirtualized since
the precise call target is known. Based on the known call
target, the compiler can further decide to inline the method.
However, if a class that is newly loaded does override the
method, this violates the original speculative assumption
and all the optimizations that were based on this assumption
need to be rolled back. In this example, all running instances
of the optimized code have to be aborted since continuing
under wrong assumptions about the class hierarchy would
be incorrect. In other cases, there is a bit more flexibility
when to deoptimize. For example, type feedback with poly-
morphic inline caches (PIC) [20] caches a limited number of
call targets per call site. PIC misses do not necessarily mean
that execution of compiled code needs to abort immediately,
but deoptimization and recompilation are typically triggered
after a certain threshold of misses.
Today, all cutting-edge VMs and JIT compilers (HotSpot,

Graal for Java; SpiderMonkey, V8, JSC for JavaScript) sup-
port both forms of OSR, tiered execution and speculative
optimization with deoptimization. Following recent related
work [12, 26], we use the term “OSR” symmetrically to refer
to both optimizing and deoptimizing transitions; older work
does not recognize deoptimization as a form of OSR.

Source-to-Source Compilers and ProgramGenerators.
Source-to-source compilation is a widely used approach for
implementing domain-specific languages, and explicit pro-
gram generators are often used to implement high-perform-
ance libraries because they can provide specialized code
generation facilities in ways that are out of reach for fully
automatic compilers (JIT or otherwise). While in many cases
code is generated and compiled offline and then available for
future use, there are also important use-cases where code is
generated and compiled on the fly, and then run once and
discarded. This means that the compilation process is part of
the runtime of the service, much like zeroth generation JIT
compilers. Hence it seems natural to look into techniques
from the JIT compiler and VM space to improve performance.

As a key motivating use case for this paper (Section 3), we
consider main-memory data processing frameworks such as
Spark SQL [4], and state-of-the-art query compilers based on
generative programming techniques [14, 35, 42], which are
essentially source-to-source compilers from SQL to C. The
embedded code generators in such systems emit C source
code for debuggability, portability, and to benefit from the
best compiler for a given hardware platform (e.g., Intel’s ICC
for x86 processors). As we demonstrate in this paper, tiered
execution can improve performance for workloads that exe-
cute many complex, but quick queries—a scenario that has
been identified as a key challenge by the database commu-
nity [24]—through a simpler but faster compiler (Section 4).
In addition, we show that speculative code generation can
help the downstream C compiler generate more efficient ex-
ecutables on specialized code paths, e.g., using vectorization

(Section 5). What is needed are OSR techniques adapted to
this setting of explicit code generation, that are generic and
easy to use but allow the generation of efficient code.

LiberatingOSR fromLow-Level VMs. How canwe bring
the benefits of OSR to this setting? That is the question we
address in this paper! The first and obvious idea would be to
turn systems like main-memory databases into full-blown
VMs. But often that is not practical. First, implementing all
the necessary infrastructure, including a bytecode language
and facilities like a high-performance low-level interpreter
to deoptimize into, would require a huge engineering effort
in an area that is not the main purpose of the system, and
require deep expertise in areas unfamiliar to database devel-
opers. Second, generating structured source code is often
important, for optimization (no irreducible control flow) and
for debuggability. In addition, there are cases where a given
platform dictates a certain target language. For example, such
external constraints may require generating Java, JavaScript,
or C source for interoperability.
We follow recent work, in particular D’Elia and Deme-

trescu [12], in viewing OSR as a general way to transfer exe-
cution between related program versions, articulated in their
vision to “pave the road to unprecedented applications [of
OSR] that stretch beyond VMs”. Or, in the words of Flückiger
et al. [17]: “Speculative optimization gives rise to a large and
multi-dimensional design space that lies mostly unexplored”.
By making speculative optimization meta-programmable
and integrating it with corresponding toolkits, in our case
LMS (Lightweight Modular Staging) [36], we give program-
mers a way to explore new uses of speculative optimization
without needing to hack on a complex low-level VM.

Key Idea: Duplicate, Optimize, Trampoline. The key
idea is to interrupt a loop at the granularity of one or a
handful of loop iterations, switch to a different compiled
implementation of the same loop and resume at the same
iteration count. We achieve this as follows:
1. Duplicate loops into multiple identical copies; new copies

may be created and JIT-compiled on demand at runtime.
2. Optimize each version independently; typically, with dif-

ferent objectives, e.g., fast turnaround vs. aggressive opti-
mization, or with a certain speculation pattern in mind.

3. Allow each version to exit and trampoline into another
version; to preserve semantics, switching must happen
between loop iterations, not in the middle of an iteration.

Duplicating loops in this way suggests a view of OSR as a pro-
gram transformation, akin to a data-dependent form of loop
unswitching. To enable separate and dynamic compilation,
loops, or loop nests, have to become their own compilation
units. This can be achieved elegantly using a form of lambda
lifting, i.e., representing the loop body as a function and mak-
ing the function top-level by turning all the free variables of
the loop into parameters of the extracted function.
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Translating away OSR abstractions early in the compila-
tion chain means that we do not need to worry about saving
and restoring registers at the right moment or preserving
OSR primitives across optimizations, as is the case for low-
level implementations of OSR in compiler back-ends. At the
same time, it is important to note that standard intraproce-
dural optimizations can be applied to any loop before the
OSR transformation.

This early translation also leads to an appealingly simple
correctness story. OSR variants of a loop are derived from
semantically equivalent copies, and then optimized indepen-
dently using a specific objective. Speculative optimization
patterns can be implemented using guard checks and fall-
back to the default variant, as long as the speculation logic
preserves the core contract of only switching between loop
iterations, i.e., either fully executing an iteration or not at all.
Making guard checks and switching logic explicit as regular
program instructions guarantees that later compiler passes
can remain unmodified, and that they remain free to apply
optimizations independently on each loop variant. So as long
as those downstream OSR-oblivious optimizations are cor-
rect, and each speculation pattern is correct in isolation, the
entire OSR pattern is correct.
In summary, this paper makes the following contributions:
• Intellectually, this paper proposes an extremely simple
model of OSR that improves our conceptual understanding
of the technique by exposing its essence. In practical terms,
this paper shows how program generators and source-to-
source compilers can emit OSR patterns enabling them to
profit from tiered execution and speculative optimization
without a complex VM (Section 2).

• As a case study, we add OSR capabilities to a state-of-the-
art SQL to C compiler, a setting representative of many
high-performance code generation scenarios (Section 3).

• We demonstrate that tiered execution based on our de-
sign successfully reduces end-to-end query execution time
for workloads with complex but short-running queries,
an important use case that has been recently posed as a
challenge by the database community [24] (Section 4).

• We further show that speculative optimization can have
significant benefits in a setting like SQL, providing specu-
lation capabilities beyond what current JIT compilers have
to offer, in particular enabling speculative vectorization
based on dynamic monitoring of the selectivity of filter
predicates, but also handling variable-size data types and
inlining of data structures such as indexes (Section 5).

Section 6 surveys related work; Section 7 concludes.

2 A Simple Source-to-Source Model of OSR
Our OSR transformation can be applied either manually by
a programmer, automatically by a compiler, or in a metapro-
gramming setting via macros or staging. As a running exam-
ple, consider the following Scala program, which computes

the dot product of two vectors, given as Float arrays x and y
along with their size n, with the little twist that only values
in x greater than 100 are considered:
var res = 0.0f
for (i <- 0 until n) {
if (x(i) > 100) res += x(i) * y(i)

}
println(res)

2.1 Advanced Speculation Patterns
By default, Scala compiles to JVMbytecode, and the JVM’s JIT
compiler will naturally support a variety of OSR techniques
to optimize this code at runtime. But what if we want more?
As our first example, let’s consider a domain-specific specu-
lation pattern not implemented on standard JVMs: switching
between a vectorized and a non-vectorized version of a loop,
based on runtime profiling. This is a simplified version of the
case study in Section 5.3. Taking some notational liberties, a
SIMD-enabled vectorized version can be written as:
@simd for (i <- 0 until n) {
res += (x(i) > 100) & (x(i) * y(i))

}

While vectorization is usually beneficial, it will lead to more
work when x(i) <= 100 for most i. But this selectivity factor
is only known at runtime! The OSR solution is to specula-
tively start executing a vectorized version, monitor if the
condition really is true most of the time, and when it is not,
switch to a scalar version of the loop. The scalar version can
perform the same kind of monitoring and switch back to
vectorized execution. To achieve this, we first desugar the
starter code into a plain while loop:
var res = 0.0f; var i = 0
while (i < n) {
if (x(i) > 100) res += x(i) * y(i)
i += 1

}
println(res)

Now we can transform it into an equivalent OSR-enabled
program following the ideas described in the introduction.
The while loop is vectorized and lifted into a separate func-
tion loop1. In addition, there is another function loop2, which
implements the default version:
var res = 0.0f; var i = 0; var loop = loop1
def loop1() = {
@simd while (loop == loop1 && i < n) {
res += (x(i) > 100) & (x(i) * y(i))
i += 1
if (oracle()) loop = loop2

}
if (i >= n) DONE else NOT_DONE

}
def loop2() = {
while (loop == loop2 && i < n) {
if (x(i) > 100)
res += x(i) * y(i)

i += 1
if (oracle()) loop = loop1

}
if (i >= n) DONE else NOT_DONE

}
while (loop() != DONE) {}
println(res)
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Switching between the loop variants is achieved by assign-
ing the desired continuation function to the variable loop,
whenever our profiling logic, represented here as function
oracle(), tells us that it’s time to switch. This will exit the
currently execution function and cause the other one to pick
up at the next loop iteration.

2.2 Uncooperative Environments
It is important to note that this pattern is language-agnostic
and does not at all rely on any existing JIT-compilation
support or language runtime. What if we wanted to cross-
compile this piece of Scala code to C? There may be a multi-
tude of valid reasons for this, including interoperability with
other native code, execution on certain closed platforms,
etc. And while it is not excruciatingly complicated to map
large subsets of Scala to C, we would not be able to benefit
from OSR or other dynamic compilation techniques using
standard techniques.
To support such settings, all we need to do is perform

another lowering step and apply lambda lifting to close off
and un-nest each of the loop functions. A direct mapping
to top-level functions in C code is now straightforward. Im-
portantly, each loop function can be placed in a separate file
and compiled independently of the others:
// lambda-lifted versions, 'Ref' denotes a mutable reference cell
def loop1(loop: Ref[Func], i: Ref[Int], res: Ref[Float],
n: Int, x: Array[Float], y: Array[Float]): Int = { ... }

def loop2(loop: Ref[Func], i: Ref[Int], res: Ref[Float],
n: Int, x: Array[Float], y: Array[Float]): Int = { ... }

// main program
def main() {
...
val res = Ref(0.0); val i = Ref(0); val loop = Ref(loop1)
while (loop(loop, i, res, n, x, y) != DONE) {}
println(res.read)

}

2.3 Dynamic Compilation and Loading
Moreover, new alternatives can be generated and loaded
at runtime, as long as they follow the same interface. As
we will show throughout the paper, based on this simple
pattern, we can realize a variety of practically relevant OSR
patterns, including lazy tiered compilation (recompile on-
demand using more optimizing compilers) and various forms
of speculative optimization with deoptimization. A basic
variant of lazy tiered execution can be achieved as follows
(disregarding vectorization):
def loop1(loop: Ref[Func], i: Ref[Int], res: Ref[Float],

n: Int, x: Array[Float], y: Array[Float]): Int = {
while (loop == loop1 && i < n) {
if (x(i) > 100) res += x(i) * y(i)
i += 1
if (threshold())
compileAsyncWithAggressiveOpts(sourceOfLoop)
.onReady(loopc => loop = loopc)

}
if (i >= n) DONE else NOT_DONE

}

When threshold() indicates that the loop has become hot,
an asynchronous compilation of the source code of the loop

is triggered, and, once complete, execution switches over to
the freshly compiled version. While the example is shown in
Scala, exactly the same can be done in C, using a standard
ahead-of-time compiler such as CLANG or GCC as JIT, and
loading the compiled code as dynamic library.

2.4 The Generic OSR Transformation
Based on these examples, we can describe a generic OSR
template in a slightly more formal way. We again consider a
suitable subset of Scala as our object language and focus on
the representation of while loops. In addition, we introduce
an oracle operator select. Given a sequence of conditions <
𝑐𝑖 >𝑛∈ Exp𝑛 (where Exp is the syntactic category of program
expressions) and a sequence of statements < 𝑡𝑖 >𝑛∈ Stm𝑛 ,
the term select(< 𝑐𝑖 >𝑛){< 𝑡𝑖 >𝑛} executes a statement 𝑡𝑖
for some 𝑖 for which 𝑐𝑖 is true. In addition, select returns the
result of evaluating statement 𝑡𝑖 .

We propose a generic OSR transform ⟦ . ⟧ \ < (𝑐𝑖 , 𝑓𝑖 ) >𝑛 ,
where 𝑐𝑖 ∈ Exp and 𝑓𝑖 ∈ (Stm → Stm) subject to the follow-
ing conditions:

• For all 𝑖 , the statement 𝑓𝑖 (𝑒) is equivalent to 𝑒 under the
condition that 𝑐𝑖 is true.

• On invocation of select, there exists an 𝑖 so 𝑐𝑖 is true.

Using the select oracle, we derive the generic OSR trans-
formation as follows:

⟦ while (c) e ⟧ \ < (𝑐𝑖 , 𝑓𝑖 ) >𝑛

= while (c) { select (< 𝑐𝑖 >𝑛) { < 𝑓𝑖 (𝑒) >𝑛 } }
= while (select (< 𝑐𝑖 >𝑛) {

< while (𝑐𝑖 && c) { 𝑓𝑖(e) }; if (!c) DONE else NOT_DONE >𝑛

} != DONE) {}
= def loop1() = {

while (𝑐1 && c) { 𝑓1(e) }
if (!c) DONE else NOT_DONE

}
...
while (select (< 𝑐𝑖 >𝑛) { <loop𝑖()>𝑛 } != DONE) {}

The oracle select represents the runtime selection of the code
that should be run. In addition, select hides the potential
compilation and loading of different pieces of code. For each
of the OSR situations described earlier, tiered execution and
speculation, the transformation sequence < (𝑐𝑖 , 𝑓𝑖 ) >𝑛 has
different characteristics.

We can tie the formalism back to our examples. 𝑓1 and 𝑓2
are the identity function, 𝑐1 = loop == loop1, and 𝑐2 = loop
== loop2. The only unknown left is how the loop variable is
assigned to loop2. For tiered execution, the transformations
𝑓𝑖 are simply the identity function. For any 𝑖 , the 𝑐𝑖 is eval-
uated to true if the compilation process has terminated for
loop𝑖 . For speculation, the transformations 𝑓𝑖 can differ in
arbitrary ways. In our evaluation (Section 5), we will look
at two different kinds of speculation. In the first situation,
the different transformations make optimistic assumptions
about the data handled by the program (e.g., that all values
are positive). In this setting, 𝑓𝑖 (𝑒) is more optimized than
𝑓𝑖+1 (𝑒), and 𝑐𝑖 is true as long as the assumptions made for
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the 𝑓𝑖 transformation are valid. But once the assumption is
invalidated, it can never become valid again. In the second
situation, the conditions can be invalidated and become true
again later. The conditions 𝑐𝑖 are evaluated, like a heuristic,
based on data collected during the execution of the program.
In this setting, each transformed code is more fitted for a
certain kind of data pattern, and the OSR pattern allows the
code to adapt to the best possible version.

2.5 Key Benefits
Given the high-level nature of the transformation, we do
not need to represent OSR primitives in an IR. Instead we
translate away the OSR behavior into a high-level structured,
AST-like, program representation by extracting each loop
body into a (potentially unbounded, and lazily JIT-generated)
set of functions, following a mechanical pattern. Hence, we
do not need to be concerned about how further program
transformations deal with OSR primitives (a key difficulty
in previous work), since there are none left! Downstream
optimizations just need to be semantics-preserving with
respect to individual functions, as is standard.
In practical terms, our approach allows the OSR runtime

system to be embedded within the code. Thus, we can add
OSR non-intrusively to a program, without an underlying
VM. Compilation relies only on any of the available ahead-of-
time compilers for the desired target language, and requires
minimal library support. Thus, any existing ahead-of-time
compiler can serve as JIT in this setting, and no bytecode
language or interpreter is necessary to “deoptimize into”.

2.6 Limitations
In this paper, we focus on structured loop nests only and do
not consider arbitrary recursive functions. In the setting of
performance-oriented DSLs and explicit program generation,
this is a very sensible choice, as performance-sensitive code
tends to be dominated by such coarse-grained loop nests and
fine-grained recursion is generally avoided for performance
reasons. Moreover, dealing with loops within a function re-
ally is the core problem addressed by OSR. With fine-grained
recursion, methods are entered and exited all the time so
code can be fruitfully replaced on a per-method boundary
and new invocations will pick it up. The only case not di-
rectly supported by our pattern as presented is returning
into a different variant of a calling function. However, this
functionality can be achieved by a calling convention that
passes along DONE/NOT_DONE flags. Corresponding techniques
have been successfully implemented in lightweight thread-
ing systems [37] using a more general form of trampolining.

3 Case study: Compiling SQL to C
We apply the ideas and tools presented in the preceding
sections to a real-world case study, adding OSR to a state-of-
the art SQL to C compiler, LB2 [42]. The LB2 authors show
how generative programming using LMS [36] can be used

Print(
Join(Seq("partkey"),
Filter(Eq(Field("shipdate"),

Const("1995-09-01")),
Project(Seq("partkey",

"shipdate", "quantity"),
Scan(stream("linetitem")))),

Project(Seq("type","partkey"),
Scan(stream("part"))))

)
(a)

Pipeline 2

JoinOp

BA

Pipeline 1

(b)

// Pipeline 1
val lineitem = Stream[Record](...)
val hm = MultiMap("partkey", ...)

while (lineitem.hasNext) {
val rec = lineitem.next
val prec = rec("partkey", "shipdate",

"quantity")
if (prec("shipdate") == "1995-09-01")

hm += (rec("partkey"), prec)
}

// Pipeline 2
val part = Stream[Record](...)

while (part.hashNext) {
val rRec = part.next
val prRec = rRec("type", "partkey")
for (lRec <- hm(prRec("partkey")))
(lRec ++ prRec).print

} (c)

Figure 1. Shape of the generated code for a Join operator. (a)
Querywith a Join operator, (b) pipelines and loop structure of
the code, (c) high level representation of the code generated.

to design a query compiler by implementing a simple staged
interpreter for relational algebra. While compilation for SQL
queries has been an active topic of research for a number
of years, optimizing for fast startup and for workloads that
execute many complex, but short running, queries has only
recently been identified as an important challenge by the
database community [24]. As we will show, the execution
patterns of the SQL language makes it a perfect candidate
for OSR compilation

Here is a simple query to scan a single table with a filter:
select user, likes from tweets where likes >= 1000

Knowing that the CSV format is “user name, # of likes, tweet
content”, this query would be translated to C as follows:
int main() {
char* tweets = ...; // open file and mmap it
int fileLength = ...; int pos = 0;
while (pos < fileLength) {
int userL; char* user;
pos += parseString(tweets + pos, &user, &userL) + 1;
int Likes;
pos += parseInt(tweets + pos, &likes) + 1;
int tweetL; char* tweet;
pos += parseString(tweets + pos, &tweet, &tweetL) + 1;
if (likes >= 1000)
printf("%.*s, %d\n", userL, user, likes);

}
}

The code consists of a single while loop that iterates over
the tweet table. This pattern is a key characteristic of code
generated for SQL queries. Even in complex queries which
include aggregates or joins, the code is composed of top-level
while loops scanning through collections (e.g., tables or data-
structures). These loops are called “operator pipelines” [27];
operators such as aggregate or join are called “pipeline
breakers,” as they must materialize the tuple of a pipeline
and store it in a temporary data-structure, and then produce
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their result within another pipeline. Figure 1 (a)-(c) shows the
overall shape of the code with a Join operator. This pattern
of code is a perfect example where transforming the pipeline
data into OSR regions would be beneficial.

3.1 The Need to Go Beyond Generic VMs
In implementing OSR for this style of code, it is instructive
to first generate code that is executed on a virtual machine
which already possesses the necessary JIT mechanisms. We
use the example in Figure 1 and generate code to execute
the query in Scala. The generation process specializes the
data structures (e.g MultiMap) to a very efficient low-level
implementation on arrays. The lineitem table contains 60k
records (a CSV file of ∼ 7MB) and the part table 2k records (a
CSV file of ∼ 253 kB). The generated Scala code is compiled
and run in 963ms.
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Figure 2. Runtime of the
query in Figure 1 (a) with
different target languages.

If we instead generate C
code that does not use any OSR
constructs, the code is com-
piled and run in only 260ms
(see Figure 2). This demon-
strates that the JVM JIT compi-
lation was unable to bring the
Scala code to the same perfor-
mance as C. The reasons for
this difference aremanifold but
the general conclusion is that despite powerful JIT compil-
ers, there are still material benefits in generating code in a
low-level language at runtime. With the results of this paper,
we can benefit from OSR in addition.

3.2 Implementation Considerations
Dynamic Code Loading. OSR requires some runtime

support to be embedded within the generated code to load
code that has been dynamically compiled. In the general set-
ting, we assume that there are NOSR regions, and they can be
compiled using M different compilers or compiler configura-
tions. With tiered execution, we also assume that the (𝑖+1)𝑡ℎ
configuration is better than the 𝑖𝑡ℎ configuration. Therefore,
the runtime can prioritize the highest configuration available
at any given time by loading the newest available code.

Most languages have support for dynamic loading through
library support; therefore the challenges lie in notifying the
running program of a newly available code or starting the
compilation of a required piece of code.
For the first challenge, there are several possibilities that

can be considered; we examine two of them here. The first is
polling: in this option, the worker thread periodically checks
if a new version is available. A second possibility is to block
until the next version is ready, in which case an auxiliary
thread is necessary for the loading step. Theoretically, the
background thread option wastes fewer resources as it will
mainly be waiting on a blocking event while the worker
thread only has to check a single condition at each iteration.

The polling version, however, must pay the (usually more
expensive) cost of polling. If this was done at each loop it-
eration, the overhead would be too high, with little benefit.
Our solution is to check only after X iterations; however, the
less optimized code may keep running while a new, faster
version is available if X is too large. In that case, the perfor-
mance gain is a trade-off between the polling overhead and
the waste of using less optimal code.
For the second challenge, our design gives the flexibility

to compile the code when it is the most efficient, without
adding extra overhead in the computation thread. In the case
of tiered execution for fast startup, the fast and slow compil-
ers start the compilation process at the same time: the code
generated by the fast compiler will be executed until the slow
compiler terminates and the highest optimized code is avail-
able. For speculative optimization, the compilation needs to
be triggered based on given criteria, e.g., low-selectivity of
a for-if construct vectorizing the code would be beneficial.
This avoids the waste of resources if the compilation is not
necessary. We evaluate these differences in Section 4 and 5.

Transition and Compensation Code. At the boundary
of each OSR region, some book-keeping is necessary to han-
dle transitions. It is important to structure this code so that
the downstream compiler can still fully optimize the code.
If some variables are mutated within the loop, they need to
be passed as pointers. Because of potential aliasing, the com-
piler may not be able to apply all optimizations. One solution
is to dereference the pointer once when entering the region,
save the value into a local variable, execute the region using
those variables, and finally assign the current value back
to the pointer when exiting the region. In addition, we can
provide more information to the compiler on the aliasing
and the alignment of the pointers, as they are known by
the code generator. Generating code with __restricted___

or aligned(X) annotations tends to improve loop-tiered exe-
cution and low-level speculative optimization.
In the case of high-level speculative optimizations, the

data layout between regions may be arbitrarily different; the
compensation code would potentially have to transform the
already computed data. For example, when using a hashmap,
one can speculate that the keys will only be an integer from
0 to 10, and thus use an array instead of a generic hashmap. If
the assumption fails, the next OSR region may use a generic
hashmap; when transitioning, all keys already inserted in the
array must be correctly inserted in the hashmap, requiring
task-specific compensation code.

Correctness. The OSR transformations must preserve the
semantics of the loop and guarantee that switching only
happens between loop iterations. For tiered execution, we
can ensure this if we always test the switching condition at
the beginning of the loop before the loop conditions. Indeed,
if the loop condition has side-effects, it can only be executed
once or it will lead to an incorrect transformation. With this
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constraint, we ensure that a loop iteration (condition and
body) executes completely, or not at all.
For speculative optimizations, the condition to switch to

different code can be arbitrarily complex, and depends on
the desired speculation pattern. Such an pattern is correct
if and only if upon an aborted iteration, the program can-
not have had observable effects; any such effects need to
be rolled back, or implemented using a transactional com-
mitment approach to ensure atomicity. How exactly this is
achieved is the responsibility of the individual speculation
pattern. Importantly, each speculation pattern only needs to
ensure that its own specific abort logic behaves atomically,
independent of any other component.

Initialization. For maximal efficiency, OSR code needs
to jump to the best available code as soon as possible. How-
ever, in some situations the swap arises long after the new
code is available. For example, if the code has a lengthy
initialization, the compilation of the optimal version may
already be done, but, as the code has not yet reached the OSR
region, the swap will happen only later, thus negating the
advantage of using OSR. In order to maximize performance,
it is important that the initialization consists of high-quality
code compiled by the fast compiler. For example, a good init
sequence would consists of function calls to libraries which
are precompiled with high optimization settings.

Nested Loops. In line with the previous paragraph, the
case of nested loops can lead to unwanted overhead. Assum-
ing that an outer loop is transformed into an OSR region,
and the inner loop is taking more time than the compilation
process, there is a long period between the end of the com-
pilation and the starting of the execution of the fast code. In
that situation, it may be preferable to take the inner loop or
the entire loop nest as the OSR region. This example shows
that it may not always be the most beneficial choice to trans-
form the outer loop in an OSR region. From a technical point
of view, however, a nested loop does not make the transfor-
mation more complex or invalid. The performance impact,
however, needs to be evaluated case-by-case. Lameed and
Hendren [26] discuss the impact of different approaches.

4 Tiered Compilation Experiments
All experiments are conducted on a single NUMA machine
with 4 sockets, 24 Intel(R) Xeon(R) Platinum 8168 cores per
socket, and 750GB RAM per socket (3 TB total). The operat-
ing system is Ubuntu 16.04.4 LTS. We use Scala 2.11, GCC 5.4,
Clang 6.0 and TCC 0.9.26. We use the TPC-H benchmark [43]
with scale factor (SF) 0.1, 0.3, 1.0 (~100MB, 300MB, and 1GB
of csv files). For all our experiments, we report the median
of 5 runs unless stated otherwise.

4.1 Tiered Compilation for SQL Queries
In this experiment, we evaluate tiered compilation in the con-
text of compiled query evaluation. The LB2 query compiler
[42] uses generative programming to compile SQL queries

into optimized C. The back-end of a typical query compiler
consists of a small number of structured operators that emit
evaluation code in the form of tight, long-running loops that
process data and perform various computations (e.g., com-
puting an aggregate over grouped data). The execution path
of a compiled SQL query consists of data structure initializa-
tion, data loading, and evaluation. In practice, SQL queries in
TPC-H take 100-400ms to compile using GCC with optimiza-
tion flag -O3. This time is acceptable when processing large
datasets, but for small-size workloads, compilation time be-
comes a rather considerable overhead that may defeat the
purpose of compiling SQL queries to low-level code [24].
How, then, do we improve query compilation time?
A first idea is to tune the compilation optimization level

without negatively impacting run time. Thus, we first study
the effect of varying the optimization levels on compilation
time for GCC (we also evaluate Clang in Section 4.4). We
pick the simplest query, TPC-H Q6, a simple filter-aggregate,
with scale factor SF0.1 (the table size is around 71MB). The
hand-written Q6 is essentially a loopwith an if condition that
iterates over the table, filters records, and computes a single
aggregate operation (i.e., the sum of a simple computation on
each data record). Figure 3 shows the time to compile, run,
and the end-to-end execution time for Q6 using different
optimization levels in GCC. At first glance, we observe that
using lower optimization flags improves compilation time by
20-40ms in GCC. Furthermore, the run times of -O3, -O2, and
-O1 is nearly identical. Hence, for this basic query, GCC-O1
achieves the best compilation time and end-to-end execution
time. However, using the lowest level -O0 significantly slows
down run time by 5×. How can the OSR pattern discussed
earlier improve the performance of small-size queries?

While using a lower optimization flag does improve compi-
lation time, 60-70ms is still perceived as large for small-size
queries. In our example, it is as much as the run time itself.
An alternative approach would be to use a less-optimizing,
faster compiler to implement the OSR pattern. The Tiny
C Compiler (TCC) [31] is a fast, lightweight compiler that
trades performance for speed. For instance, compiling Q6 in
TCC takes 7-8ms. The key idea is to compile and launch the
query using TCC until the slow compiler finishes its work,
after which OSR switches execution to the fast compiled
code. We evaluate this in Section 4.3.
Finally, consider the following breakdown of GCC -O3

and GCC -O0 compile times:
gcc -O3 -time tpch6.c
# cc1 0.06 0.01
# as 0.00 0.00
# collect2 0.01 0.00

gcc -O1 -time tpch6.c
# cc1 0.05 0.00
# as 0.00 0.00
# collect2 0.01 0.00

gcc -O0 -time tpch6.c
# cc1 0.02 0.01
# as 0.00 0.00
# collect2 0.01 0.00

We observe that the higher optimization levels spendmore
time in the compilation phase. Also, the linking time is high
(the same amount of time TCC spends in compilation). These
observations encourage the use of the OSR pattern, leaving
the slow compiler a chance to perform more optimizations
without “wasting” time as code is already running.
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select sum(l_extendedprice * l_discount) from lineitem
where l_shipdate >= date '1994-01-01'
and l_shipdate < date '1995-01-01'
and l_discount between 0.05 and 0.07
and l_quantity < 24

(a) - (b)
// data loading elided.
for (i = 0; i < size; i++) {
double l_quantity = l_quantity_col[i];
double l_extendedprice = l_extendedprice_col[i];
double l_discount = l_discount_col[i];
long l_shipdate = l_shipdate_col[i];
if (l_shipdate >= 19940101L
&& l_shipdate < 19950101L
&& l_discount >= 0.05 && l_discount <= 0.07
&& l_quantity < 24.0) {
revenue += l_extendedprice * l_discount;

} }
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Figure 3. TPC-H Q6 in (a) SQL and (b) handwritten C, (c) execution time of Q6. Speedups in the table are relative to GCC -O1.

4.2 Switching From Slow to Fast OSR Paths
Query evaluation is best described as performing a long-
running loop where each iteration evaluates a number of
records. Integrating OSR in query compilers requires stop-
ping a running loop in order to switch from quickly compiled
but slow code to codewhich has been compiled withmore op-
timizations. In this experiment, we evaluate the two switch-
ing mechanisms discussed in Section 3.2. Recall, the first
approach uses a polling mechanism. We implement polling
as follows: the compiler process creates a lock file as soon
as the new target becomes available. Furthermore, a switch-
ing threshold X is configured to determine the frequency
at which the code checks for the lock file, for each epoch
the code performs X iterations then probes the existence of
the lock file. The second approach uses a background thread
that blocks until it is notified by the compilation process.
Once notified, it dynamically loads the dynamic library. Af-
ter that, the loading thread updates a volatile variable to
signal readiness to the main processing thread. Checking
a volatile variable has the advantage of being much less
expensive than a polling operation.

Table 1. The impact of various switching thresholds on
OSR-run time using Q6 SF1.

threshold thread 1 102 103 104 105

execution (ms) 672 721 698 697 700 705
switched at (ms) 59 62 60 58 61 73
switch iteration (x100) 2243 679 2345 2340 2500 3000

Table 1 illustrates the impact of using a background thread
and various switching thresholds (1, 100, 1000, 10000 and
100000 on OSR run time in Q6 SF1). We observe that check-
ing the availability of the fast code at each iteration incurs
approximately 20ms overhead in run time compared to the
other thresholds. Indeed, performing a check at each itera-
tion uses precious computation time, thus when the switch
happens the amount of useful computation that has been
performed is lower. In our experiment, the code executes
only 67k iterations with a threshold of 1 versus 240k for the
others. Similarly, picking a large threshold potentially wastes

time depending on when the compiled target becomes ready.
Indeed in the worse case, a more optimized code could be
available at the beginning of an epoch just after the check
thus it could be available for a full epoch without being used.
This situation is exhibited by our experiment: if the thresh-
old is 100 iterations, the OSR swap arises at iteration 234k,
thus for a threshold of 100k the swap occurs at 300k and
therefore the code spends more time than necessary in the
less optimized code when the threshold is too high (73ms
vs 62ms). On the other hand, using a background thread is
25ms faster than the best threshold used in this experiment,
making it the best solution if multi-threading is supported.

4.3 Complex Code with Many OSR Regions
The OSR pattern is applicable on any long-running loop. For
complex programs, each loop is processed as an independent
code region where the main program coordinates running
code regions. Consider the query TPC-H Q1. At a high level,
Q1 is an example of an aggregate operation that divides data
into groups and computes the sum, etc., for each group. The
execution breaks down into three distinct code regions as
follows. The first region is a loop for inserting data into
a hash table. The loop in the second region traverses the
hashmap, obtains the computed aggregates and performs
sorting. The last region iterates over the sorted buffer and
prints results.
Figure 4 shows the execution time of different TPC-H

queries using TCC as the baseline, GCC with various compi-
lation flags, and OSR where TCC and GCC are the fast and
slow compilers, respectively. The OSR query time consists
of TCC compilation time, a part of TCC run time, and GCC
run time. We observe first, TCC compilation is very short
(around 10ms), which allows starting execution early. Sec-
ond, the OSR path reduces the end-to-end execution time
by executing TCC at the beginning. Third, OSR preserves
its expected behavior with increasing data size. However, in-
creasing data size reduces the benefit of using OSR since the
run time dominates the end-to-end execution time. It may
seem surprising that in the OSR context, the code switch ap-
pears to happen before the GCC compilation terminates. This
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Figure 4. Tiered execution comparison for Q1, Q5, Q6, and Q14 with different configurations. For XXX/YYY, the run was an
OSR execution compiled XXX then YYY. The tables list the relative speedup of OSR execution over the GCC -O1 configuration.

is due to the fact, that in the OSR context, GCC has less code
to compile than in the non OSR context and it does not have
to create a full executable but only a shared library. Thus the
compilation is slightly faster – around 6% for TPC-H Q1.
For the runs with a scale factor of 0.1 (100MB), the best

OSR execution (TCC with GCC -O1) achieves between 14
and 21% speedup over the GCC -O1 configuration. For a
larger scale factor of 0.3 (300MB), the speedup is between 7
and 11%. This confirms that OSR will be beneficial, as long
as the compilation time is non-negligible compared to the
running time. The OSR path in Q1 reduces end-to-end run
time by 20-30ms in comparison with GCC -O3, -O2 and -O1.
TPC-H Q5 and Q14 are examples of join operations between
five and two tables respectively. The pseudo-code in Figure 1
(d) gives a high-level implementation of a hash join operator
between two tables. With this experiment, we see that even
with a higher number of OSR regions in the generated code,
the technique improves the run time.

4.4 Shape of Code
As discussed in Section 4.1, highly-optimizing compilers
spend around two-thirds of the time in performing optimiza-
tions. Also, the linking time in GCC alone is around the same
as TCC’s compilation time. However, the class of fast compil-
ers (e.g., TCC, GCC-O0 and Clang-O0) perform a small set of
optimizations to minimize compilation time at the expense
of performance. For instance, less sophisticated compilers
evaluate statements individually, whereas optimizing compil-
ers process multiple statements together. For example, TCC
generates more efficient code for nested expressions than
for a cascade of expressions (such as ANF form).

In this experiment, we explore how the shape of code can
help fast compilers to generate faster code. We manually im-
plemented TPC-H Q6 using nested expressions and executed
the query using TCC, GCC, and Clang. Figure 5a-b shows
the compile and run time of Q6 using the handwritten code
and the code generated by LB2. Table A summarizes the key
outcome by listing the relative speedup of the manual code
over the generated one. We observe that compilers with the
slowest compiling times (TCC and Clang) benefited the most
with 1.93×-1.87× speedup, respectively. Figure 5c shows the
OSR execution using TCC as the fast compiler and various
GCC and Clang configurations as slow compilers. Tables B
and C summarize the speedup of manual and generated OSR
execution paths over GCC -O1. For the manual case, we see
that OSR configurations TCC/GCC-OX outperformsGCC-O1
by 12%, 6%, and 5% respectively. However, only TCC/GCC-
O1 outperforms GCC-O1 (14%) in the generated setting as
TCC is much less efficient in this situation. However, the
pattern is conserved. Indeed, the OSR configuration always
outperforms its corresponding non-OSR configuration.
While the running times of generated and handwritten

code are very close for GCC and Clang, the compilation
time changes a lot. This means that compilers manage to
optimize the code and converge to the same version but need
more time. GCC takes between 50-60% and Clang around 46%
more compilation time when the code is generated. For lower
optimization level or TCC, the compilation and the run time
are increased by almost a 2× factor. The key insight is that
it is possible, for code generators like LMS, to generate code
that makes downstream compilation faster using particular
constructs, e.g. nested expressions, etc.
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Figure 5. Compilation time and execution time of Q6 on SF0.1, for handwritten code and generated code on different compiler
configurations. XXX/YYY indicates the run was an OSR execution with first configuration XXX and second YYY.

5 Speculative Optimization Experiments
In this section, we evaluate the performance of speculative
optimizations. We first look at high-level speculations where
multiple code snippets are generated for the same task. We
then look at low-level speculation where the same gener-
ated code is compiled using different options. In both cases,
there are multiple OSR regions generated and the program
generator adds the logic to swap between them efficiently.

In generic code with many different execution paths, com-
pilers may have difficulty optimizing each individual path.
Our hypothesis is that if we separate each path into its own
compilation unit, the compiler will do a much better job.
For example, autovectorization may be disabled because of
complex control-flow, and singling out a single path may
re-enable it (see Figure 6). In addition, we conjecture that
it is possible to combine the different paths back together
and thus optimize the original program. In the remainder
of this section, we test these hypotheses on some targeted
benchmarks and evaluate the possible benefits.

5.1 Variable-Size Data
An example of variable-size data is the multiple precision in-
teger datastructure of the GMP library [15], mpz_t. The space
used by an mpz_t is runtime-dependent, and the performance
is linked to its size. A programmer may want to be able to

Loop
i++ < n

arr[i] < 0

cond cond'

agg -= arr[i] agg += arr[i]

false

false false

true

true true

f1
Loop

i++ < n

cond

agg -= arr[i]

false

true

Assumption
arr[i] < 0 wrong

Figure 6. Complex control flow for loop vectorization. Mul-
tiple nested branches (right) prevent the compiler from vec-
torizing the computation. Extracting the hot path with a
side exit (left) enables better optimization in general and
especially vectorization of the hot path.

handle all possible scenarios in their program, however, us-
ing mpz_t when all data could fit into an int or a long will
lead to serious performance penalties.
In this experiment, we look at three different programs

that compute the sum of integers of arbitrary size: Program
1 is storing “all” values into mpz_t, programs 2 and 3 use a
scheme where values between 0 and 263 − 1 are stored as
a long and other values as mpz_t. Programs 2 and 3 assume
that all values are stored as long and accumulate into a long,
if the assumption is violated it continues by accumulating
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Figure 7. Comparison of the sum of an array of 5 millions
integers. Average run time of 20 runs in microseconds (input
array randomly generated). The table represent the speedup
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in a mpz_t. Program 2 uses a single loop, whereas Program 3
implements the OSR logic we described in Section 2.

Figure 7 reports the average running time in milliseconds
of twenty runs of these three programs, the input is an array
of 5 million integers. We ran the experiment with different
densities of numbers larger than 263: 1, 10, 100, and 1000
in 1 million. The higher the density, the lower the index of
the first mpz_t will be, thus reducing the advantage of the
speculation for programs 2 and 3. The experiments show that
in this situation, our assumption was correct. The program
with the OSR regions performed better than the single loop
program. Using the flag that reports successful vectorization,
we can confirm that in program 3 the loop is vectorized by
GCC, but in program 2 it is not.

5.2 Inline Data Structures
Collections such as hashmaps are used to implement com-
plex algorithms efficiently. They usually have a very good
theoretical asymptotic performance; however, there are some
specific cases where they are not optimal. For example, Q1
of the TPC-H benchmark has only four different keys for
the group by operation using the standard TPC-H data. For
generality, it is implemented using a hashmap. But in that
context, hashmaps add more overhead than simply using
four variables to store the different values. Based on that
observation, we test some speculative high-level optimiza-
tions. We generated different code for the query: one that
assumes there is going to be only 3 distinct keys, another 4,
and another 5. For comparison, we also generated a program
that is using the GHashMap from the GLib library. The code
specialized for a given number of keys stores them in local
variables instead of a more complex data-structure. Given
that the number of keys is small, only a small number of
comparisons is needed to find the correct variable to store
the data. If the number of keys exceeds the speculated num-
ber, the program falls back to the generic implementation
with the GHashMap. In Figure 8, we report the result of our
experiment. We ran this program on a table that actually
has 3, 4, 5, 6, or 25 distinct keys. We can see that when the
assumption was correct (number of key speculated higher
than the actual number of keys), the specialized code per-
forms much better than the generic hashmap. But even more
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Figure 8. Running time of generated code with speculation
on the number of distinct keys, and a generic hashmap im-
plementation. The x axis represents the actual number of
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Figure 9. Comparison of vectorized, non-vectorized and
OSR code (a basic map-filter-reduce loop). OSR exhibits the
best behavior for any selectivity.

importantly, when the speculation is not valid, the code does
not perform worse than the generic hashmap.

5.3 Predication vs. Branches
Modern processors support SIMD execution, and compil-
ers need to evaluate the benefit of vectorization with some
heuristic. However, the actual benefit is data-dependent. For
example, consider how a for-loop computing an aggregate
on an array based on some condition (e.g., a basic map-filter-
reduce operation) is vectorized. Vector instructions use wide
registers to compute multiple results at the same time. To
handle the conditions, the processor creates a mask that voids
the results computed that are not needed. This leads to a
speed-up in most cases, but not always. Consider the situa-
tion where a SIMD instruction computes two values at the
same time. If the computation of these values is significant
and the majority of the time the values are discarded because
the condition is false, the computation is pure overhead and
the non-vectorized version may perform better.
In this experiment, we transform the loop into an OSR

region and compile it once with the -ftree-vectorized flag
and once without it. The loop also includes a counter that
keeps track of the selectivity of the data: when reaching a
given cutoff, the code switches between the two different
compiled versions. In Figure 9, we present the result of the
experiments. Empirically, we can see that the vectorized code
and the non-vectorized code intersect when the selectivity
is around 15%: using this for the cutoff value yields the best
performance (the OSR cutoff 15 line cannot be seen as it is



GPCE ’21, October 17–18, 2021, Chicago, IL, USA Grégory M. Essertel, Ruby Y. Tahboub, and Tiark Rompf

under the non-vectorized line from 0 to 15 and under the
vectorized line from 15 to 100). We can also see that different
cutoffs switch too early or too late. Similar to the variable-
size data experiment, the OSR region runs for a fixed window
and checks the swapping condition when done; otherwise,
it would prevent the vectorization of the loop. Different
tradeoffs can be achieved by basing the swapping condition
on the last window or the entire data processed so far.
In summary, both SIMD-vectorized and non-vectorized

code can have highly suboptimal behavior based on the selec-
tivity of a conditional. OSR allows us to dynamically switch
between the two versions, and hence, achieve performance
that is always within a small window around the optimal
strategy for any selectivity.

6 Related Work
OSR. On-stack-replacement was first prototyped in SELF

[23]. The VM was designed to combine interactivity and
performance. The SELF code compiles only when needed,
instead of performing a lengthy global compilation pass. The
technique unwinds the stack and finds the best function to
compile, then replaces all the lower stack parts with the stack
of the optimized function. The SmallTalk 80 [13] system was
implemented using many sophisticated techniques including
polymorphic inline caching (PIC) and JIT compilation. In
the case of the JIT compilation, the procedures’ activation
records had different representations for the interpreted code
and for the native code: swapping between these representa-
tions is the same as swapping between two OSR regions in
the speculative setting. Strongtalk [9] provides a type system
for the untyped Smalltalk language. An OSR LLVM API is
given in [11, 26], similar to our work but focused on a low-
level approach within the LLVM IR more targeted toward
VM implementation. OSR is also implemented in Hotspot
[30] and V8 [18]. The work in [16] uses OSR to switch be-
tween garbage collection systems. Skip & Jump [44] presents
an OSR API for a low-level virtual machine based on Swap-
stack. Our work is different as it makes available OSR to the
programmer explicitly, rather than within a runtime envi-
ronment as an optimization of the language runtime.

JIT Compilers. Examples of modern JIT compilers in-
clude the Jalapeño VM [5] and its successor Jikes RVM [3];
the Oracle HotSpot VM [30] which improves performance
through optimization of frequently executed application
code; the Maxine metacircular research VM [45]; SPUR [6], a
tracing JIT for C#; V8 [18]; Crankshaft [19]; and TurboFan [1].
Truffle [46] is built on top of Graal [29], and optimizes AST in-
terpreters. The PyPy [8, 34] framework is written in Python
and works on program traces instead of whole methods. The
Mu micro VM [44] focuses on JIT compilation, concurrency,
and garbage collection.

Optimization, Deoptimization, andPerformance. Dy-
namic deoptimization was pioneered in the SELF VM to pro-
vide expected behavior with globally-optimized code. The

compiler inserts debugging information at interrupt points,
while fully optimizing in between [22]. In essence, our OSR
regions are similar to [22]. Debugging deoptimization in [21]
deoptimizes dependent methods whenever a class loading
invalidates inlining or other optimizations. PIC [20] extends
the inline caching technique to process polymorphic call
sites. The work in [17] deoptimizes code compiled under
assumptions that are no longer valid. [7] present a gener-
alized scheme to do exception-safe loop optimizations and
exception-safe loop tiling.

Staging and ProgramGeneration. Delite [2, 10, 40] is a
general purpose compiler framework, that implements high
performance DSLs, provides parallel patterns, and generates
code for heterogeneous targets. LMS [36] is a library-based
generative programming framework, which uses types in-
stead of syntax to identify binding times, and generates an
intermediate representation instead of target code. Code gen-
eration examples from relevant domains include Spiral [32]
for digital signal processing (DSP) and Halide [33] for image
processing. A subset of Spiral has been re-implemented us-
ing LMS [28], as has a compiler for a subset of MATLAB [38].
Generative programming has also been proposed as a vi-
able approach to add SIMD intrinsics on managed language
runtimes [39]. The work in [25] embeds a DSL that mimics
JavaScript in Scala using LMS. Haskell is, of course, another
popular host language for embedded DSLs [41].

7 Conclusions
In this paper, we have presented a surprisingly simple pat-
tern for implementing OSR in source-to-source compilers
or explicit program generators that target languages with
structured control flow (loops and conditionals). We showed
how on-stack-replacement provides the ability to replace
currently executing code with a different version, either a
more optimized one or a more general one, within a high
level program. OSR has been a key component in all modern
VMs for languages like Java or JavaScript for a long time,
however it has only recently been studied as a more abstract
program transformation, independent of language VMs. Our
work extends the scope of OSR beyond the context of low-
level execution models based on stack frames, labels, and
jumps and makes it more broadly applicable.
We have evaluated key use cases and demonstrated at-

tractive speedups for tiered compilation in the context of
state-of-the-art in-memory database systems that compile
SQL queries to C at runtime. We have further shown that
casting OSR as a high-level transformation enables new spec-
ulative optimization patterns beyond what is commonly im-
plemented in language VMs.
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